
SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Scoiety for Industrial and Applied Mathematics

0097-5397/80/0901-0001 $01.00/0

AN EFFICIENT TEST FOR CIRCULAR-ARC GRAPHS*

ALAN TUCKERS.

Abstract. An undirected graph G is called a circular-arc graph if there exists a family of arcs on a circle
and a 1-1 correspondence between vertices and arcs such that two distinct vertices are adjacent if and only if
the corresponding arcs overlap. Such a family is called a circular-arc model for G. In this paper we present an
O(na)-step algorithm for testing whether an n-vertex graph is a circular-arc graph, and if it is, constructing a
circular-arc model. Unfortunately the algorithm, its proof, and its efficient implementation are all quite
involved.

Key words, circular-arc graph, efficient test, circular one’s, consecutive one’s

1. A graph G (7/’, M) consists of a finite set 7/" of vertices and a symmetric,
reflexive adjacency relation M. The complement G (7/’, M) of G has for distinct
vertices x and y, xMy ,, not xMy. A graph G is called an intersection graph for a family

of sets if there exists a 1-1 correspondence between the vertices of G and the sets of .
such that two distinct vertices are adjacent if and only if the associated sets intersect.
Conversely, such a family o is called an intersection model for G. If is a family of
intervals on a line, G is called an interval graph. If is a family of arcs on a circle, G is
called a circular-arc graph. Interest in interval graphs dates from a paper by biologist
S. Benzer [1] in which he showed that overlap data involving fragments of a certain viral
gene could be modeled by a family of intervals---this finding confirmed the hypothesis
that DNA has a linear structure within genes (and helped earn Benzer a Nobel prize).
Interval graphs have since found application elsewhere in the biological and social
sciences (see the survey on interval graph uses in Roberts [10, Chap. IV]). Several
authors have characterized interval graphs (Lekkerkerker and Boland [8], Gilmore and
Hoffman [6], and Fulkerson and Gross [4]). Fulkerson and Gross [4] gave an O(n4)
algorithm for testing whether an n-vertex graph is an interval graph. Recently, Lueker
and Booth [2], [3], [9] (independently) improved the Fulkerson-Gross test with special
data structures and a fast clique enumeration algorithm to run in O(n 2) time (linear in
the number of edgesuthe best possible time). This test is based on a test for the
conseuctive l’s property in a certain (0, 1)-matrix, specifically, the graph’s vertex-clique
incidence matrix. A (0, 1)-matrix M has the conseuctive l’s property if the rows of M
can be permuted so that the l’s in each column occur in consecutive rows.

Circular-arc graphs also have a potential role in genetic research (Stahl [11]).
Circular-arc graphs have recently been applied to problems in multidimensional scaling
(Hubert [7]), traffic control (Stouffers [12]), computer compiler design (Tucker [16]),
and the characterization of a certain class of lattices (Trotter and Moore [13]). This
author [14] has given a matrix characterization of circular-arc graphs and an efficient
algorithm for recognizing proper circular-arc graphs (graphs with a circular-arc model
in which no arc properly contains another arc). Gavril [5] has given efficient algorithms
for some other special classes of circular-arc graphs. This author [15] has obtained a
Kuratowski-type (forbidden-subgraph) structure theorem for proper circular-arc
graphs and unit-length circular-arc graphs. Trotter and Moore [13] have a structure

* Received by the editors July 8, 1977, and in final revised form December 22, 1978.
5" Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New

York 11784. This research was partially supported by the National Science Foundation under research Grant
MPS-7505268.

Without loss of generality, we can assume that all intervals and arcs are closed, i.e., that they contain in
their endpoints, and that the 2n endpoints of the n intervals or arcs in are distinct.

2 ALAN TUCKER

theorem for circular-arc graphs which partition into two cliques (i.e., those whose
complement is bipartite). The matrix characterization of circular-arc graphs is based on
a variant of the circular l’s property (similar to the consecutive l’s property except now
the l’s in each column must occur in cyclicly consecutive rows). In our circular-arc graph
algorithm we will require testing certain (0, 1)-matrices for the circular l’s property.
Such a test can be converted to the problem of testing a related matrix for the
consecutive l’s property (Booth and Lueker [3] can do a consecutive l’s test in linear
time with respect to the number of l’s in the matrix). The conversion is based on the
following argument. If the rows of a (0, 1)-matrix M can be arranged so that the l’s in
each column occur in a circular (cyclicly consecutive) set of rows, then the O’s in each
column also will occur in a circular set of rows. It follows that if M’ is obtained from M
by complementing a subset of columns of M, i.e., interchanging l’s and O’s in these
columns, then M has the circular l’s property if and only if M’ does. Now suppose that
the subset of columns of M complemented are the columns with a 1 in the last row (so
M’ has all O’s in its last row). Then an arrangement of M’ with circular l’s and (by
cyclicly permuting the rows, if necessary) still all O’s in the last row actually has
consecutive l’s. Thus M’ has the consecutive l’s property if and only if M has the
circular l s property.

In the next section we describe an algorithm for constructing, if possible, a
circular-arc model for a given n-vertex graph G. In that presentation, we simply state
four major propositions needed in the algorithm’s construction. The proofs of these
propositions are given in the last section. Section 3 discusses efficient O(t/3) implemen-
tation of the algorithm (O(r 2) storage locations are required). Section 4 consists of a
14-vertex example of the algorithm.

It is important to note that the cyclic order of arc endpoints in a circular-arc model
for a circular-arc graph is, in general, far from unique. For example, the complete
n-partite graph HE.n with two vertices in each part (the two vertices in each part are not
mutually adjacent themselves but are adjacent to all other vertices) is a 2n-vertex
circular-arc graph with (n 1)!2 different possible cyclic orders of arcs in a circular-arc
model. Interval graphs can also have exponential numbers of different models but the
following two facts greatly simplify interval modeling: (i) maximal cliques in interval
graphs correspond to points of maximal overlap on the line; and (ii) an n-vertex interval
graph has at most n 1 maximal cliques. Thus it suffices to find an ordering of maximal
cliques such that each vertex (interval) is in a consecutive set of maximal cliques (this is
where the consecutive l’s property is involved). In circular-arc graphs, a clique can be
modeled by a set of arcs that, by reaching around the circle, have no common point of
overlap; H2.n has 2 maximal cliques. These observations about the complexity of arc
models and cliques hopefully convey a sense of the rich combinatorial structure possible
in circular-arc graphs and of why complicated ad hoc methods, instead of general
principles, are the basis of almost all results in the theory of circular-arc graphs. It had
even been conjectured (page 3 of Booth [2]) that testing for circular-arc graphs might be
an NP-complete problem.

2. The circular-arc algorithm. In this section we present an algorithm for con-
structing a circular-arc model (one of possibly many models) for a given n-vertex graph
G, assuming such a model exists. If G is not a circular-arc graph, either the construction
may be forced to terminate or the family of circular arcs produced by the algorithm will
be found not to be a model for G. As in this author’s characterization and recognition
test of proper circular-arc graphs, the circular-arc test splits into two cases, depending
on whether G, the complement of G, is bipartite; if not bipartite, G must contain a

A TEST FOR CIRCULAR-ARC GRAPHS 3

primitive (chordless) odd-length circuit. In addition, the nonbipartite case has two
major subcases (the two subcases are not exclusive)"

Case I. G bipartite; equivalently, G partitions into two cliques;
Case II. G has an odd-length chordless primitive circuit.

Subcase IIa. G has a triangle; equivalently, G has 3 (or more) mutually
nonadjacent vertices.

Subcase IIb. G has an odd hole (an odd-length primitive circuit of length _->5).
The algorithm in each case consists of three major stages. In Stage One, a special

subset of m vertices is found whose associated arcs can be physically determined (i.e.,
positioned on a circle). The endpoints of these m arcs divide the circle up into 2m
sections such that no remaining arc could possibly have both its endpoints in the same
section. In Stage Two, the endpoints of the remaining arcs are located in appropriate
sections. In Stage Three, the set of arc endpoints in each section is arranged appro-
priately. Instead of referring to vertices and their associated arcs, we shall henceforth
consider G to consist of n arcs which overlap prescribed other arcs, and eliminate any
reference to vertices. Initially, before the circular-arc model is built, the overlap of arcs
is just an abstract relation. We denote the overlap of arcs A1, A2 by AlfqA2 (or
nonoverlap, A A2) and the set of arcs whichA overlaps by(A) (note A Y(A)). In
a circular-arc model, let Cc(A) and CI(A) denote the counterclockwise and clockwise
endpoints, respectively, of arc A. Finally, we assume that the graph is preprocessed to
eliminate equivalent arcs (arcs with the same Y(A)’s) and arcs overlapping all other
arcs. These equivalent and all-overlapping arcs are trivially incorporated into a model if
G is a circular-arc graph.

Stage One. Find a special subset of arcs to be positioned on the circle so as to divide
the circle into sections such that no remaining arc has its two endpoints in the same
section.

Case I. G partitions into two cliques. First we note that if G is a circular-arc graph
which partitions into two cliques, then in any circular-arc model for G, there are two
points such that every arc contains (at least) one of the two points. Let G’ be a minimal
graph with a circular-arc model for which this assertion is false. By the minimality of G’,
if any arc A in a model for G’ is excluded (i.e., the associated vertex in G’ is deleted),
the remaining arcs all contain one of some two points. But if A2 c A 1, then A contains
the point in A2. Thus G’ must be a proper circular-arc graph. However in [15], this
author showed that this assertion is true for any proper circular-arc graph. So we can
assume that our model has a common point pl at the top of the circle contained in all
arcs in a clique and a common point p2 at the bottom of the circle contained in all arcs
in the other clique @ (note that the choice of Y3 and @ is not always unique, but that does
not matter). We shall use B to denote a typical arc in and D a typical arc in

Pick any (set-theoretically) maximal arc B in 3 (i.e., (B) maximal) and call it B0*.
We inductively define A/* (a or @ arc) as follows. Suppose A/*-I --B/*-I (A/*-I is a
B-arc, initially use Bo*) and let BI be a maximal arc B such that B/*_I contains B, i.e.,
ag’(B)calf(B.*,_). If there exists an arc D with Df-]B*_x, DITIB, and Df’)B for all B
such that ag’(B) ag’(B/*_), then let A* D/* be a minimal such D. Further, A*+
D/*+I is a minimal such D which additionally contains D*, and so on with A/*+2 O/*+2 a
minimal such D containing D/*+, etc. until there is no such D containing D/*+k-1, and
then A/*+ B/*+g is the arc BI (if no such D’s exist at all, A/* B/*

Next let D* be the maximal D with DITI Bo*, and recursively define D___g_ as the
maximal D contained in D*i. The A* arcs range from A*o to A*. (Note: A*__o must be a

arc and -q _<--1 since Bo* does not overlap all arcs; similarly Ar* must be a arc.)
Since(Bf ag’(B * for < j, we may assume in our model that B/* physically contains

4 ALAN TUCKER

LEVEL 0 O
LEVEL-I --

FIG. 1. Positions of B* and D* arcs in Stage One, Case of algorithm.

B’ and similarly for D/* and D’. Further for <], B/* and D’ each contain all arcs not
properly contained in the other and so we can also assume that B* and D’ physically
overlap at both ends. Thus the A*’s can be positioned as shown in the example in Fig. 1.
We call the sections on either side of the circle contained between the endpoints of A*i-1
andA level (see Fig. 1), the section within B* level r + 1, and the section within D_*q
level -q. In Stage Two, we shall divide each level into its left and right sections. It is
straightforward to check that any B or D with both endpoints at the same level would
have been incorporated in the set of A*’s.

Subcase IIa. G contains at least 3 mutually nonoverlapping arcs. Find a (set-
theoretically) maximal set o of independent (i.e., mutually nonoverlapping) arcs such
that no arcin properly contains any other arc of G and such that for no arc A* E , do
there exist two independent arcs A 1, A2 which overlap only A* in o(in the latter case,
replace A/* by A1 and A2 in o). Let AI*,’’’ ,A*,, be such a set . The key step in
Subcase IIa of the algorithm is finding an appropriate cyclic order for consistent with
its arcs’ overlap relation with the other arcs (by a cyclic order, we mean a linear order or
any cyclic permutation and/or inversion of that order). We form an m x 2(n m)(0, 1)
incidence matrix M0 with a row for each A* and two columns, 2]- 1 and 2], for each
remaining arc Aj. Let JV’*(Aj) denote the set of A*’s that Ai overlaps. For each A there
are either zero, one, or two A*’s such that A’ E W*(A) and W(A*) - AZ(Ai); these are
A*’s within which Aj has an endpoint and we call them the ends ofAi. (If more than two
suchAi*’s exist, G clearly cannot be a circular-arc graph and the algorithm terminates.) If
there is zero or one such A/*, let column 2] of M0 have a 1 in row if A* W*(Ai). If
W*(Ai) has no ends, then column 2]- 1 is all O’s. If Ai has one end, call it A, then we
obtain column 2]- 1 from column 2] by converting the 1 in row ij to a 0. If Ai has two
ends, call them A and A*ij,, then let columns 2]-1 and 2] have a 1 in row if
A’ E W*(Ai) except that entries (ii, 2]-1) and (ii’, 2]) are 0; however if W*(Aj)= 2,
then treat A as if it had no ends. See Fig. 2. (For ease in visualizing this example, the
arcs are pictured in a valid circular-arc model; columns of all O’s are omitted in Fig. 2b.)
A valid cyclic order for o (compatible with a circular-arc model for G) will. induce

A TEST FOR CIRCULAR-ARC GRAPHS 5

A8
A 2

FIG. 2a. Family of arcs G Go.

2 4 6 8 10 12 14 16

2

3

4

5

6

7

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

FIG. 2b. Mo matrix for family of arcs in Fig. 2a. Odd numbered columns are all O’s and are omitted.

4 8 9 10 12 14 16

4

5$

6

7

0 0 0

1 0 0

0 0 0

0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0

FIG. 2c. M2 matrix with unique cyclic order.

6 ALAN TUCKER

circular l’s in M0. Observe that by deleting the l’s in entries (i., 2/’- 1) and (ic, 2/’), we
force A and A, to be at the ends of the cyclicly consecutive set AZ*(A.) in any cyclic
order of which induces circular l’s in M0.

Unfortunately, there will in general be several cyclic orderings of o which induce
circular l’s in M0. It may be possible to invert or arbitrarily permute the order of a
consecutive set of A*’s or of a consecutive set of subsets of (ordered) A/*’s (these are the
only possibilities, see Fulkerson and Gross [4] or Booth and Leuker [3]). For example,
in Fig. 2 the order of A, A*, A: could be inverted or the subsets {A, A’, A3*}, {A4*},
{As*} could be permuted without destroying circular l’s in the arrangement of M0 shown
in Fig. 2b (although these new orders would no longer be induced by valid circular-arc
models for this graph). If there is nonuniqueness, we must worry about the overlaps
which occur in between consecutive A*’s such as the overlap of A1 and A8 in Fig. 2a.
(This overlap prohibits inverting the order of A*, A*, A3*.) To handle this problem, we
recursively define a sequence of graphs, related matrices, and cyclicly ordered
independent sets, G, M/, o,i where G G, o0 o, and M0 is as just defined. Given
Gi-1, M/-1, o/-1, pick an arc A in G’i-1 such that [AZ*(Ai)[is minimum among all arcs
(not in oi-1) which overlap an A* i-1 which is part of a set, or a subset in a set of
subsets, that may be inverted or cyclicly permuted without destroying the circular l’s in
M/-1 (induced bythe cyclic order of o/-1). Now delete A and the A*’s in oi-1 whichA

’* which overlaps any arc overlappedoverlaps, and replace these arcs with a new arc A
by one or more of the deleted arcs. G’i is this new graph; Mi is defined for G’ just as M0
was defined for G; and oCg is Al*plus the remaining arcs in og-1. Now find a cyclic order
for o,i which induces circular l’s in Mi. We continue this sequence {GI, M, oCg} until for

s, Ms has a unique cyclic order. In Fig. 2a, the first arc chosen A would be either A3
or A4, say it is A3; the next arcA would be A1 or A2 or An (note that An now overlaps
A* and A4* in 1). IfA were chosen next, M2 would be as shown in Fig. 2c (M2 Ms in
this case).

We call a cyclic order of oi which induces circular l’s in Mi an extension of a given
cyclic order of oi/1 (which also induces circular l’s in M//I) if: (a) after the reduction
process from Gi to Gi+l, o’i+1 has the given cyclic order when A’*i/1 simply replaces
JV’*(Ai+I) in the cyclic order of oi; and (b) the order of *(A/I) in o,i satisfies the
following condition, called the A’/l-extension condition: if IcV’*(A’i+I)I > 2, if A’i+1 has
exactly one end in (see the definition above of an end), and if there exists
A V’(A’ Ai/ 1) with Yl A;*(A’//1), then the end of Ai+1 is not beside the arcs of (A)
in the cyclic order of oi.

PROPOSITION 1. Let G be a circular-arc graph with {G,Mi, o}/0 as described
above, lf, starting with a cyclic order Os of s which induces circular l’s in Ms, one
recursively picks O an extension ofOi+ l, then the final extension Oo is a valid cyclic orderfor

in some circular-arc model of G.
From Proposition 1 we get a valid cyclic order for o. Assume A’, A*, , A* are

indexed in such an order. Position these arcs in this order clockwise around the circle.
We define sections of the circle in this nascent model for G as follows. Section Si is the
segment of the circle between Cc(A/*) and CI(A/*) and S-I is the segment between
CI(A*_I) and Cc(A*). By the choice of , no other arc is contained in a single section.
Since every arc does not overlap at least one other arc, no arc can reach all the way
around the circle to have both endpoints in the same section. Thus no arc’s two
endpoints are in the same section.

Subcase IIb. (has an odd hole. Let A*,... ,Ar/l,r>=2, be a set of arcs
corresponding to an odd hole in G such that no other arc A is contained ifi any of the
A*’s, i.e., AZ(A) : V(A/*). Any odd hole can be reduced either to such a proper odd hole

A TEST FOR CIRCULAR-ARC GRAPHS 7

$11 $5

$1o Ss

FIG. 3. Positions o]: A*’s when 2r + 7 in Stage One, Subcase IIb of algorithm.

or to a triangle (Subcase IIa). Let the A*’s be indexed so that A/* overlaps all other A*’s
except A/*+r and A+r+l (subscript addition is mod 2r + 1; note that + r + 1 r). It is
a straightforward matter to check that the 2(2r + 1) endpoints of these A*’s have a
unique cyclic order of the form... CI(A/*_r), Cc(A/*), CI(A/*_/I), Cc(A/*+a), . See
the example in Fig. 3. Let section S2i be the segment of the circle between CI(A/*_) and
Cc(A*) and $2i/1 the segment between Cc(A/*) and Cl(A/*-r+l). Since no other arc is
contained inside one of the A*’s then as in Subcase IIa, we have that no arc’s two
endpoints are in the same section.

Stage Two. Determine the two (distinct) sections to which each arc’s endpoints
belong.

Case I. Gpartitions into the cliques Y3 and @. From Stage One of Case I we have the
set A’q, , A0*, , Ar* and levels -q through r + 1 located on the circle as typified
by the example in Fig. 1 and such that the two endpoints of any other arc must be in
different levels. Our first task is to determine the levels of the two endpoints of the other
arcs. By the higher end and lower end of an arc in Y3 (or in @) we mean the endpoint at
the higher (greater) and lower level, respectively. Let h (A) and (A) denote the levels of
the higher and lower ends of A, respectively. For B Y3, l(B) must equal to the
minimum such that A/’(B) (B/*) or B fqD*, and h(B) can be set equal to the
minimum such that Jf(B*i)cX(B) or such that B overlaps D* and all D with
(D) X(D* (as argued in Stage One, in these situations we can assume B contains B*
or overlaps both ends of D*). Similarly for D , h(D) must be equal to the maximum
such that DB*i-1 or ,Ar(D)dV’(D_I) and I(D) can be set equal to the maximum
such thatD overlaps B/*_ and all B with .A/’(B) W(B_ or such that W(D*_ C v/(D).

Next we must determine whether an arc has its higher end on the left or right side of
the circle or, more critically, on the same or opposite side as the higher ends of other
arcs. To this end, we define a pair of relations $ (higher ends on same side) and O
(higher ends on opposite sides) on the other arcs (i.e., excluding the A*’s) as follows:
(By the converse of a condition, we mean the condition obtained by interchanging the

8 ALAN TUCKER

roles of arcs and @ arcs, of higher and lower ends (h(.) and l(.)) and of O(Bx, n2) and
O(Dx, D2).)

(i) O(B, D) is B f3D, l(B) > l(D) and h(B) > h(D).
(ii) S(B, D) if BYlD, l(B) < h(D).
(iii) O(Bx, B2) if there exist Bx, B2, n3, Dx, D2, 93 with all higher ends in level k2

and all lower ends in level kx, except kx<h(D3)<-l(B3)<k2, BiY)Di, i=
1, 2, 3, D1 Y) B3, B2 Y) D3, all other pairs overlap.

(iv) O(B1, B2) if there exist B1, B2, D1, D2, Bi I")Di, BiDi, 1, 2, j i, all arcs
with same upper end level, l(Di)<l(Bi), i= 1, 2; or the converse of this
condition.

(V) O(Bx, B2) if there exist B1, B2, Dx, DE, /(Bi) h(Di), Bil"lDi, i= 1, 2,
(Bi) (BE), B Di, /’, 1, 2.

(vi) O(B1, B2) if there exist Bx, BE, D1, DE, BifqDi, BiDj, i= 1,2,i,
/(B1) h(Dx) -/(BE) =/(DE) k and either h(D2) </(BE) or else h(D2)
/(BE) and there exist D3 with/(D3) < k, D3 fqBx, O3 lTI B2; or the converse of
this condition.

(vii) O(Bx, B) if there exist Bx, D, A, i= 1, 2, .., m (m _-< 3), A, BE, all
higher ends in level k2 and all lower ends in level k x, except one end of A is
between k and.k2 and one end of A,, is above k2, BI 171D, B, D1 overlap all
Ai’s, Ai overlaps all other A.’s except Ai-I and Ai+; if /(A,,)= k2, A,
overlaps only Am-x among the D arcs. Or the converse of this condition.

It is not difficult to check that these same and opposite side relations must hold for
arcs in a circular-arc model. These relations partition the remaining arcs of G into
components cx, (2, (h such that the relative sides of the higher end of arcs within
each % are fixed with respect to each other, while arcs in different components are
unrelated.

PRoPosrrIoy 2. IfG is a circular-arc graph, there are circular-arc modelsfor G with
each ofthe 2hpossible left side-right side orientations ofthe h different components defined
by relations S and O.

By Proposition 2, we can arbitrarily pick one of the two sides in each component to
be the arcs with higher ends on the left side. (We note that Proposition 2 is the most
crucial step of the algorithm and its proof is necessarily quite complex.) Now we have a
side and level of the higher endpoint and the lower endpoint of each remaining arc. We
convert these positions into section numbers with the following scheme of section
numbering based on the positions of the 2(q+r + 1) endpoints of the A*’s discussed in
Stage One (and typified by the example in Fig. 1). Section $1 is between Cc(A*_q) and
CI(A_*q) and section -q+r+2 is between Cc(A*) and CI(A*). Let Pi Cc(B/*) or CI(D*)
depending on whether A* is an or arc, and similarly let t CI(B) or Cc(D*).
Then for 2 -< _-< q + r + 1, $i is between p-,-2 and pi--x and for q + r + 3 -< <-
2(q + r + 1), Si is between tq+2r+3-i and tq+2r+2-i.

Subcase IIa. G contains at least 3 independent arcs. From Stage One, we have a set
5 of independent arcs A*I,A,...,A*,, indexed in an order compatible with a
circular-arc model for G (assuming one exists) with $2 contained in A and $2-1 the
segment between A*-x and A*. Moreover each remaining arc must have its endpoints in
different sections. LetA thru A*2 be the cyclicly consecutive set of A*’s in aV’*(A) (the
A*’s that overlap A). If ix # i2 and A does not overlap all A*’s, then Cc(A) can be
assumed to be in section S2i.-1 if dV’(A)cJf(Ai) and must be in S2i otherwise, and
CI(Ai) can be assumed to be in SEi+x if W(A/’2) c Jf(Ai) and must be in $2 otherwise. If
Cc(A) is in $2i+1 and CI(Ai) is in SEi-1, we call Ai an Af-complementary arc. If
ix i2 "- and W(A)c V(Ai), then we can assume Cc(Ai) is in S2i-x and CI(Ai) is in

A TEST FOR CIRCULAR-ARC GRAPHS 9

S2i+l---we call such Ai an A-equivalent arc. If Ai overlaps all A*’s and there are two
cyclicly consecutive A*’s, call them A, A*i1/1, such that (A)AC(A), il, il + 1,
then Cc(A) must be in $21/2 and CI(Ai) must be in S2il. We define the set j to consist of
those arcs Ai such that either" (a) Ar*(A)= and only AC(A) of all the A*’s is not
contained in AC(Ai) or else (b) AC*(Ai) A and AC(A) AC(Ai). The subset of case (b)
arcs is called. Note that by choice of all AC(A*) cannot be contained in AC(Ai), and if
G is a circular-arc graph and ?’*(A) , there cannot be two nonconsecutive A*’s with
AC(A*) AC(A). Each arc in j has one endpoint in $2 and the other in $2i-1 or $2i+1.

We convert the problem of determining section ends of arcs in i to a circular-arc
modeling problem for the following family (graph) G. of arcs. We let Ao* represent the
combination of all A*’s except A into one big arc (containing all sections except
-2i-1, $2/, -2/+1 in the model of G we were building) which overlaps all arcs overlapped
by the A*’s it replaces. Besides Ao*, A and i, Gi also contains all A-complementary
and A-equivalent arcs and the set i of all other arcs A overlapping some but not all
arcs in = LIAU{A’-equivalent arcs}. is the set of arcs contained in
$2-1, S2i, $2+1. Thus if A j, either CI(A) is in $2.-1 or S2i or else Cc(A) is in S2i or
$2/1. We eliminate all remaining arcs and also only let a pair of arcs A, A’ in j overlap
if CI(A) and CI(A’) are both in {$2.-1, $2.} or it Cc(A) and Cc(A’) are both in {S2i, $2i+}.
Note that no two arcs A1, A2j whose overlap has been destroyed could overlap
inside A (in $2i); for if so, by the definition of there must exist A,A in such

A 5

TA8 A 8

//

FIG. 4. Arcs involved in a G3 construction. AllA*’s exceptA are fused together to form A’. ArcsA1, A2,

Aa, A4 arein (anda),A7 isotherarcina. ArcA5 is *A -equivalent andAs is A’-complementary. ArcA6
is in while A9 will be de&ted to obtain

10 ALAN TUCKER

that Ai A, but this implies A A.mcontradicting the choice of (see beginning of
Stage One, Subcase IIa). See Fig. 4 for an example of the Gj construction. The graph G.
has all the relevant overlaps that G had in sections $2i-1, $2, $2./1 and nothing else.

PgoPOSITION 3. Any circular-arc modelfor Gj can be expanded to some circular-arc
modelfor G (provided one exists) with the only possible change in the order ofendpoints in
$2.-1, S2i, S2./1 in Gi’s model being for pairs of arcs which overlap the same subset of7.

By Proposition 3, a recursive call of our algorithm for G. (a smaller graph) yields a
circular-arc model for G. (if none exists, then G also has no model) which can be used to
determine the two end sections of each arc of i.

Subcase IIb. G has an odd hole. From Stage One we have the circle divided into
4r + 2 sections by the endpoints of the 2r + 1 A*’s which correspond in G to an odd hole.
Section S2i is between CI(A*_r) and Cc(A/*) and section S2/+l between Cc(A/*) and
CI(A/*_r/I). No arc’s two endpoints are in the same section nor for any A, A* can we
have (A) c (A*). Suppose arc Ai does not overlap the cyclicly consecutive set of A*
arcs,A through A/*2. Then El(A/) must be in $2i1-1 or S2il so that Ai overlaps A/*a-1 but
not Ai*, and similarly Cc(Ai) must be in $2(i2/) or S2(i2/r)/1 to overlap Ai2+1 but not Ai2
(subscript arithmetic is mod 4r + 2). The point dividing $2i-1 and $2il is CI(A-r). If

A-r contains S2(i+) then CI(Ai) must be in $2il (or else Ai would be contained inside
A_). If A*l-r contains neither S2(i+r) nor $2(+r+, then CI(Ai) can be assumed to be
in S2i if /’(A_)c (Ai) and CI(A/) must be in $2i1-1 if df(A-r) (Ai). The point
dividing S2(i+r)and $2(i2+r)+1 is Cc(Ai+). If A*i/ contains $2i-1 and $21, then Cc(A)

Ai2+r). If A contains neithermust be in S2(g/r) (or else A would be contained inside * *i2+r
S2i_ nor $2il, then we put Cc(Ai) in S2(i/r if (A/*/) f(Ai) and in S2(i2+r)+l if not. If
il i2 and also CI(Ai) $2i and Cc(Ai) 6 S+), we call Ai an A-complementary arc.
There remains the situation where either *Ail_ contains S2(i2+r)+1 but not S2(i2+r) or

A*i/ contains Si- but not Si. Either situation is equivalent to i2 i + 1 where
A/*_ =A* .g+r=some A If (A’f)dV’(Ai), then we can assume Cc(mi)S2i and
CI(Ai) $2(/ and we call Ai an A-equivalent arc. If (A) (A/), then we put Ai
in the set (these arcs will be handled as in Subcase IIa).

0Assume all A not overlapping all A*’s have been processed (or put in some .).
Next suppose A overlaps all A*’s. Consider the set of arcs i which Ai does not

overlap. Since A overlaps all A*’s, each A e i cannot overlap all A*’s. So, except for
possible arcs in the ’s, the arcs in i already have their end sections determined. To
overlap all A*’s, Ai must physically cover at least half the 4r + 2 sections. So the arcs in

i range over at most half the sections of the circle. Let Si and Si be the counterclock-
wise and clockwise, respectively, section ends of the range of i in some hypothetical
completed model for G. If these range ends to not depend on the placement of arcs in
any ’s, then we can put El(A/) in Sil and Cc(Ai) in Si2 (Ai will be the complement on
the circle of the union of arcs in i). Suppose just one of the ends of the range depends
on an arc in a . Then this end section of the range is just inside or outside one of the
ends ofA and the other end of the range is fixed beyond the other end of A. Then to,
assure that Ai overlaps A, the end section dependent on the arc must be inside Ai.
For example if ia 2 or 2 + 1 because of a j arc and i2 is determined, then il 2j + 1
and so CI(A) is in S2i+x and Cc(Ai) is in $i. If Si and Si are each dependent on a
different , i and ., respectively, then the same argument applies to assure Ai
overlapsA and A’ andso CI(Ai) is in S2jx+l and Cc(Ai) is in S2(j2+r)-l. If Sil and Si are
dependent on the same o (and now i c o), we put all such Ai’s along with the set 7
in the set ..

We find end sections for the arcs in . just as in Subcase IIa. We define Gj as
follows. Arcs A+r and Af-r (the two A*’s not overlapping A) are combined into the

A TEST FOR CIRCULAR-ARC GRAPHS 11

arc A0*. G. contains, A, A0*, ., the A-equivalent and A-complementary arcs, the
set . of arcs A with: (a) Cc(A) $2., CI(A) 6 S2j+r-i or Cc(A) $2.+1, CI(A) S2.+r)
and (b) CI(A) $2., Cc(A) $2/r-1 or CI(A) $2/1, Cc(A) $2j+)mcall case (a) arcs
the set 0. (in Subcase IIa, the . arcs were part of . but in Subcase lib, because A
contains several sections, we were able to determine these arcs’ end sections by other
methods), and the set j of other arcs which overlap some but not all of

t.3A t3 3 {A-equivale.nt arcs}. Again we only let a pair A, A’ in i overlap if
CI(A1), CI(A2) are both in Sz., Sz.+l or Cc(A1), Cc(A2) both.in Szi+)-l, Sz.+. (A .
arc cannot reach into the region of sections $2+2 through $2i+)-2 since all arcs in
contain this region.) The remaining arcs, including the other A*’s, are deleted. By
the same argument as in Proposition 3, a circular-arc model of Gi, obtained by a
recursive call of our algorithm, can be used to determine the two end sections of each
arc in i.

Stage Three. Arrange endpoints in each section. In this final stage, Case I, Subcase
IIa, and Subcase lib are identical. We are given a list of 2m sections determined by pairs
of consecutive endpoints of the m A*’s determined in Stage One. We know the
(distinct) sections in which each arc’s two endpoints are located from Stage Two. Let us
consider the endpoint of the A* that marks the clockwise end of section $i to be in Si. As
endpoints within sections.are positioned, we shall refine the sections, dividing a section
into several subsections. To make subscripts available to fit the new subsections into the
cyclic order of the sections, we renumber section Si as section Sn,, where ni equals the
number of endpoints in old $1 through old $i. Put all the newly numbered sections
containing more than one endpoint, i.e. all Sn, such that ni > ni-1 + 1, in the list (in any
order). Repeatedly go through the list (in order) and perform the following analysis of
each section in . Stop processing when is empty or when no new sections were
formed on the previous pass through .

Let S. be the next section in to be analyzed. If all arcs with endpoints in S. have
their other endpoints in the same other section (as sections are currently constituted),
then skip Si and go to the next section in. Otherwise remove $. from and proceed as
follows. Let be the set of arcs B with CI(B)S and @ the set of arcs D with
Cc(D) S.. We define an order _-< on t3 @, where A =< A’ means that the endpoint of A
in Si must be on the counterclockwise side of the endpoint of A’ in S."

B1 --< B2 if V(B1) V’(B2) and Cc(B1), Cc(B2) are in different sections;
D1 O2 if dV’(D2) dV’(DI) and CI(D1), CI(D2) are in different sections;
B _-< D if B 171D and Cc(B), CI(D) are in different sections.
D _-< B if B tq D and either: (i) for all D’ @ (B), (D’)

_
(D) and Cc(B),

Cl(D) are in different sections, or (ii) B and D do not extend far
enough to be able to overlap at their other ends (going clockwise around the
circle from S., the other end section of D comes before the other end section of
B).

Note that in case (i) of D-<B we assume in our model that D physically contains all
D’D-/’(B) since V(D’) (D) and then we can let B safely overlap D in S. All
other conditions for A _-< A’ must make the endpoint of A in S. be counterclockwise to.
that of A’ in a circular-arc model. Now we define the transitive closure _-< of _-< by" for

* -.4’A, A’ t3 , A _-<A’ if there exists a chain A A1 --< A2" _-< Ak
PROPOSITION 4. If G is a circular-arc graph, then any pair of arcs A, A’ in t3 @

* *<=A’ *with other endpoints in different sections are comparable in =,< i.e., A or A <=A.
So Proposition 4 says that *< yields a total linear ordering of t.3 @ except that

some elements in the ordering are clusters of arcs with the same other end section. Put

12 ALAN TUCKER

the endpoint(s) of each single arc or cluster in this ordering of S, in its own section with
the endpoint of the first arc in the ordering in section St-n/l, where nt is the number of
arcs in St, the endpoint of the second arc in St-,/2, etc., or if the first element in the
ordering is a cluster of k arcs, their endpoints go in section St-,,/k, etc. Put each new
section with more than one arc at the end of 0. Note that by assumption not all arcs in
have the same other end section and so St is subdivided into at least two new sections.

If. the algorithm goes through list S’ without creating new sections (but is not
empty), it is because all the arcs with endpoints in one section have their other endpoints
in the same other section. Let Sp and Sq be two such sections in . The arcs ending in
and S, form a bipartite graph, call it Gp,. We now recursively call our algorithm to build
a circular-arc model for each Go, (if the algorithm fails for Go,q then clearly G is not a
circular-arc graph). It is straightforward to deform the model for Gp,o so that all
endpoints occur in regions corresponding to where So and S belong in the model for G.

The cyclic ordering of the endpoints in the model of Go,, provides the desired total
ordering of endpoints in So and Sq which permits us to subdivide So and S into sections,
each with one arc.

Now each endpoint of an arc is in a different section and by listing endpoints by the
index of their sections, we have the cyclic order of the 2n endpoints (of the n arcs) in a
circular-arc model for G. That is, we have a circular-arc model for G (if one exists).
Since every step in the construction of the model was based on required properties of a
circular-arc model or on a choice which we proved (or will prove in 5) was consistent
with some circular-arc model for G, this model we built must be a valid circular-arc
model for G if one exists. Now we check the physical overlaps in the model (determined
by the endpoints order). If they correspond to the abstract overlap (adjacencies), this is
indeed a circular-arc model for G. If not, G is not a circular-arc graph.

3. Efficient implementation of the algorithm. In this section, we shall describe how
the algorithms presented in the previous section for testing whether an n-vectex graph
G is a circular-arc graph can be implemented to run in O(n 3) time and with O(n2)
storage locations. The original algorithm of Fulkerson and Gross [4] for testing interval
graphs ran in O(n4) time and tested for the consecutive l’s property in an n n matrix
in O(n 3) time. With special data structures and a new fast clique generation algorithm,
Booth and Lueker 3] were able to implement both interval graph and consecutive l’s
tests in O(n) time (which is the best possible result). We shall indicate at the end of this
section what is required to make our algorithm run in O(n2) time. Of course, the real
difficulty in our algorithm is not with its speed but its length. (For this reason, we do not
go into great detail in discussing the implementation.)

As in section two, we will speak of the n arcs rather than n vectices in the graph G
and of (abstract) overlaps rather than adjacencies. Let A(G) denote the overlap
(adjacency) matrix of G--entry (i, j) is 1 <==Ai At. Our algorithm’s source of informa-
tion about G will come from the matrix M" mit I,/V’(Ai)I, mit 1 if .A(Ai) ./f(At)
=-1 if ,3f(At).N’(Ai), =0 if AITIA, =oo otherwise. M is easily obtained from
M* A(G). A(G). It takes O(n 3) steps to compute M* from A(G) (or O(nTM) with
Strassen’s fast matrix multiplication) and O(n) steps to obtain M from M* and A(G).

First the algorithm preprocesses G to eliminate equivalent vertices and vertices
overlapping all other vertices. Actually mt is ill-defined if N(Ai)= N(A.) and so we
naturally pick up equivalent vertices in buildingM from M*. it takes O(n) steps to do
this preprocessing (including reindexing of the remaining arcs so that they are consecu-
tively indexed froml through some number n’; rows and columns of M should be
indirectly indexed so that in preprocessing and during recursive calls of the algorithm

A TEST FOR CIRCULAR-ARC GRAPHS 13

for a subgraph of G, no entries in M need be moved). Next the algorithm must decide
which of Case I, Subcase IIa, or Subcase IIb applies to G. There is a standard way to test
t for bipartiteness in O(n 2) steps. If t is bipartite, the test yields a bipartition 9, to
be used in Case I. Further using M, we easily obtain in O(n2) steps the set of arcs
A-*q, , A0*, , A* defined in Stage One of Case I. (Note that if D is a candidate for
A*, i.e., D f’) B*-I and DfB, then D is not a candidate for any other A,/" i.)

If G is not bipartite, the test yields a triangle or odd hole of G. A triangle means
Subcase IIa applies. The arcs A*, A:, A3* corresponding to the triangle in t are an
independent set ’ of G. We first replace any of these A* byA" if W(A*’) c V(A/*) and
A" is the minimal such arc. Now we successively augment if’ with arcs A such that
A’fA, all f < k and A is the minimal such arc. Finally we obtain a maximal
independent set 5" such thatA "::), there exists A* " with A* f) A. Now for each
A", we putA in the set V if A* is the only arc in" which A overlaps. Then check in
each to see if there exist (minimal) A, A’ V with A 171A’; if such a pair is found, we
replace A* by A and A’ in ". The result is the set which has been obtained from the
original triangle in O(n2) steps. This is the r-arc independent set o required in Subcase
IIa. In Stage One of Subcase IIa, we form matrix M0 and test it for the circular l’s
property in O(n2) steps by reducing the circular l’s test to a test for consecutive l’s (as
described in 1), and by using the Lueker-Booth consecutive l’s test. Finding the arc
A needed to obtain G’i/l, Mi/x, i/1 from Gi,’ M, is not hard with the Booth-
Lueker data structure for representing all the valid row arrangements of M; arc A is
found and G/I, M/I, i/1 formed in O(n 2) steps. The Booth-Lueker data structure
requires O(n) storage locations to represent the possible row arrangements of M,
equivalently, possible cyclic orders of 3i. We need to save all r structures (for each M)
but the matrices M need not be saved. So only O(n2) extra locations are needed in
Stage One for ordering the set . The total number of steps in building and testing the
M is O(rn2), or at worst O(n3). Obtaining a cyclic order for ff recursively from
extensions of the , as described in Proposition 1, is readily performed in O(n 2) steps
with the Booth-Lueker data structures.

If the bipartite test for G yields an odd hole, then we must first be sure no other arc
is contained in one of the arcs corresponding to this odd hole (similar to the inclusion
test in Subcase IIa). Any time containment is found with ./V’(A*’)cW(A.*,), then A/*’
replaces A* and we look in (to see if the vertex corresponding to A" forms an odd
hole with a proper subset of the remaining vertices of the original odd hole. If so, we
now use this new odd hole. If a triangle is formed, we go to Subcase IIa. This processing
requires O(n2) steps. This completes Stage One for all cases.

The first step in Stage Two, Case I is determining the levels of the higher and lower
ends of each arc by the given formulas. First the sets of arcs A, W(A) oV(A’) need to
be determined for each B* and D*. Now the end levels can be determined for an arc
from entries in the arc’s row inM in O(n) steps; for all arcs in O(n2) steps. Next we must
apply the tests of relations S and O to build the components determined by these
relations. We check all pairs B, D for conditions (i) and (ii). These two build a bipartite
graph with O(A, A’) like a normal graph edge and $(A, A’) a special nonstandard edge
which forces A and A’ to be on the same side of the bipartition and in the same
component of the graph (one could think of S(A, A’) as representing a path of length 2
from A to A’). Denote the components generated by just condition (i) and condition (ii)
c1, ’2, , q. They are determined in O(n2) steps. Store copies of the components
for use in checking condition (vii) later. Now for condition (v), we check each g for
pairs B, D with l(B)= h(D) and B f’lD. Record in sets 0 and o each B and D
involved in such pairs for later use in condition (vi). All components with such pairs are

14 ALAN TUCKER

joined by condition (v) into one component. Next we apply condition (vi). We omit the
details but Dz in (vi)is the upper barrier of B1 (defined in the proof of Proposition 2) and
the possible B1, Da pairs were recorded in checking (v). From these facts, an O(n 2) test
of (vi) is easy to build.

To apply condition (iv) (to combine various pairs of the current set of components),
we need a p p matrix W, where p is the number of levels. For each (i in the current set
of-components we perform the following "W-processing." For each B 6 ci, we set
wI(B)--min {/(D):D (i, h(D) h(B), I(D) < l(B), and Dg’I B} and we set wz(B)
rain (h(D) D c1, l(D) l(B), h(D) < h(B), and DtTI B}; Wl(B) or w2(B) is undefined
if none of the required D’s exist. To speed this step we first should make lists of D’s with
(D) j for each level/" and lists with h (D) =/" for each]. Let Bk have the smallest w (B)
among all B’s with h(B)= k (and wa(B) defined) and B k have the smallest w2(B)
among all B’s with l(B) k (and w2(B) defined). The pairs Bk, Wl(Bk) and B k, w2(B k)
for all k for which such pairs exist can be found in O(n2 steps, where t/i--level. Using
these pairs, we can efficiently determine for every pair of levels k, k’ whether there exist
B, D ci with B 171 D, h (B) h (D) k and (D) < k’ =< (B), or there exist/3, D
with B 9’1 D, (B) l(D) k and h (D) < k’ _<- h (B). If so, set wg.g, i. Further set a flag at
Wk,k’ if k’ l(B) or h (B). If we try to set some Wk.t,’ equal to when it was already set to i’,
then we do not change w,.k, but set a (second) flag and remove the first flag if it was set by
ci, but would not be set by cCi. In addition if ci, and ci both set Wk.k’, then condition (iv) is
satisfied and components c, and c are combined. This combination will be done after
all the C’s have been W-processed. After noting that cCi, and (/i are to be combined (and
where they are to be combined), we continue the W-processing of cCi. If G is a
circular-arc graph, no more than two components can try to set any particular W,.k’ (the
second flag will allow us to detect a third component’s attempt to set a Wk.,’ at which
time the algorithm terminates). Since each c is processed in O(n2) steps except for
setting Wk.k"S and since each Wk,,’ is accessed at most twice (or the algorithm
terminates), all C’s can be W-processed in O(n 2) steps. At the end of the W-processing
the appropriate pairs of components are combined (possibly concatenating many
components into a new single component). We go through W setting each (nonzero)
entry to the correct new component number.

Next using W and the fact that Bz and D2 will be lower and upper barriers of D1
and B, resp., in condition (iii), we get an O(n2) test for (iii) (details are omitted)). Now
we set to 0 any entry of W for which the first flag is set. We call the remaining nonzero
entries in W type 1 entries. They will be used to complete the test for condition (iv), now
against pairs B, D with (B) (D) k, h (D) h (B) k’, B D. However, such/3, D
pairs are also part of condition (vii), and so we will check these conditions at once. For
each component cCi, we look for sequences Ai, 1,..., m, as in condition (vii).
Starting with a candidate for A2, we do depth-first searches in the A2’s original
component generated by (i) and (ii) (copies were saved) for possible A and Am to form
the sequences. If we first make lists of B’s and D’s with a given higher or lower end, then
in. all searches no pair of arcs need be checked for overlap (or nonoverlap) more than
twice. If such a sequence is found, we set Wkl,,2 equal to (if it is not already set to i). We
call this a type 2 entry (to be used for condition (vii)). It is easy to check that if G is a
circular-arc graph it is impossible for Wkl,k_ already to have a different (nonzero) value as
a type 1 or type 2 entry. Each cCi can be processed for type 2 entries in O(n2i steps (since
no pair is checked more than two times). Now we can go through each ci looking for
pairs B, D (i with (B) l(D) k and h (D) h (B) k’, and if entry Wk,k’ or entry
Wk’,k equals/’, 0 </" i, then the components should be combined by condition (iv) if the
entry is type 1 or by (vii) if the entry is type 2. This testing can be done in O(n 2) steps.

A TEST FOR CIRCULAR-ARC GRAPHS 15

This completes the formation of the components generated by the relations S and
0. A total of O(n 2) steps was required. By giving arbitrary left-right orientation to the
higher ends of arcs in each component, we can now assign clockwise and counterclock-
wise end sections for each arc as described in the algorithm. This completes Stage Two,
Case I.

The location of end sections of arcs in Subcase IIa and Subcase IIb of Stage Two is
straightforward except in the case of the arcs in . sets, for which we must resort to a
recursive call of the algorithm to try to build a circular-arc model for Gi. We want to
show that M(Gi), the M matrix for G., can be set up and the whole algorithm for Gi
(excluding recursive calls during the processing of Gi) run in only O(k) steps, where
k. Ial. M(G) is the same as M for all arcs in G. except for main diagonal entries and
for arcs ,i (and of course the new arc A0* whose row and column in M(Gi) is easily
determined). The . arcs split into two (mutually nonoverlapping) cliques as described
in the algorithm. The only problem then is to determine possible containment for pairs
of . arcs in the same clique. Such . arcs can differ only in number of arcs they
overlap (if G is a circular arc graph, the subsets of . arcs overlapped by the various .
arcs in the same clique must be ordered by inclusion; if the number of arcs
overlapped by two such . arcs is the same, the two arcs are equivalent in G. and one
should be deleted in preprocessing). Then M(Gi) can be obtained from M in O(k)
steps. (Further, if these i arcs are involved in recursive calls for some (Gi), their M
entries will not change again.) The only part of the circular-arc algorithm after initially
computingM that does (or will) require O(n 3) steps is in Stage One, Subcase II when we
had to compute {G, M/, 5i}, but since Gi can contain at most three independent arcs,
which have only one cyclic order, G. (and any (G)r) will not need to compute
(a, M/, ,-i }. While the algorithm needs only O(k steps to process G. without further
recursion, with further recursion it could take O(k steps (each recursion call involves
a smaller graph). Since an arc of G can be involved in at most two different G.’s, the
total processing of all G.’s requires at most O(rt 3) steps. This completes Stage Two.

Now we come to Stage Three. We first re-number the sections and make the list
as described in the algorithm. On the first pass through , a cyclicly ordered (doubly-
linked) list . is made of the other endsections for the arcs in St; and for each such other
endsection Sg, a (doubly-linked) sublist /’i is made of the arcs with one end in S. and the
other end in Si (,L.i is actually two sublists, one for B.arcs of S. and one for D arcs pf S.).
Suppose S. is the next section chosen from for processing. Then we take the first B (if
any exists) from each sublist . and order these B’s (in a doubly-linked list) as follows.
Suppose Bl’s counterclockwise end section is farther (in the counterclockwise direc-

Then B2 goes before B in this order if B2 -< B and otherwise Btion) from S. than B’s.,
goes before B2 (for B1 -<B2, i.e., there must exist D in S. with B1 _-< D _-< BE). With m 1
of these B’s ordered, we go through the current order (starting with the first arc in the
order) applying the preceding test for the ruth B with each successive B in the order
until we find a B’ before which B must go, in which case we insert the ruth B just before
that B’ in the order. When these B’s are ordered, we then take all the remaining B’s
from each of the sublistsi and do the following with each B. Let B be the B now to be
inserted in the order. Suppose B came from sublist L.; B was the first N arc in .
(which has been placed in the order as just described); and B, B,’.’ are the B’s just before
and after, resp., B in the current order. IfB goes before B and B goes before B,’.’ (by
the tests described above), then B joins Bg as part of an (unordered) cluster in the
order. If B goes before B I, we start moving backwards through the order looking for a
position at which to insert B. If BI: goes before B, we move forward. If at any time,
including tests with B or B,’.’, we are testing B against a cluster in the order and the

cluster consists of B’s from a different sublist then B’s, then we test B against all B’s in
the cluster. If the test results are not all the same, we then break up the cluster and put B
in between the arcs that go before it and the arcs that go after it. If in moving backwards
(forwards) we come to test B against a cluster of arcs from its own sublist, then we skip
that cluster and move on backwards (forwards) to the next arc or cluster in the order. If
tests show that B goes after (before) this arc or cluster, we put B in the cluster of arcs
in its own sublist which we skipped.

It is readily checked that this order is consistent with *< (the only difference is that
some clusters of this order can be split up in *= byD arcs). We analogously order the D’s
in $i. Finally we merge the two orders of the B’s and D’s as follows: Let

1 =*<2 =<"" =<, and @1 =*<@2 <’"= =<@0 be our order of the B’s and D’s resp., where

i and Nj are either single arcs or clusters. We write i j (or i/. i) if D -< B (or
D =<B) for all B e 3i, D N. We shall successively position @1, 2 etc. in the order of
the N’s. First test @1 with 31. If @1 31, insert @1 before g31 in the order. If 31 =<
test N1 with 2, then 3, etc. until @1 -< N and then insert 1 just before i in the
ordering. If there exists D @, B, B’ e N with B <--D <-B’, then break 3 into two
clusters (1 32 with I1 <D < g3(12 and continue testing the rest of 11 on (1)i If
there exist D, D’ N1, B 31 with D -B _<-D’, then break @1 into two clusters, a new
N1 and a new N2 (preceding the old 2 in the D’s order) with @1 =< B -< 2 and continue
testing this new @1 with 3i. Implicit in this breaking procedure is that we test N1 with
by testing one D in N1 against all B’s in 3i, then a B in 3i against all other D’s in
then another D against all other B’s etc. If @1 and g3 are from the same sublist ., then
we skip and test 1 against i+1. If @1 <= i+1, then @i is merged with the cluster for.
N. After 1 is inserted in the order we repeat the procedure with 92. Since N1 ---@2, we
can start testing2 with the N immediately after the position of @1 in the order, or if @1
was merged with , we start testing @2 with (and if any D @2 causes ’i to be
broken up, the D arcs of N1 go into 3 (1)’ if N2 < 3, then N2 is inserted between 1 and
i which are split ap,art). Next we place N3, @4, and so on in the order. This completes
construction of the =< order.

Each single arc or cluster in the order now becomes its own section. This requires
updating the i and 0o. lists for the other endsections of arcs in S.. The procedure to.
build the =< order in Si along with this updating (for which we require the position of
each arc in the two sublists in which the arc occurs) requires O(k2/) steps, where ki
However, arcs of $i which are in the same cluster (section) are never compared, and so
in the repeated processing of all Si’s on successive passes through , arcs are only
compared when they will be put into different sections. It follows that the total
processing of all Si’s on all passes through L, takes only O(n2) steps (to make the
searches through to find Si’s to be processed efficient, we need to maintain a sublist L’
of S.’s in 0 with [.[> 1). If searches of 0 stop with nonempty, then we must
recursively call the algorithm to process a bipartite subgraph Go,o (described in the
algorithm). The submatrix ofM corresponding to the arcs in Go, is M(Gv,,) except that
the m, entries in the B and D parts of Go.o are each off by a constant factor. Since no
other part of our algorithm for Case I graphs, besides determining M, requires more
than O(n2) steps, all the recursion involved in Go,o (recursions in Stage Three for Go.o,
etc.) will involve at most O(n 3) steps.

From these Go.o subgraphs we complete the cyclic order of the 2n endpoints of the
arcs in G. Finally, we check (in O(n2) steps) whether the physical overlaps dictated by
the cyclic order of endpoints correspond to the adjacencies (abstract overlaps) of G. If
so, G is a circular-arc graph; if not, G is not. Note that there are many places in the

A TEST FOR CIRCULAR-ARC GRAPHS 17

algorithm where we could detect if G is not a circular-arc graph, but we only are
interested in this possibility when it naturally forces the algorithm to terminate, or
when, as in Stage Two, Case I with checking for three accesses to a W-entry during
W-processing, the algorithm would run too long.

The preceding implementation requires O(n 3) steps and O(n 2) storage locations
(only a small constant number of matrices are used at any one time). There are two steps
in the algorithm that directly require O(n 3) steps: making M, and developing the
sequence {G, M/, i} in Stage One. Subcase Iia. In addition there are two steps that
implicitly require O(n 3) steps: the recursion for Gj’s to determine end sections of arcs in
i’s in Stage Two, Subcases IIa, IIb, and the recursion for Gp., subgraphs in Stage
Three. By careful preprocessing of Gp.q (using appropriate shortcuts), one can show (by
a lengthy analysis) that all this recursion can be done in O(n 2) steps. It also appears that
with careful analysis, the sequence {Gi, M, i} and recursion to find end sections of arcs
in ’s can be determined in O(n2) steps. However, we know of no way to compute M
other than from M’= A(G)2 which requires O(n 3) steps (or O(nTM) with Strassen’s
fast multiplication; actuality Pan recently reduced the number of steps to O(n2"795)).

As mentioned earlier, simplification rather than greater speed is what is really
needed, since the constant in O(n3) is likely to be horrendous.

4. An example. Figure 5 presents the M matrix for a graph G to be tested by the
algorithm." G is not bipartite. When the bipartite test fails, suppose it yields the triangle
in G (independent set in G) of A2, As, A6 (G has no odd holes). So Subcase IIa applies.
However, ’(A1)cC(As) and .A/(A3) cV’(A6); so our new independent set is
A 1, A2, A3, to which we can add A4. So A 1, A2, A3, A4 are A*, A2", A, A’, respec-
tively, for this graph. In seeking a cyclic order for A*, A2*, A3*, A4*, we build M0. The
fragment of M0 shown in Fig. 6 shows that arcs A5 and A6 determine the cyclic order
uniquely (up to inversion). Let the space between A’ and A* be section $1, A’ contain
section $2, the space between A* and A2* be section $3, and so on up to arc A4* being $8.
This completes Stage One.

In Stage Two, we readily find that A5 goes from $8 to $3, A6 from $6 to $8, and A7
goes from $3 to $5 and is-an A2-equivalent arc. However, A, 8 <- 14, are all in 2.
Now 2 As, A0* is the combination of A3, A4, A 1, while A6 is dropped to form G’2.
Since As, A9, Alo overlap As, they must go from section $3 to $4. Then
A 11, A 12, A 13, A 14 which overlap all A*’s but not A8 must go from $4 to $3 (we will not
follow the algorithm through G to confirm this; however, we note that G’2 is a Case i
graph with cliques ={A’,A8, Ag, Alo} and 3={As, A11, A12, A13, A14, A*o}).
Figure 7 depicts our knowledge 0t arc endsections (not overlaps within sections). Note
that we formally consider the counterclockwise endlaoint of A/* to be in section
Now we move to Stage Three. Recall Cc(A) and CI(A) denote the counterclockwise

and clockwise endpoints of arc A. We renumber the sections by the cardinality of arc
endpoints in each section to get" $1 stays $1 containing just Cc(A1); $2 stays $2
containing just CI(A1); $3 becomes $12 containing Cc(A2), CI(As), Cc(A), 7 <_- =< 10,
CI(Ai), 11_<-]-<_14; -4 becomes $20 containing CI(A2), CI(A), 8-<i_-<10, Cc(Ai),
11-<_/’=< 14; $5 becomes $22 containing Cc(A3), CI(A7); ,.q6 becomes $24 containing
CI(A3), Cc(A6); $7 becomes $25 containing Cc(A4); and $8 becomes S,28 co,ntaining
CI(A4), CI(A6), Cc(As). In section $12, the order is AT..{Ai, 8 <- <= 14}_-<A5 -<A2 and
in se.ction $20 the order is.{Ai, 8 =<i<= 14} *<A2. In section 6’22, the order of arcs is
A7 -<A3; in section $24, A6 -<_A3; in section $8, A6 -<As -<A4. NOw we have the sections
listed in Fig. 8. The clusters in $10 and $19 require us to recursively call the algorithm to
process (10.19 consisting of A,8<-i<-14. This is a Case I graph. Let

18 ALAN TUCKER

AI

A2

A3

A4

A5

A6

A8

Alo

All

AI4

A1

-1

0

-I

-1

A2 A3 A4

0 0 0

9 0 0

0 6 0

0 0 7

0 0 2

0 -1 2

-1 0 0

2 0 0

2 0 0

2 0 0

2 -1 -1

2 -1 -1

2 -1 -1

2 -1 -1

A5

0

0

2

11

0

2

2

2

2

2

2

2

2

A6 A7 A8 A9 Ao A AI2 AI3 A14

0 0 0 0 0

0 2 2 2 2 2

0 0 0 0

2 2

2 0 0 0 0

2 2 2 2 2 2

0 0

-1 -1 2 2 2 2

0 0 0 0

8 2 2 0 2 0

2 8 2 2 0 0

0 2 2

7 0 0

0 10 -1

6

0 -1

-1 2 0 2 2 13

-1 2 0 0 2 -1 11 2 -1

-1 2 0 2 0 -1 2 11 -1

2 0 0 0 -1 11

FIG. 5

31"

34*

As A6

9 10 12

0

0 0 0

0 0

0

FIG. 6

A 11, A 12, A 13, A 14 and A8, A9, A 10. Then Bo* A 11, DI* A9 (or A 10), B2* A 12
D_*(or A13), B3* =A14, As. This leaves only one more B-arc A13 with I(A13) 1,

h (A13) 3 and only one D-arc A9 with/(A9) 3, h(A9) 1. The lower ends of Alo and
A13 must be on opposite sides by condition (i) of relation 0 in Stage Two, giving
the model shown in Fig. 9 (Alo and A13 could have sides of the circle reversed).
Thus back in So, we have A8<-A <-Ao<-A3<-A9<-A2<-A4, and in S19,

A TEST FOR CIRCULAR-ARC GRAPHS 19

A5

S7 S,

S6 S 3

A 7 ,A9,AIo

FIG. 7. General end section information about the arcs.

Section Endpoints

81 Cc(A1)
$2 CI(A1)
S Cc(A7)
$1o Cc(Ai), 8 -<_ =< 10

and CI(Ai), 11 =< <- 14
Sll CI(As)
S12 Cc(A2)
S19 CI(Ai), 8 _-< _-< 10

and Cc(Ai), 11 _-< j _-< 14
$20 CI(A2)
S21 CI(A7)
S22 Cc(A3)
S23 Cc(A6)
S24 CI(A3)
$25 Cc(A4)
S26 CI(A6)
$27 Cc(As)
$28 CI(A4)

FIG. 8

* * * *<A9 _-<A -<-A8. We now have a total cyclic order of endpointsA14 A13 NAlo A2 11

of arcs in G. It is readily checked that this order is consistent with the adjacencies of G.
So G is a circular-arc graph.

5. Proofs of propositions. In this section we prove the four propositions used in
our circular-arc algorithm.

PROPOSITION 1. Let G be a circular-arc graph with {G, Mi, i}io as described in
Stage One, Subcase IIa of the algorithm. If, starting with a cyclic order Os of 3 which

20 ALAN TUCKER

B3 A 14

LEVEL 2

AI3

D: A, LEVEL

LEVEL 0

LEVEL -I

FIG. 9. Case I model for Glo,19.

induces circular l’s in Ms, one recursively picks Oi an extension of 0/1, then the final
extension Oo is a valid cyclic order for in some circular-arc model of G.

Proof. Recall that the sequence G’, M, J is found by a reduction process in which
we find a minimal AI/ overlapping A*’s whose position within a circular-l’s-inducing
cyclic order of J is not unique, and that we use this A+I to obtain Gi+l and Ni+l from
G; and ..i by replacingAI/1 and*(A’+I) by the combination arc A’*/1. If we physically
perform this reduction construction, replacing arcs A;+I and *(A’i/1) by an arc A;*+I
which contains all points that were contained in A’ *i/z or (Ai/I), then a circular-arc
model for G; is easily seen to be transformed into a circular-arc model for G;/. We call
a circular-arc model for G; reduced if it can be obtained from G G by a sequence of
such (physical) reduction constructions.

It is not hard to check that if 0i is any cyclic order of .. induced by a reduced model
of G;, then any of the circularity-preserving inversions or cyclic permutations
(mentioned in 2) of 0 can be induced by other reduced models of G;. Since .-s has a
unique cyclic order for inducing circular l’s in Ms, this order must correspond to the
cyclic order ot Js in any reduced circular-arc model for G’. We now complete the proof
by induction by showing that given a cyclic order 0+1 of J/l in some reduced
circular-arc model of G+, any extension 0i of 0/ corresponds to the cyclic order of
in some reduced circular-arc model of G.

In O, the arcs in *(A;+I) replace, in some order, the arc A’* in 0/. By the choice
of A;+x, there is no arc A in G’ such that *(A)c*(A/). If an arc A overlaps a
subset i W*(A.)fqr*(A;+z) of W*(A;+I), then for columns 2/" and 2/’-1 of M to
have circular l’s, the arcs of . must be consecutive in the subset W*(A;+I) in 0i and
must be at the end of W*(A;/I) in 0i beside the other arcs in N*(Ai). (Or if At overlaps
all of i-W*(A;+z), then .Ar*(A;/z)-i must be consecutive in Ag.) For the two
columns of Mi corresponding to A’/I to have circular l’s, each end of A;+I must be at an
end of JV’*(A+x) in 0i. The only other constraint on the order of W*(A(+z) in building the
extension ofA of A/z is the A;/l-extension condition, if it applies (which assures that

A TEST FOR CIRCULAR-ARC GRAPHS 21

if Ai+l overlaps any arc A not overlapping W*(Ai+I) and Ai+I has just one end (and
[W*(A+I)[=>2), then that end of A/I is not beside the arcs of W*(A) in 0), A reduced
circular-arc model for G in the sequence of reduction constructions (starting from
G G) to get a reduced circular-arc model for G+I must have the relative order of
the A*’s in W*(A+ constrained by exactly the above conditions. Thus the cyclic order
0i corresponds, up to (permissible) inversion and/or cyclic permutation (described in
the algorithm), to the order of oi in a reduced circular-arc model for G. Q.E.D.

PROPOSITION 2. I]:G is a circular-arc graph, there are circular-arc models]’or G with
each of the 2h possible left-right orientations of the h different components defined by the
relations S and O.

Proof. Let ti be the set of levels in which the arcs of component cci have endpoints.
Let min L and max Li denote the minimum and maximum levels numbers, respec-
tively, in L. We write L <- L (or L < Lj) if k -< k’ (or k < k’) for all k Li, k’ Zj. Then
we define the relation on components % <- c. to mean that there exists a partition of
into L, L’, such that L <= ti "Z (possibly L or L empty). There are three possible
cases of % -< % to conside,r. Case (a)" L or L’ is empty (i.e., L _-< L or L <-_ Li and so
also cj <_ cCi and now % and %. are modeled in different levels of the circle; if
max Lj k min Li then ci should use the lower part of level k and i the upper part to
assure the required overlaps and nonoverlaps between arcs in different components (we
only have to worry here about conditions (i) and. (ii) of S and O). Case (b): Neither L
norL is empty andLj L, and now % is modeled in levels of the circle inside the levels
used by cCi; the possibility of max L min L and/or min L maxL is treated as in
Case (a). Case (c): Li Li {kl, k2}, kl < k2 (and so also cj (9i) and now to assure that
arcs in different components are unrelated, in this case, it means each pair of arcs from
different components must overlap, one component should use the upper part of level
k and the lower part of level k2the parts of these two levels closer to each other---and
the other component use the farther parts of levels k and k2. (If there are several
Li Li Lk {kl, k2}, we order them all from closer to farther parts of levels k
and k2.) In each case, we can change the left-right orientation of one component
without affecting overlaps and nonoverlaps with other components. It is easy to check
that any collection of components in which every pair is related by <- can be modeled on
the circle with each component’s model in a zone of the circle above, below, or within,
the zones of each other component’s models in the manner described in the above three
cases. Then, to prove this proposition, it suffices to show that the set of all components is
such a collection, i.e., for every pair of components %, %., either cCi <= % or cCi _< % (or
both).

Suppose components c1 and 2 are unrelated in _-<. Then it is easy to check that
there must exist k k h L1 and k2, k L2with k <k2 < k < k, or equivalently with
subscripts interchanged (or else L1 L2- {kl, k2, ka}---we shall omit the proof that in
this special 3-level case c1 and 62 must be equal). Let A represent a possible arc in
with l(A1) ktl, h(A1) k h and A2 represent a possible arc in 2 with l(A2)
k k h, h(A_)= .. Then we divide our analysis into three cases: Case (a)--A1, Az both
exist; Case (b)--exactly one of A 1, Az exist; and Case (c)--neither exist. First we need
the following very useful facts. For B I, the definition of h (B) implies that there exists
a D’e N with h(D’)= h(B) and B TID’. We call such a D’ an higher barrier of B.
Similarly for D e N, there exists a B’s which we call a lower barrier of D with
l(B’) I(D) and B’ 171D. Clearly any higher (lower) barrier of an arc A is in the same
component as A (by condition (ii) of $).

Case (a)--A 1, A both exist. We can assumeA is a N arc; if not, then replace it by
one of its higher barriers D1 with h(D1) = kh and/(D1) kh* _-<kh and set kh kh*.

22 ALAN TUCKER

Similarly, we can assume A2 is a 3 arc. Now O(A,A2) or S(A1, A2) depending on
whether or not A f’)A2 by conditions (i) or (ii), but A and A2 are supposed to be in
different components.

Case (b)Exactly one of A1, A2 exist. Assume A1 or A2 is chosen so as to
maximize the spread k h k or k2h k. Suppose A is the one (A2 is a symmetrically
equi.valent situation). Then there exist arcs A, Az in c2 with one of A/E’S endpoints at
level k and one of Ah’s endpoints at level k2h and a minimal sequence of arcs in
c2, A, A22, A3,..., A, where A Al, A A, and every consecutive pair
A,A+x is related by S or O (but no other pairs A,A are related). Further we can
assume that no A, except possibly A2h, has an endpoint below level k (or else we could
treat A, A,A as a "shorter" version of a case (b) situation). Assuming A2 and A2h
were chosen to minimize the length of the sequence of A’s, we see that no A except
A2 (=A) can have an endpoint between k and klh and no A exceptA (=A) can
have an endpoint higher than k h. It follows that for all A, 2 -<_ _-< m 1, l(A) k and
h(A)= k h. Also the other endpoint of AtE cannot be above k and the other endpoint
of A2

h cannot be in be[ween k and k h. Now the only way A can be related to A by S or
O is to have a common end level (k or k h) with A22; similarly, l(A) k or k h. Recall
that we assume k h k is as large as possible. If A B1 is a B-arc, its upper barrierD
(h (D k h and B Y) D must have l(D k or else A could be D with a larger
value of k h i’sl(D1) (the same sequence of Az or a subsequence of it works for D).
Similarly if.A =D is a D-arc, we claim that its lower barrier B’a (l(B’a)=k and
B Dx) must have h(B’) kh. If kh <h(B’l)<kh2, then A1 could be B with a larger
value of h (B k If either k h

2 < h(Bi)and l(A)=k or khE=h(Bl) and l(AhE)<k,
then A2h orB could replaceA with a larger spread. If k2h _-< h (B) and l(A) k hi, then
A- (with h(A-l)=kh) must overlap A2h=(A) and A=B is a -arc and

m--1 --1A2 DE must be a @-arcthis is the only way two such arcs can be related; and
now D1, B, BEh,D’-1, and B*, the lower barrier ofD-1, satisfy condition (vi) relating

"- (or if h(B*)>khx, Dl, B D2m-1,D and D2 BI* satisfy (iv)). Finally suppose kh

h(B) and l(Ah)_ k. By the maximality of k h -k and in order to avoid previously
m-1 m--1considered situations we can assume thatA B2h is a -arc,A D is a @-arc,

and D- is related to B2h (=A) by condition (ii) so that B I"lVn-x (the other
conditions for relatingAn-x andA require both end sections of the two arcs to be the
same levels or that there exist other arcs in c2 with endpoints above k h

2 or below ka
situation causing B to replace Ax with larger spread). Now condition (iv) applies to
D,B’x,D’-1, B. This proves our claim that h(B’)--k. So Ax and its (lower or
higher) barrier A have the same end sections. By arguments similar to those just
employed, it is not hard to show that theA can be assumed to be related by conditions
(i) or (ii). Now A,A and the sequence AI, A,..., A’ satisfy condition (vii).

Case (c)--Neither Al nor A2 exist. LetA andAh have endpoints at levels kl, k,
respectively; define A and A2h similarly. Now to avoid Case (b), the other end of A
must not be in between k2 and k2h. Assume first there is no arc in c from below k/ to
above k2h. Then to link A with A1 in c1 there must be D* and BI* in c1 with
h(D*) =/(B*) k and D* f) B*. Clearly we can let A =DI*. Next we observe that
the other endpoint of A, besides the one in k/, must be in k or kxh (any other level
makes 3/2 orA a Case (b) situation). We claim that l(Al2)= k. There cannot exist A2*
and B: in c2 with h(D)= l(B’)= kh and D2* (3B2" by condition (v). if h(A)- khl,
then to avoid the preceding condition (v) or a Case (b) situation, the next arc A in a
sequence of related arcs from A to A2h has h(A)= kh and l(A)= k2 or <_-k , and we
go back and forth between k h and k until some arc A’ goes from level k h to or below
level k. We can assume A’=A and the preceding arc in the sequence was A, and

A TEST FOR CIRCULAR-ARC GRAPHS 23

such A02 andA can only be related in this setting ifA D and A2 B/2. But now we
must have DfqB (or they are related by condition (ii))andso h(B*)= kh (if <kh,A
is a Case (b) situation). Now D2, B, D, B* and D’ the barrier of B (/(D1)= kh or
condition (iv) will apply) satisfy condition (vi).

This proves our claim that (A/)= k. Further we can assume A D, or if a
5-arc we take its barrier which, like A/, must have lower endpoint in k . ThenD must
be linked to A2h in 2 by a 5-arcB with/(B) k, h(B) > kh, and B9D(h(B)
k is the only other possibility not leading to Case (b)mbut this is "going around in a
circle" back to k/, which will have to be followed by a A-type arc from k to k or kh).
Now we get the same problem as when h(A)= k h; condition (iv) or (vi) will apply to
B, D, D*, BI* and B’, the lower barrier of D*. This completes Case (c) when there is
no arc in c1 from below.k to above kzh. By symmetry, we also rule out that there is no
arc in 2 from above k h to below k.

Now we can assume A goes from k to >- k2h and Ah goes from k2h to -<k. To
avoid Case (a) or (b) situations, we are forced to have l(A)= l(A)= k and h(A)=
h(A) k h2. Moreover, tlae (lower or higher) barriers of A and A2h must also go
between k and k2h. So we have B,D ci, BifDg, i= 1, 2, going from k to k2h. Now
for B,D to be connected in with A h with endpoint in k h, we must have Ah Bh
with l(B hi k h, h (B k and B h D or Ah Dh with h (D hi k h, l(D h) k and
D1h D. A similar situation holds for A, and now either Case (a), condition (iii), or
condition (iv) will hold for all or a subset of these six arcs. This completes Case (c).

Thus , 2 must be equal and the proposition is proved. Q.E.D.
PROPOSITION 3. Any circular-arc model for G (defined in Stage Two, Subcase IIa)

can be expanded to a circular-arc modelfor G (ifone exists) with the only possible change
in the order of endpoints in $2i-1, S2i, $2/+1 in Gi’s model being for pairs of arcs which
overlap the same subset of.

Proof. The only missing arc endpoints in $2i-1, S2i, $2.+1 (for arcs in G but not G.)
are" (a) arcs A with Cc(A) in $2.+1 or CI(A) in $2.-1 and A touches none of (these
arcs clearly cannot affect the order of endpoints of G.’s arcs); (b) arcs A with Cc(A) or
CI(A) in S2i andA touches all of (since A/’(A) A/’(A) but . c X(A), there must be
another Case (b) arc A’ with CI(A’) or Cc(A’) in $2 andAA’; but all such case (b) arcs
must have their endpoint in $2. within the region of common overlap of arcs of ,
where no endpoints of G. arcs occur, and so these endpoints cannot affect the order of
the endpoints of arcs in Gi); (c) arcs A with Cc(A) in $2i-1 or CI(A) in $2i+1 and A
touches all of. The Case (c) arcs require a little discussion. Suppose there are two arcs
Ax, A2 in Gi with CI(A1) and CI(A2) in $2-1 and an arc A in G-Gi with Cc(A) in
which overlaps A but not A2 (this implies A2 6 22.). IfA 1, A2 overlap the same subset of, then the relevant order of CI(A 1) and CI(A2) was arbitrary in the model of G. and
may be altered, as mentioned above, to allow only A1 to overlap A. If Af(A2)
V(A1) , then CI(A1), CI(A2) are already forced to be ordered so A can overlap
but not A2. (/’(A1) I 2V’(A2) I would be impossible in a circular-arc model for
G). A similar analysis applies if Cc(A1), Cc(A2) $2i+1. Q.E.D.

PROPOSITION 4. IfG is a circular-arc graph, then any pair ofarcs A, A’ in l (as
defined in Stage Three of the algo,rithm wi.th their other endpoints in different sections are
comparable in the partial order -<-, i.e. A <=A’ or A’ <-A.

Proof. First consider B1, B2 i3 (i.e., CI(B1), el(B2) St) with B2 extending (coun-
terclockwise) to a farther endsection than B1. If V’(B1)c V’(B2), then B1 -< B2. Other-
wise, there exists D1 X(B1)-Af(B2) which B1 can. only overlap in S., in which case

B2 <-D1 =<B1. By a similar argument we have D1 :D2 or 02 -<Ol for any two arcs
in with different other endsections. Next consider B N, D @ with different other

24 ALAN TUCKER

endsections. If Bf D, then B _-_. D, If B f’)D but B and D cannot overlap at their other
ends, then D --< B. Suppose finally B fq D and B, D must overlap at their other ends. If
there exist B’ C(D) and D’ V(D) with B’ f’) D’, then we have B -< D’ -< B’ =<
D (B’D and D’B implies B’ and D’ cannot touch at their other sides). If no such
B’,D’ pair exists, then for all D’-W(B), W(D’)c(D) and so D<-B. Q.E.D.

REFERENCES

[1] S. BENZER, On the topology ofthe geneticne structure, Proc. Nat. Acad. Sci., 45 (1959), pp. 1607-1620.
[2] K. S. BOOTH, PQ-tree algorithms, Ph.D. thesis, Computer Science Department, University of Califor-

nia, Berkeley, 1975.
[3] K. S. BOOTH AND G. S. LUEKER, Testing]:or the consecutive ones property, interval graphs, and graph

planarity using PQ-tree algorithms, J. Computer Systems Sci., 13 (1976), pp. 335-379.
[4] D. R. FLLKERSON AND O. GROSS, Incidence matrices and interval graphs, Pacific J. Math.,. 15 (1965),

pp. 835-855.
[5] F. GAVRIL, Algorithms on circular-arc graphs, Networks, 4 (1974), pp. 357-369.
[6] P.C. GILMORE AND m. J. HOFFMAN, A characterization o]compartbility graphs and o]interval graphs,

Canad. J. Math., 16 (1964), pp. 539-548.
[7] L. HUBERT, Some applications of graph theory and related non-metric techniques to problems of

approximate seriation: the case ofsymmetry proximity measures, British J. Math. Statist. Pscychology,
27 (1974), pp. 133-153.

[8] C. B. LEKKERKERKER AND j. C. BOLAND, Representation of a finite graph by a set of intervals on the
real line, Fund. Math., 51 (1962), pp. 45-64.

[9] G. S. LUEKER, Efficient algorithms]’or chordal graphs and interval graphs, Ph.D. thesis, Program in
Applied Mathematics and Electrical Engineering, Princeton University, 1975.

[10] F. S. ROBERTS, Discrete Mathematical Models, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[11] F. W, STAHL, Circular genetic maps, J. Cell Physiology, 70 (Suppl. 1) (1967), pp. 1-12.
[12] K. E. STOUFFERS, Scheduling of traffic lightsJa new approach, Transportation Res., 2 (1968), pp.

199-234.
[13] W. TROT’rER AND J. MOORE, Characterization problems]or graphs, partially ordered sets, lattices, and

lamilies o[sets, Discrete Math., 16 (1976), pp. 361-381.
[14] A. TUCKER, Matrix characterizations of circular-arc graphs, Pacific J. Math., 39 (1971), pp. 535-545.
[15] ., Structure theorems lor some circular-arc graphs, Discrete Math., 7 (1974), pp. 167-195.
[16] Coloring a family olcircular-arc graphs, SIAM J. Appl. Math., 29 (1975), pp. 493-502.

SIAM J. COMPUT.
Voi. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0901-0002 $01.00/0

SOLUTIONS OF THE ITERATION EQUATION AND EXTENSIONS OF
THE SCALAR ITERATION OPERATION*

STEPHEN L. BLOOM,t CALVIN C. ELGOTS AND JESSE B. WRIGHTS

Abstract. We study the solutions to a (vector) equation somewhat analogous to the traditional equations
of linear algebra. Whereas, in introductory linear algebra the domain of discourse is the field of real numbers
(or an arbitrary field) our domain of discourse is the algebraic theory of (multi-rooted, leaf-labeled) trees (or,
more generally, any iterative theory).

As in linear algebra, we obtain a necessary and sufficient condition for our equations to have unique
solutions and we can describe "parametrically" the totality of solutions. However, whereas in linear algebra,
there is no way of giving / 0 meaning in such a way that all the "old laws" hold, we can give meaning to the
"iteration operation" (the analogue of division into 1) in such a way that all the "old laws" still hold. Indeed,
we can describe "parametrically" all such ways of extending the (partially defined) scalar iteration operation
to all trees (more generally, morphisms).

Key words, iteration, semantics, flowchart schemes, iterative theory

1. Introduction.
1.1. An example. The notion of iterative theory (reviewed in this section) is

discussed in [5], [3], [11], [4] and [7] the principal reference for this paper. Its
relationship to the theory of computation is indicated in [5]. An important example of
an iterative theory is provided by multi-rooted, (locally) ordered trees (not necessarily
finite) with termini (a distinguished subset of the set of all leaves of a tree) which are
"labeled" by positive integers. An n-rooted (vector) tree f (or "forest" of n singly
rooted trees) of this kind whose termini labels come from the set (1, 2, 3,..., p}--
abbreviated [pl--is indicated as follows

f:np.

When p 0, there are no termini, i.e., all the leaves (if any) are unlabeled. If g" p q is
another such tree, by f. g: n q, we mean the tree which is obtained by "attaching", to
each terminus of f labeled/’, for each [p], a "copy" of the]th singly rooted tree of g;
f.g is the composition of f and g. (More strictly speaking, this .operation is on
isomorphism classes of trees rather than on individual trees.)

The tree Ip 0)0n" p p + n, n -> 0, consists of a sequence of p vertices; the]th vertex
is both the]th root and a terminus labeled , for each j [p]. Notice that f. lp f and
I, g=g.

Another basic operation, besides composition, is "source pairing". If f’ n- p,
[2], are forests, the forest (f,/2): n + n2 p has f: as its first n singly rooted trees

and/’2 as its next n2 singly rooted trees. This operation (again, strictly speaking on
isomorphism classes), as well as composition, is associative. If r > 2, we write

,h)

for the extension of the binary operation to an r-ary operation.
The very familiar operation of constructing a new singly rooted (or scalar) tree

from n single rooted trees by adjoining a new vertex may be described as

* Received by the editors May 23, 1978.
f Department of Mathematics, Stevens Institute of Technology, Hoboken, New Jersey 07030.
S Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New

York 10598.

25

26 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

where ’i is a scalar tree, for each [n and ’n 1 n is the tree depicted by

1 2 n

The trees 3’n, n 0, 1, 2, 3, , are called atomic. A primitive tree is one such that every
successor of the root is a terminus. A vector tree is primitive if each of its component
scalar trees is primitive.

The collection of (isomorphism classes of) of trees n p for variable n, p form a
category Tr whose objects are 0, 1, 2,.. and whose morphisms n p are trees n p.
Each object n in Tr is a coproduct of the object 1 with itself n times and thus forms an
algebraic theory in the sense of Lawvere (cf. [13]). This algebraic theory is ideal (cf. [5])
in that if ’: 1 n is a tree which is nontrivial (in the sense that its root is not a terminus)
then so is/. g for every g" n p in Tr.

The ideal algeb’aic theory Tr is closed with respect to conditional iteration, briefly, is
iterative, in that the equation in Tr

g. (It,,),

where so: n p and where g: n p + n is ideal (i.e. is a forest of n nontrivial singly
rooted trees), has a unique solution for the "unknown" . This "vector" equation is, in a
sense we will not make clear here, linear and may be "rewritten" as n (linear) equations
in n scalar "unknowns" :i: 1 p, i[n]. This equation is the iteration equation
determined by g.

In the case p 0, the iteration equation for g takes the simpler form"

=g.sc.
The collection of trees of "finite index" (i.e. trees having only a finite number of

nonisomorphic subtrees, cf. [7]) forms an iterative subtheory tr of Tr.
One reason for the importance of the iteration equation is this: for each (possibly

infinite) tree f: 1 p in tr there is a primitive g: n p + n in tr such that f is the first
component of the solution to the iteration equation for g. Another reason is that in
models of computation, the solution to the iteration equation expresses "looping".

1.2. Solutions. While the solution (in a given iterative theory) to the iteration
equation for g" n p + n is unique in the case that g is ideal, in general, there are many
solutions. For example, in the case that p 0 and g In, each morphism f: n n
satisfies the iteration equation for g. We give, in 2 (cf. 2.15), a kind of parametric
description of all solutions to the iteration equation for g, where g’n- p + n is an
arbitrary morphism. We obtain as a corollary (cf. 2.19) a necessary and sufficient
condition on g for its iteration equation to have a unique solution. This corollary is
equivalent to Theorem B of J. Tiuryn [8].

When applied to Tr (cf. 2.21) the corollary states that g’s iteration equation has a
unique solution iff the tree

gn g" (Ip)0n, g)" (100n, g)" (Ip 0n, g)" ", (n occurrences of "g")

has the property that each trivial component of gn carries a label from the set [p] (out of
the set [p + n of possible labels). In the case p 0,

gn=g g g (n occurrences of"g")

ITERATION EQUATION AND SCALAR ITERATION OPERATION 27

[p] is the empty set and the property of g becomes simply"

each component of gn is nontrivial.

1.3. Extension. In iterative theories we may define g* (the iterate of g) to be the
unique solution of g’s iteration equation, if g’s iteration equation has a unique solution;
in the contrary case we may regard "g*" as meaningless. It is natural then to raise the
question: it is possible to extend the meaning of g* to all g in such a way that all the old
"laws", i.e., "identities" still hold. The answer to the question is "yes". This matter is
taken up in 3 (cf. 3.7 and 3.8) for the case that g is scalar, i.e., g has source 1; the vector
case is reserved for a sequel to this paper (in preparation).

The "full answer" to the question is rather neat and perhaps surprising. It is this" if
one chooses 3-" 1 0 in the iterative theory arbitrarily and defines 1 3-, then the
requirement that the old laws still persist, uniquely determines g* for all g. Thus, in Tr,
we may choose 3- 1 0 to be any infinite tree (without termini) and we may define the
iterate of the trivial tree I1" 1 1 to be 3_ without violating any laws!

There is another sense in which the result is surprising, viz: while the results
mentioned in 1.2 are reminiscent of and roughly analogous to results for linear
equations over a field, and while the question raised also has an analogue in the field
domain (replace "g*" by "1 / g"), the answer in the field domain is "no".

1.4. The sequel. The sequel [1] to this paper (to which we’ve already alluded)
centers around a formula from [4] which is an iterative theory identity. This formula
expresses the iterate of an (n + 1) dimensional vector morphism in terms of the iterates
of n-dimensional and 1-dimensional morphisms. The formula may be used to define the
vector iteration operation (on all morphisms) in terms of the scalar iteration operation.
It turns out that all the old laws valid in iterative theories are still valid.

The morphism g, for the arbitrary vector morphism g in Tr (and other "tree
theories"), may be expressed as a metric limit, no matter how 3_ 1 0 is selected. (The
trees n p in Tr form a complete metric space as was noted independently in [9].) This
contrasts with the fact that it is not always possible to define a partial ordering
(compatible with composition) in Tr such that g* is the least (or greatest) solution of the
iteration equation for g. Whether or not one can define such an ordering depends on the
choice of 3_. This fact is of interest in connection with the many mathematical
treatments of the semantics of flowchart schemes that make fundamental use of partial
orderings, (e.g. [10], [12], [2]).

1.5. Elementary properties of algebraic theories. An algebraic theory T is a
category whose objects are the nonnegative integers, having for each n > 0, n "dis-
tinguished morphisms" i: 1 n, In]2 (where In] {1, 2,-.., n}; [0]) such that:
for each family of morphisms fi: 1 p, In], n => 0, there is a unique morphism f: n p
such that for each In], fi is the composition

f
]" l n -- p.

The morphism/c is called the source tupling of the morphisms [i, 6 In], and is denoted
([1, [z,""", ’,). In the case n O, this condition requires the existence of a unique

Every iterative theory except V contains at least one morphism 0. The theory N may be described
as the subtheory of Tr which consists of all the trivial trees in Tr; it may also be described as the theory whose
morphisms n p are the functions [n] [p].

2 We admit this notation is ambiguous: 2 may have target 2 or any number larger than 2, but in context
the target should be clear.

28 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

morphism 0p: 0p. All morphisms n p, n, p_-> 0, formed by source tupling the
distinguished morphisms are called base morphisms. When the distinguished
morphisms are distinct, (which is the case in every algebraic theory but two" the "trivial
theories") the base morphisms are in 1-1 correspondence with the collection of
functions [n]+[p]. The function f: [n]+[p] corresponds to the source tupling if(l),
f(2), , |(n), where t(i): 1 + p is distinguished.

If "f" denotes a function In]+ [p], then "f: n + p" will also denote the morphism
in T corresponding to f. The base morphism corresponding to the identity function on

In is denoted I,. r
The composition of f: n p and g: p q is denoted either . g or n --p q.
It is convenient to define an operation, derived from source tupling, which pairs

two morphisms with arbitrary sources. If fi" ni p, 1, 2, then the source pairing
(fl, fi2): nl + n2 p is the unique morphism satisfying

i" fl,i.(fl, f2)=
]2,

if In 1],
if nl +i,] In2].

Let :" [Pl] - [Pl + P2], A" [P2] - [Pl + P2] be the inclusion and translated inclusion
functions (i.e., ix i, ih p + i). If fi" ni - Pi, 1 1, 2, then we define the "circle plus" of

fl and f2 as follows" fl @rE" n + n2 - pl + p2 is the morphism (fl K, rE" h).
Whenever the expressions below are meaningful, i.e., for the appropriate sources

and targets, the following assertations hold in any algebraic theory (see [5]).

(1.5.1) (flt)f2) (gl)g2) fl "gl @ f2"g2,

(1.5.2) (fl @rE)" (gl, g2) (fl" gl, f2" g2),

(1.5.3) (Ot,, g)= g (g, Ot,),

(1.5.4) (fl, g2)’g (fl "g, f2" g).

The algebraic theory T is ideal if for each nondistinguished morphism g" 1- n,
g f is nondistinguished, for any f: n - p. A nondistinguished morphism g" 1 - n in T is
called ideal.

An iterative theory is a nontrivial ideal theory such that for each ideal morphism
g" 1 - p + 1 there is a unique morphism g*" 1 - p such that

(*) g* g" (It,, g*).
In an iterative theory, if g" n --> p + n, n > 1 is ideal, i.e., for each e In], i. g is ideal, it
can be shown there is a unique morphism g*" n --> p such that (.) holds [4].

If g’n-+p + n is any morphism in an algebraic theory, the "powers" of g are
defined as follows"

and

o

r+lg =g (It, @ O,,, g) n--->p+n.

The following facts about gr are quite useful.

(1.5.5)

(1.5.6)

(Ip@O,.,,g)r=(I@O,.,,g"), all r =>0;

if sc g. (/, so), then sc gr. (/p, :), all r => O.

ITERATION EQUATION AND SCALAR ITERATION OPERATION 29

1.6. Ftr. In 3 and 4, F will denote a ranked set; i.e., F is the disjoint union
U (F: k _-> 0).

In [7] it was shown that Ftr, the collection of F-trees of "finite index", formed an
iterative theory which is freely generated by F. This means that for any iterative theory J
and any function F that maps /e F into an ideal morphism 2:1 k in J, there is a
unique theory morphism F" Ftr J extending F. This result is generalized by the
Universality Theorem in 3.

2. All solutions of the iteration equation. The determination of all solutions of the
iteration equation depends upon classifying the component positions of a morphism
g" n - p + n into three disjoint categories. A position In] of g is either "singular",
"power successful" or "power ideal" (see 2.3). Singular positions are responsible for
the existence of more than one solution of the iteration equation. On the other hand, if
all the component positions are either power successful or power ideal, there is a unique
solution of the iteration equation for g.

2.1. Let g: n p + n ,be an arbitrary morphism in an iterative theory I. The
iteration equation for g is the equation in the "variable" : n p

(2.1.1) $ g. (I,).

By definition of "iterative theory" (more fully, "ideal theory closed under condi-
tional iteration") whenever g is an ideal morphism, the equation (2.1.1) has a unique
solution, i.e., there is a unique morphism so: n - p which satisfies (2.1.1). This solution is
denoted g*. If g is not ideal, the iteration equation for g may have many solutions. In
this section, solutions to (2.1.1) are determined.

In the case n > 1 it is useful to rewrite (2.1.1) as a system of simultaneous equations.
g

For i[n], let sei=i.se-l--np and let gi---i.g:l--np+n. Then (2.1.1) is
equivalent to the system

(2.1.2)

When g is not ideal, there is at least one 6 [n for which gi is a base morphism 1 p + n.
If gi is 0p@)i’ for some i’e[n], then the ith equation (2.1.2) is a "pure variable
equation""

(2.1.3)

Similarly, ff g is jO,, or some/" [p], then the ith equation in (2.1.2) determines the
value o
(2.1.4) sc, j" 1 - p.

To illustrate these possibilities, we will discuss an example in some detail.

2.2. Example. Throughout 2 we will discuss the solution of the iteration equation
for a morphism G in the iterative theory of F-trees (see [7]). We recall that a tree
f: n - p is an n-tuple (fl, , fn) of rooted (locally-ordered, locally-finite) trees, some
of whose leaves are labeled with elements of [p]. To compose f: n p with g: p q one
attaches to each leaf of f labeled [p] a copy of the ith component of g. In our

30 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

example, we assume all vertices of G of outdegree one have the same (unindicated)
label in F1.

Let G:9 10 be the tree

(2.2.1) G=

6 8 4 9

3 2 4

Then the system of equations corresponding to the iteration equation for G (the
solution is depicted by (2.6.2)) is

(2.2.2)

Here, for 2, 4, 6
Gi base morphism

Gi" 1 10 1,

i.e. G G G6) is the tree

1

so that Gi G j, for some unique j [10].
Although these equations are sufficiently clear to allow one to determine all

solutions of the iteration for G, before doing so we note that the equations fall into three
distinct groups. Equations (1) and (5) of (2.2.2) may be grouped together, since they
determine the value of :1 and :5 as the base morphism 1" 1 1. The "pure variable"
equations (3), (7), and (8) may be grouped together, since they determine only that

:3 :7; :3 (= :7) and :8 may be any trees 1 1. The last group is the remaining equations
(2), (4), (6), and (9). In 2.4 we will rearrange the equations so that these groups occur

together. The classification of these three groups of equations is discussed in general in

the next section.

2.3. The initial and final classification. Let g: n p + n be a morphism in an
iterative theory. The initial classification of the component positions 6 [n of g is the
following.

2.3.1. The position is a successful position (for g) if for some (unique) f [p],
i. g " 1 p + n. We define the function g" S [p], where S is the set of successful

ITERATION EQUATION AND SCALAR ITERATION OPERATION 31

positions of g, by ig j. Thus if is a successful position for g, the ith equation in (2.1.2)
has the form (2.1.4). In the example 2.2, only 5 is a successful position of G so that
S {5} and from the fifth equation of the example, 5G 1.

2.3.2. The position is ideal if the morphism g is ideal. Let Ig be the set of ideal
positions of g. In the example of 2.2, positions 2, 4, and 6 are ideal for G so that
Io {2, 4, 6}.

2.3.3 The position is potentially singular if, for some (unique) i’ [n], g 0p @
i’. We define the function g: Pg +[n], where Pg is the set of potentially singular
positions of g, by ig i’. Thus if is potentially singular, the ith equation in (2.1.2) has
the form (2.1.3). In example of 2.2, the positions 1, 3, 7, 8, and 9 are potentially
singular for G so that Po {1, 3, 7, 8, 9} and from the first, third, seventh, eighth, and
ninth equations of the example: 1G 5, 3G 7, 7G. 3, 8G 8, 9G 2,

For the final classification of the component positions of g, we note that exactly one
of three possibilities can occur. Either for every r, is a potentially singular position for
gr or not. If not, either i. gr is j0n for some j e[p], or i. gr is ideal. Thus the
possibilities are"

(2.3.4) For every r 1 there is an ir [n such that i. gr Op @ir.

(Recall the definition of gr, given in 1.5.)

(2.3.5) There is some r _-> 1 and some/’ [p] such that i. gr j@0n.

(2.3.6) There is some r-> 1 such that i. gr is ideal.

2.3.7. We say is a singular position of g if (2.3.4) occurs. In the example of 2.2,
positions 3, 7 and 8 are singular for G. (The singular positions are responsible for the
existence of more than one solution of the iteration equation, as will be seerr below.)

2.3.8, We say is a power successful position of g if (2.3.5) holds. Note that if
i. gr j0, for some j [p], then i. g j0, for all s > r. In the example’ of 2.2, the
power successful positions are 1 and 5. (Since 5 is a successful position for G, it is clearly
power successful" (2.3.5) holds with r 1. Position 1 is power successful, since 1 G:=
G5 1:1 - 1.)

2.3.9. Lastly, we say is a power ideal position if (2.3.6) holds. Note that if i. gr is
ideal, so is i. gS, all s > r. In the example of 2.2, positions 2, 4, 6 and 9 are power ideal
for G. (Indeed 2, 4 and 6 are ideal, and 9. G2= G2, an ideal tree.)

It is convenient to define a function g" [n [n]+ LI [n] where [n]+([n]) is the set
of nonempty finite (infinite) sequences of elements of [n].

2.3.10. Definition of g" [n][n]+U[n]. Suppose is a singular position of g.
Then ig is the infinite sequence in In]

ig UlU2U3

where ul and for each r => 1, u,g Ur+l or equivalently,

(2.3.11) i. gr= Ilr "g 0p Ollr+l"

A formal proof of (2.3.11) is by induction on r. The truth of the equation is, on
reflection, obvious.

Suppose is a power successful position of g. Then ig is the finite sequence
ulu2"" ut where t-> 1, u i, ut S and where, for r < t, (2.3.11) holds.

32 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

Lastly, suppose is a power ideal position of g. We define ig to be the finite
sequence ulu2 u,, where ul i, ut 1 and for r < t, (2.3.11) holds. Thus i. gt ut g
is ideal.

We note that for any potentially singular position of g if ig i, then is a singular
position and ig= iii.

2.3.12. We let Mg, Kg, and Lg denote the set of power successful, singular and
power ideal positions of g, respectively. We will, however, usually drop the subscripts.

For the sake of illustration, we will compute several values of the function
G: [9] [9]+ t.J [9], where G is the tree of example in 2.2. The position 3 is singular
for G, and

3G=3 7 3 7 3 7....

The position 1 is power successful for G, and

1.G=I 5.

The positions 9 and 2 are power ideal for G, and

2.3.13. Note that if ig ulu2u3 uzu3 and Ul is in M (resp., K, L),
so is ur, all r -> 1; similarly, if ur, r > 1 is inM (resp:, K, L), so is us, for all s, 1 -< s < r. Note
also that u2g= u2u3u4 SO that ig= iv, where v uzg.

If iM or L and ig=uluz...ut/l, t>-_O, then the elements ul,..., ut are
distinct potentially singular positions of g. Thus < n and (using the finiteness of n) it
follows that

(2.3.14) is a power successful position of g iff is a successful position of gn; in
this case i. gn= for some/" [p];

(2.3.15) is a power ideal position of g iff is an ideal position of gn; in this case
i. g" is ideal;

(2.3.16) is a singular position of g iff is a potentially singular position of gn; in
this case i. g" 0p i’ for some i’ In].

In particular, no position of g is singular iff for each [n], i. g" is ideal or successful.
2.3.17. Because the description of a morphism g in an iterative theory is often

given in such a way that one can immediately "read off" the set Pg (as, for example, in
(2.2.1) or (2.2.2)), we note that in (2.3.14), (2.3.15) and (2.3.16), the superscript "n"
may be replaced by IIell / 1, where IIell is the cardinality of

In the example, IIPII-- 5. Thus, in this case, we have n 9 and Ileal] + 1 --6.

2.4. We return to the example of 2.2. As mentioned, it would be convenient to
rearrange the system of equations (2.2.2) so that the power successful, singular and
power ideal positions occur together. This amounts to "rearranging" G. Recall from
2.3.7-2.3.9 that the set M of power successful positions of G is {1, 5}; K, the set of
singular positions, is {3, 7, 8}, and the set L of power ideal positions of G is {2, 4, 6, 9}.
Let ,r: [9] [9] be a permutation that mapsM bijectively onto {1, 2}, K bijectively onto
{3, 4, 5} and L bijectively onto {6, 7, 8, 9}.’For definiteness, suppose that ,r is the unique
such permutation which is order preserving so that ,r is given by reading top-down the
following table

ITERATION EQUATION AND SCALAR ITERATION OPERATION 33

[11 2 3 4 5 6 7 8 9

irl[1 6 3 7 2 8 4 5 9

and r IS given by reading the table bottom-up. Then the tree G r G (Ia r) is

(2.4.1)[
3 1 5 4 6 7

7 2 4

and the system of equations corresponding to the iteration equation for (the solution
is depicted by (2.6.1)) is

1"--2, :2=1 1-->1,

(2.4.2) :3 :4, :4 :3, ,
:6 d :6, G , Cs G , : :6.

See (2.2.2) for the meaning of the prime.
The function G is given by Table 1 and G is given by Table 2.

TABLE

3 4 5 9

iG" 2 4 3 5 6

2
3
4
5
6
7
8
9

TABLE 2

12
2
3434...
4343...
555...
6
7
8
96

The G%table verifies that the power successful positions for G are 1 and 2; the
singular positions are 3, 4 and 5 and the remaining positions are power ideal. It is much
easier to compute the solutions : (sea, z, , :9)" 9 1 of the iteration equation for G
from (2.4.2) than to find the solutions to (2.2.2). The relation between G, G and the
solutions of their iteration equations is discussed in general below.

2.5. Conjugation. Let g, " n p + n be morphisms in the iterative theory L and let
r In In be a permutation.

-12.5.1. DEFINITION. (a) is the zr-conjugate of g if
(b) is conjugate to g if for some permutation r of In], is the r-conjugate of g.

-1Note that in the case p 0, if g is the r-conjugate of g, r g r; (thus the use
of group theoretic terminology).

34 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

2.5.2. Remark. We observe that the relation " is conjugate to g" is an
conjugate of ; ifequivalence relation. Indeed, if is the r-conjugate of g, g is the or-

g2 is the rl-conjugate of gl, and g3 is the r2-conjugate of g2, then g3 is the
2-conjugate of gl.

2.5.3. PoeosIO. Let be the -conjugate of g" n p + n. Then" (a) for each
r>0,== .g),

(b) for each In], is a power successful (respectively" singular, power ideal)
position for g iffi is a power successful (respectively" singular, power ideal) position of;

(c) if" n p is a solution of the iteration equation for , then is a solution of the
iteration equation for g;

(d) the map . is a bifection between the set of solutions " n p of the
iteration solution for and the set of solutions of the iteration equation for .

Proofi (a) The proof is by induction on r. The case r 0 is trivial. Now

-l+rg = (Io0n,)

g. Or(R)#). Or (R)o., g)

by the induction assumption

-1.g (r,(R)#). (r,(R)o,, # g.

g. (I,00,,, g. (I,-)) by (1.5.2)

g. (I,0,, g)(I, O’n’) by (1.5.4) and (1.5.1)

gr+l. (Ip

which completes the induction.
(b) By part (a), for every r-> 1

,rr g (Ip

Thus if is a power successful position for g, for some r -> 1, j [p], i. gr j0n,
and i. gr. (I0 r) j0, i. 7r gr in" r. Hence ir is a power successful position
for g. By 2.5.2 and what was just shown, if izr is a power successful position of g, then
(&r)r-1 is a power successful position of g.,

The remaining statements of (b) follow from part (a) in the same way.
(c) Suppose g. (I, :). Then r g. (I r)" (I,, :)= r g" (I, r.),

by (1.5.2). Thus zr c g (Ip, r :), so that 7r c is a solution of the iteration equation
for g.

(d) The map r is a surjection, by 2.5.2 and part (c). If 7r zr :’, clearly
: ’, so the map is also injective. This completes the proof.

2.6. Example continued. From the system of equations (2.4.2) it follows that every
solution to the iteration equation of the tree G, given in (2.4.1) is a nine-tuple of trees

such that :1 :2 1; 3 4, :5 is arbitrary, 6 is the infinite tree

-I
:7 G- 1; s% G :3 and 9 6.

ITERATION EQUATION AND SCALAR ITERATION OPERATION 35

Conversely, every nine-tuple of trees satisfying the above conditions will be a
solution of the iteration equation for G.

The "general" solution of the iteration equation for G is depicted by Fig. 2.6.1; cf.
(2.4.1).

FIG. 2.6.1. Solution to the iteration equation r (cf. (2.4.1)).

Thus, by 2.5.3(d) all of the solutions of the iteration equation for G are the trees

r. :, where zr is the permutation of [9] given in 2.4 and is a solution of the iteration

equation for G (see Fig. 2.6.2).

1 1

1

FIG. 2.6.2. Solution to the iteration equation]:or G.

The generalization of this method for solving the iteration equation is contained in
Theorem of 2.8.

2.7. Let g" n p + n be a morphism in an iterative theory. Let M, K, L
_

[n be
respectively the set of power successful, singular and power ideal positions of g. Let the
cardinalities of these sets be m, k and respectively, so that m + k + n. Let r be a
permutation of In] which maps M bijectively onto [m], K onto m +[k], and L onto
m + k + [/]. Let g be the 7r-conjugate of g. Then, by 2.5.3(b),

(a) the set of power successful positions of is [m];
(b) the set of singular positions of is m + [k];
(c) the set of power ideal positions of g is m + k +’[/].
We call a morphism g with the properties (a), (b), (c) a mkl-morphism ("mkl" is

pronounced to rhyme with "nickle").

2.8. THEOREM. Let g" n p + n be a mkl-morphism in an iterative theory. Then
(a) g is uniquely expressible in the form

(2.8.1)

where

(2.8.2)

g=(abO,h),

a" m p + m is base and a "factors through p"; i.e., for some (unique)
rpO

base morphism a" m p, a"" m--p p + m (thus every position of a is

36 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

(e.8.3)

(2.8.4)

(e.8.)

power successful); note that rn 0 if p 0;

b" k --> k is base;

h" --) p + m + k + is power ideal;

moreover, for any morphisms 1" m --> p, 2" k --> p, the morphism
h [(Ip, 1, 2)It]: - p + is power ideal.

(b) The solutions of the iteration equation for , are expressible in the form (1, 2, 3)
where 1" rn - p, 2" k - p, 3" - p satisfy

(2.8.6) 1 a (Ip, 1); i.e., is a solution of the iteration equation for a;

(2.8.7) 2 b 2; when p O, 2 is a solution of the iteration equation for b;

(2.8.8) :3 f" (Ip, 3); with f as in (2.8.5), s3 is a solution of the iteration equation
for f.

(c) The solution,of (2.8.6) is unique (and is denoted a *’, in fact, a *=). For each
choice of and 2, the solution of (2.8.8) is unique (and is denoted f*). Further,
f*= h*. (Ip, :1, 2).

(d) The solutions of the iteration equation for , are all expressible in the form

(a*, 2, h* (Ip, a*, 2))

where 2 satisfies (2.8.7).
The proof of the Theorem 2.8 occupies {}}2.9-2.14.

2.9. On (2.8.2). Let e [m], so that is a power successful position of g. If is not a
successful position of , i. g 0p @i" 1 -+ p + n, for some i’ [m + k + I] In]. By
2.3.12, i’ must belong to Ira]. The morphism a" rn -+ p + rn is thus the base morphism
corresponding to the function a" [ml+ [p + m] determined by the requirement that

(2.9.1) ia p + i’ if is not a successful position of

otherwise,

(2.9.2) ia=j ifi. g=j()0n, j[p].

Note that for e[m],

(2.9.3) i,"= ia"= UlU2"" ut, where ux i, and ut is a successful position of
and for l=<r-<t,i.gr=i.a r=0p@u/l.

Lastly, since all of the entries u 1,’’ ", ut are necessarily distinct elements of [m], we
infer -< m thus

(2.9.4) a i a j@)0m, for some j e [p].

If we define i" [m]--> [p] by

ii j if (2.9.4) holds,

we have a" (Ip (0,,), so that a" factors through p, as claimed.

2.10. On (2.8.3). Let m + [k], so that is a singular position of . Thus if

(2.10.1) = UlU2""

each item Ur is a singular position of , and hence in particular, u2 m + [k]. We define

ITERATION EQUATION AND SCALAR ITERATION OPERATION 37

the function b" [k]--> [k] by the requirement that for 6 m +[k]

(i-m)b =i’-m

where i’ u2 in (2.10.1). Then the morphism a, where

o a q3 b q3 01" m + k --> p + m + k + p + n

is the morphism such that i. a i. g, for all [m + k]. Thus the first m + k components
of g are writable as (a (Ip+mOk+l), b (Ov+mIkOl)) which equals abOl.

2.11. On (2.8.4) and (2.8.5). The morphism h" --> p + m + k + is defined by the
requirement that its/-components are the last/-components of

Thus, by 2.3.13, if [/], and if (m + k + i) UlU2" ut, then

ih

where m + k + Vr Ur, for r e [t]. Also ut m+ k + i. ’ is ideal; hence v, h i. h’ is
ideal. Since <= 1, i. h is ideal, for all e [/]. Thus h is power ideal, proving (2.8.4).

The assertion (2.8.5) follows immediately from the following more general fact
(and from (3.1.2) of [5]).

2.11.1. PROPOSITION. Let h’l--> q + and 3" q --> s be morphisms in an algebraic
theory. Iff h (Ii), then for all r >-_ 1, fr h (Ii).

Proof. The proof is by induction on r. When r 1, there is nothing to prove. Assume
fr= h ([3 It). Then

fr+l =ft. (Is (Ol, f)=ft. (s (Ol, h (3 II))

hr" (3 It)" (I, @Ol, h. (3 L)).

h r. (3 Ol, h (3 Ii)) by (1.5.2), since/3 (L Ol) =/3 0/;

h r. (I1 GOb h). (3 @/l) by (1.5.4)

h r+l" ([3 II).

The proof of (a) of the Theorem 2.8 is now complete.

2.12. Proof of (b). The iteration equation for g" n --> p + n is

(2.12.1) : g" (Iv, :), where :" n --> p.

Using (2.8.1) and writing : (1, :2, :3) (as in the Theorem 2.8(b)) the equation (2.12.1)
becomes

(2.12.2) (sol, 2, :3)- (a (b(Ol, h). (Iv, 1, :2, 3)

=(a.(Iv,), b.2, h.

by (1.5.4), (1.5.2) and (1.5.3).
Thus the equation (2.12.2) is equivalent to the three equations (2.8.6), (2.8.7) and

(2.12.3) so3 h (Iv, 1, 2, 3).

This latter equation is the same as (2.8.8), since

(2.12.4) h. (Iv,

by (1.5.2).

2.13. ProoI oI (e). Every solution of (2.8.6) is also a solution to

(2.13.1) Ca=a (I, sea).

38 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

By (2.8.2); there is a base morphism " m p such that a (1, q)0m). Thus, if 1 is
a solution of (2.13.1),

1 l (Ip Om) (Ip, 1)" .
Thus (2.13.1) has at most one solution, and (2.8.6) has at most one solution, viz., 8. But,
by the definition of 8 in 2.9,

a. (I, a) a,

which proves (2.8.6) has at least one solution.
Since f is power ideal, by (2.8.5), there is a unique solution f* to (2.8.8). The fact

that lce= h*. (I, sol, so2) follows immediately from the following easily proved fact.
2.13.2. PROPOSITION. Let h" q + be a power ideal morphism in an iterative

theory I, and let " q s be an arbitrary morphism in I. Then [h (tI/)]* h*"/3.
Proofof 2.13.2. By 2.11.1, h (fl q)Ii)" s + is power ideal since h is, and thus

there is a unique solution [h (/3 + It)I* of its iteration equation. But

h. (/3)It). (Is, h*./3)= h (/3, h*./3) by (1.5.2)

h (la, h*)./3 by (1.5.4)

=hr./.
Thus h t./ is one solution of the iteration equation for h

2.14. On (d). The proof of (d) is immediate from parts (b) and (c).
This completes the proof of the Theorem 2.8.
A number of facts follow easily from the theorem and 2.5.

2.15. COROLLARY. Let g" n p + n be an arbitrary morphism in an iterative theory.
Let rr" In In be a permutation such that the zr conjugate , of g is a mkl-morphism
(a q) n O)Ol, h) as in 2.8. Then every solution of the iteration equation for g is expressible
as zr (a*, 2, h (lp, a*, so2)) where 2" K p satisfies 2 b so2.

2.16. COROLLARY. Let , (a q) b O)Ol, h) be a mkl-morphism in an iterative theory.
The set ofsolutions of the iteration equation for , is in biective correspondence with the set

of solutions 2" k p of the equation

(2.16.1) 2 b :2.
The proof of the Corollary 2.16 is immediate from the Theorem 2.8(d). Note that in

the case k 0 (i.e., when there are no singular positions for g) there is a unique
morphism 0-p; thus the iteration equation for g (and hence for all morphisms
conjugate to g) will have a unique solution, i.e., will have exactly one solution. A
morphism g’n p +n having no singular positions is called nonsingular. In this
terminology, we have proved the next corollary.

2.17. COROLLARY. Ifg" n -9 p + n is a nonsingular morphism in an iterative theory,
the iteration equation for g has a unique solution (denoted gt).

The converse of this corollary is almost always true. The statement of the corollary
really tells the whole story. There are, however, some "exceptional" combinations of
iterative theory I and target p of 2 such that the equation (2.16.1) has a unique solution
for any value of k. First we tabulate the cases which yield a multiplicity of solutions--or
none---independent of k so long as k is positive. To this end let W be the only iterative
theory which has no morphisms 1 - 0, i.e., the iterative theory all of whose morphisms
are base morphisms.

ITERATION EQUATION AND SCALAR ITERATION OPERATION 39

2.18. PROPOSITION. The equation b (where b: k - k is a base morphism in
the iterative theory I, where : k p and where k > O) has two or more solutions in I
provided that

(a) +/-: 10, +/-’: l0areinIand +/-+/-’,or
(b) I aV" and p >- 1, or
(c) I=Nand p>-2.

The equation has no solution when
(d) I V and p O.
Proof. Note that the equation

be equal to certain other components of :. Hence, if each of the k components of : are
equal, the equation in question is satisfied. The solutions we will identify will have all
their components equal so we need specify only what the components are.

Case (a). +/- Op, +/-’. 0,
Case (b). +/- 0,
Case (c). I10-1, 01)I1(0,-2.
The final case is obvious since there are no morphisms with target 0.
The following is essehtially Theorem B of [8].

2.19. COROLIAR. Let g: n p + n be a morphism in an iterative theory L A
necessary and sufficient condition that the iteration equation for g have a unique (i.e., one
and only one) solution is that

(2.19.1) g be nonsingular, i.e., Kg =,

(2.19.2) I have exactly one morphism 1 0 and p O,

or

(2.19.3) 1= and p l.

Proof. See 2.18, 2.16, and 2.5.

2.20. COROLIARY. Let I be an iterative theory having at least two distinct
morphisms 1 O. Then the iteration equation]:or a morphism g’n n has a unique
solution iff g is power ideal.

Proof. If g is power ideal, g is nonsingular, so that by the corollary 2.17 the iteration
equation for g has a unique solution. Conversely, by the corollary 2.19, if the iteration
equation for g has a unique solution, g is nonsingular. But a nonsingular morphism
g" n n is clearly power ideal. This completes the proof.

The following is a special case of the Corollary 2.9.

2.21. In Tr, a necessary and sufficient condition that the iteration equation for g
have a unique solution is that g be nonsingular.

3. The category Pit oI -iterative theories. The goal of this section is to show that
given any morphism +/-" 1 - 0 in an iterative theory, by requiring only that (0p @11)*=
0@ +/- (for each p _-> 0) the scalar iteration operation may be consistently extended to all
scalar morphisms. This fact follows from 3.7, Universality Theorem.

3.1. PROPOSITION. Let F" J1-Jz be an ideal theory-morphism between ideal
theories J1, Jz (i.e., iff is an ideal morphism in J1 then fFis an ideal morphism in Jz). Ifg:
n - p + n is a nonsingular morphism in J1 then gF is a nonsingular morphism in J2.

Proof. The proof is immediate from the fact (cf. 2.3.13) that g is nonsingular iff for
each In], i. g" is ideal or successful.

40 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

In particular, if each Ji is iterative and g is nonsingular then the iteration equations
for g and gF have unique solutions, g* and (gF)*, respectively. Moreover, g*F (gF)*.

This nice behavior of F contrasts sharply with the case that the theory-morphism F
is not ideal. This case is taken up in the Lemma 3.2. For that discussion we recall that
each morphism f: 1 p (in any algebraic theory) is a solution to the iteration equation
for the base morphism 0r q) 11:1 p + 1 in that theory. This base morphism corresponds
to the function [1 [p + 1 whose value is p + 1.

3.2. LEMMA. lfF: J1 J2 is a theory-morphism between ideal theories which is not

ideal, then there exists a biscalar ideal morphism h in J1 such that hF 11. ("Biscalar"
means "1 1".)

Proof. By hypothesis there exists a scalar ideal morphism : 1 p in J1 such that fF
is base (so that p >0). Let h =f./x, where /z: p 1 is base. Then h is ideal and
hF= (f. tx)F= fF txF= fF tx I.

PROPOSITION. Let F: J1 J2 be a theory-morphism between iterative theories J1, J2
which is not ideal. The requirement R1 on extending the iteration operation in J2 implies
the requirement R2:

R1. For all scalar ideal f in Jx, iffF Op @I1, then (fF)* is defined and (fF) f*F.
R2. For all p, (0 11)* is defined in Jz and (0r 11)* 0o I.
Proof. According to the lemma, there exists an ideal h: 1 1 in J such that hF 11.

According to R1, we must define I h*F (where, of course, h* is the unique solution to

the iteration equation for h). For each p >0, let go h. (0oI1)=0oh. Then,
go" 1 p+ 1 is ideal and g0aw 0oI. According to R1, we must define (0oI1)*=
g*,F. Now, as may readily be shown, g*p 0, h*. Hence

(0r @I1)* gW (0r @ h*)F 0r q3 h*F 0r @I’1.

Note that when p 0, R2 asserts only that 1* is defined.

3.3. DEFINITION. By an I*-iterative theory, we mean a pointed iterative theory (i.e.,
a pair (J, 2.) where 2.: 1 0 is a morphism in the iterative theory J) in which we
complete the scalar iteration operation by defining for all p, (0pq)I1)*=0p0)2.. (We
note that in an iterative theory the only scalar morphism 1 p + 1 whose iteration
equation does not have a unique solution is 0p)I1.) Thus any pointed iterative theory
may be regarded as an I-iterative theory. If it is necessary or desirable to be very
explicit, the I-iterative theory (J, 2.) may be described by" (J, 1’1 2.).

Before introducing the category of I-iterative theories we note the following.

3.4. PROPOSITION. Let F: (J1, 2.)- (Jz, 2.) be a theory-morphism F: J Jz
between iterative theories such that 2.F 2.. Then the conditions (3.4.1) and (3.4.2) onF
are equivalent. In particular, ifFpreserves idealism, then (3.4.1) is satisfied and so (3.4.2)
is too.

(3.4.1) Forallscalaridealmorphismsf: 1-p+ l,fF =0pI1 =)’ f*F=Oo 2..

(3.4.2) Regarding (Ji, 2.) as an I*l-iterative theory, [2], Fpreserves scalar iteration.

Proof. The proof is obvious.
Notice that (3.4.1) does not require defining (0 0311)* while (3.4.2) does.

ITERATION EQUATION AND SCALAR ITERATION OPERATION 41

3.5. DEFINITION. The category Pit3 of II -iterative theories has I -iterative theories
as objects. A morphism F: (Jx, +/-) -> (J2, +/- in this category is a theory morphism such
that IF +/- and such that (3.4.1) holds (or, equivalently, (3.4.2) holds).

Remark. The proof that morphisms between II-iterative theories are closed under
composition is a bit more obvious using (3.4.2) rather than (3.4.1).

3.6. We employ the following conventions: Fa is obtained from F (see 1.6) by
adjoining a "new" element A to 1-’1; A: 1 -> 1 is an atomic tree in Fatr.

The following is fundamental. Recall from [7] that Ftr is the iterative theory freely
generated by F.

A-LEMMA. For any tree +/-" 1-> 0 in Ftr there is a unique theory morphism dp.

Fatr Ftr satisfying
(a) AcP 11,
(b) At(I)-- +/-,
(c) y y, all 3’ in F,
(d) ifg is base, say g " 1 - p + 1, then g A for some r >-- O.
The proof of the A-lemma is given in 4.
Remark. If we distinguish At: 1 0 in Fa tr and distinguish +/- in F tr and treat the

two theories as I*l-iterative theories, then, as may readily be seen from (d), : (Fa tr,
1’1 At) (F tr, I +/- becomes a morphism in the category Pit.

3.7. UNIVERSALITY THEOREM. Let [q F0 and letJbe an iterative theory. Given an
arbitrary function F: F -> Jtaking y Fn into yF: 1 --> n such that +/-]F, there is a unique
morphism

F’
(F tr, I1’ !-]) --> (J, I1’ +/-) in Pit

which makes the following diagram commute:

3’ F - atomic tree 3’: 1 --> n
F (Ftr, I =S)

(J,/- 1).

Proof. Let F’= {3’ in F[3"F is ideal} so that [3 F’0. Let U" F--)Fx tr be defined as
follows:

3"U A i, if 3"F i: 1 --) n is base;

[:]U= A*;

3"U 3" otherwise.

Notice that, for all % 3"U is an ideal morphism. Then there is a unique theory morphism

"Pit" is suggested by "pointed iterative theory". As noted in definition 3.3 any pointed iterative theory
"may be regarded" as an I-iterative theory. "Pit", as used here, may be regarded as an abbreviation for
"Pit(I*1)".

42 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

(since F tr is, as an iterative theory, freely generated by F; cf. [7])

U’" F tr- Fk tr

which extends U---or more exactlymmakes the following diagram commute:

atomic tree 3’: n
Ftr

Notice that, by proposition 3.4,

(3.7.1) U’: (F tr,,I [-1)- (Fx tr, i A*)

is a Pit morphism since [3U’ A* and U’ preserves idealism.
Similarly, if we define E" F’ J by:

3’E 3"F for 3’ in F’; in particular, E _1_;

we obtain a theory morphism E" F’ tr J which "extends" E. Again, we notice

(3.7.2) E’: (F’ tr, I 71) (J, I .1_)

is a Pit morphism.
Applying the A-lemma in the case +/- I-l, with "F"’ in place of "F", we readily

conclude (as already noted in the Remark of 3.6

(3.7.3) ’ (Fx tr, 1’1 A*) (F’ tr, I)

is a Pit morphism.
We now define

U’ E’
(3.7.4) F" F tr Fx t -- F’ tr J.

One readily checks that F’ "extends" F and notes that F’ is a Pit morphism since U’, , E’
all are, i.e.,

F" (F tr, I [-1) (J, 1’1 +/-

is a Pit morphism.
The uniqueness of F’ follows from the fact that F tr is the smallest subtheory of F Tr

which contains the atomic trees F and is closed under scalar iteration of ideal (scalar)
morphisms.

3.8. Significance of the Universality Theorem. The Universality Theorem implies
that all "laws" of iterative theories remain true when the meaning of g* is extended to all
scalar g. Indeed, if "El" and "E2" are iterative theory expressions involving only the

ITERATION EQUATION AND SCALAR ITERATION OPERATION 43

scalarS and if the assertion

(3.8.1) for all scalar ideal f, g,. (El E2)

is valid in all iterative theories then the assertion

(3.8.2) for all scalar f, g,. (El E2)

is valid in all I*-iterative theories.
(By a (scalar) iterative theory expression, we mean an expression constructed from

letters f, g,... to denote arbitrary scalar ideal morphisms, symbols to denote base
scalar morphisms, symbols for the algebraic theory operations, and a symbol (*) for
scalar iteration of ideal morphisms. For convenience one may include "0p", "Ip", etc.).

Thus, while the extended scalar iteration operation was uniquely determined by
one iterative theory identity (viz., [0 03 g]* 0p 03 g*) once I* was assigned a meaning, it
turns out that the extended operation satisfies all scalar iterative theory identities (see
[]).

4. Proof f lhe "-lSmm’. We will use the somewhat more suggestive notation
A for the tree A*: 1 --> 0 in F tr, and we will say a tree g in F tr "has no A-subtrees if
there is no vertex v of g such that the tree of descendants of v (see [7, p. 9]) is isomorphic
to A.

Before defining the function P we define a function T -> F tr whose domain T is the
set (actually, subtheory) of trees in Fa tr having no A-subtrees.

4.1. DEFINITION. If g: n --> p is a tree in T, then go: n --> p is the tree in F tr obtained
from g by replacing every occurrence of A: 1 --> 1 in g by Ii" 1 --> 1.

For example, (A2" b)o b, for any base b: 1 --> p.
We list the following obvious properties of the function g go.

4.2. PROPOSITION. (a) Suppose both g: n -> p and h: p --> q are in T. Then so is g h,
and (g. h)o= go" ho.

(b) Suppose both g: n->p and h: m-->p are in T. Then so is (g, h): n +m->p and
(g,h)o=(go, ho); similarly if gi: ni->pi, i= 1,2, are in T, then so is glO)g2 and (glO)
g2)o (gl)o (g2)o.

(c) For any base morphism b: n --> p, bo b; in particular, (0,)o 0, where Op is the
unique tree 0 --> p.

Remark. As a consequence of this proposition, T is a subtheory of Fa tr and the
function

g-go
T F tr

is a theory morphism.
Proofs of all of these statements are straightforward if one first represents a F-tree

by a "surmatrix" (as in [7]) and uses the fact that the substitution of I1 for is a monoid
homomorphism on the sets of words which occur as entries in the surmatrices.

Let g" n --> p be any F-tree. We may specify those vertices v such that the tree of
descendants of v is isomorphic to A in the following way.

4.3. PROPOSITION. Let g" n --> p be any F/,-tree. There is a tree , n --> p + 1 such that
g is the composition

g: np+ 1 . p
and such that , has no A-subtrees. Further, if g is ideal, , may be chosen to be ideal.

44 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

4.4. Remark. Note that there may be several ways of choosing the tree ft. However
if

1" (Ip @ A) 2" (Ip h)

and if ffl and if2 have no A%subtrees, then (ffl)O
We now are in a position to define the map

4.$. Definition of : Fa tr F tr. Let g" n p be an arbitrary tree in Fa tr. Write g
as . (Ip @ A), using Proposition 4.3. We define

gcI) ()o" (Ip (1).

Note that g(I) is well-defined by remark 4.4. Note also that if g has no A-subtrees,
g(I)- go, so that in particular

A(I)---- I1;

"g=Y, TF., n_->O;

also A(I)= 2.. Thus to prove the A-lemma we must show both that (I) is a theory
morphism and that (d) (3.6) holds.

Before beginning this task, we observe that gcP is described in geometric terms as
the tree obtained from g by first replacing all A-subtrees by 2. and then replacing all
remaining A’s by 11.

4.6. PROPOSITION. preserves composition.
Proof. Suppose g" n --) p and h" p -) q are trees in Fa tr. Writing g and h as in 4.3 as

(4.6.1) zoao a z.ao
g’np+l)p, h’pq+l)q

we have

g h (Io @A) l (Iq @A) by (4.7.1)

=.(/.(Iq(A)(A) by(1.5.1)wheng2"0-)0. (I). (Iq (I, I)). (Iq @a) by two applications of (1.5.1).

Using the fact that . (@I1)(Iq @(I1, 11)) has no a-subtrees, by 4.2.,

(g. h) o" (fo@I1)" (Iq @ (I1, I1))" (Iq @ L)

=o. (I.). go. G)
=g. h.

4.7 PROPOSITION. (I) preserves source tupling.
Proof. Let g" n --)p and h" m p be trees in Fa tr. Using 4.3, we write

g" n --p+ 1 ,p and h" m --p+ 1 p.

Hence

(g, h)= (. (I @A), . (I @A))= (,). (I @A)

ITERATION EQUATION AND SCALAR ITERATION OPERATION 45

and (g,/) has no A-subtrees. Hence, by 4.2,

(g, h) (o, o)" (Ip (_1_

(o" (Ip (+/-),/o" (Ip @ +/-))

(g, h).

4.8. PROPOSITION. If b" n - p is base, b b.
Proof. Indeed, since b has no A-subtrees, b b0 b, by 4.2.

4.9. COROLLARY. (I): 1-’zX tr- F tr is a theory morphism.
Proof. Use propositions 4.6, 4.7 and 4.8.
To prove the A-lemma, it only remains to show that (d) holds. Suppose: g: 1 - p + 1

is ideal while g is base and g y g’ where 3’ is atomic. Since (y g’) y. g’ is
base we must have 3/= A. Similarly, g’= A. g", g"= A. g’", etc. This process must
terminate, for otherwise g- +/- 0p+a which is ideal.

REFERENCES

1] S. L. BLOOM, C. C. ELGOT AND J. B. WRIGHT, Vector iteration in pointed iterative theories, IBM Res.
Rep. RC7322, IBM T. J. Watson Research Center, Yorktown Heights, NY, Sept. 1978.

[2] J. B. WRIGHT, J. W. THATCHER, E. G. WAGNER AND J. A. GOGUEN, Rational algebraic theories and
fixed point solutions, IEEE Symp. Foundations of Comp. Sci., Hous.on, TX, October 1976.

[3] S. L. BLOOM AND C. C. ELGOT, The existence and construction of free iterative theories, J. Comput.
System Sci., 12 (1976), no. 3.

[4] S. L. BLOOM, S. GINALI AND J. RUTLEDGE, Scalar and vector iteration, Ibid., 14 (1977), pp. 251-256.
[5] C. C. ELGOT, Monadic computation and iterative algebraic theories, Logic Colloquium ’73, 80, Studies in

Logic, North-Holland, Amsterdam, 1975.
[6], Structured programming with and without GO-TO statements, IEEE .Trans. Software Engrg.,

SE-2 (1976), pp. 41-54; Erratum and Corrigendum, Ibid., SE-2 (1976), p. 232.
[7] C. C. ELGOT, S. L. BLOOM AND R. TINDELL, The algebraic structure o]’ rooted trees, IBM Res. Rep.

RC-6230, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1976; extended abstract in
Proc. Johns Hopkins 1977 Conf. Inf. Sci. and Systems; J. Comput. System. Sci., 16 (1978) No. 3, pp.
362-399.

[8] J. TIURYN, On the domain ol iteration in iterative algebraic theories, Proc. Math. Found. in Comput. Sci.
1976, Gdansk, Lecttre Notes in Comput. Sci. No. 45, Springer-Verlag, New York, 1976.

[9] J. MYCIELSKI AND W. TAYLOR, A compactification o] the algebra o]’ terms, Algebra Universalis, 6
(1976), pp. 159-163.

[10] D. SCOTT, The lattice o]:flow diagrams, Semantics of Algorithmic Languages, Lecture Notes in Math.
182, Springer-Verlag, New Yorr, 1971, pp. 311-366..

[11] S. GINALI, Iterative algebraic theories, infinite trees, and program schemata, Dissertation, University of
Chicago, June 1976.

[12] M. WAND, A concrete approach to abstract recursive definitions, Automata Languages and Program-
ming, M. Nivat, ed., 1972, North-Holland pp. 331-341.

[.13] W. LAWVERE, Functional semantics o] algebraic theories, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), pp.
869-872.

14] S. EILENBERG AND J. B. WRIGHT, Automata in general algebras, Information and Control, 11 (1967),
pp. 52-70.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0003 $01.00/0

REFINING NONDETERMINISM IN RELATIVIZED
POLYNOMIAL-TIME BOUNDED COMPUTATIONS*

CHANDRA M. R. KINTALA" AND PATRICK C. FISCHER

Abstract. Let g(n) denote the class of languages acceptable by polynomial-time bounded Turing
machines making at most g(n) nondeterministic moves on inputs of length n. For any constructible g(n),
___g(,,)_N. The classes g(), for various g(n) of the form (log n)k, k =>1, are relativized and the
relationships among those relativized classes are studied. In particular, oracle sets are constructed which (1)
make all the relativized classes equal (this follows from Baker, Gill and Solovay (1975)); (2) make all the
classes associated with powers of log n different; (3) for any k, make all the classes below (log n) different
while the kth power class is equal to relativized N. Results regarding closure of the (log n)k classes under
complementation are also given.

1. Introduction. The fundamental open question posed by Cook [2] and Karp [4]
asks whether equals V. Here is the class of languages recognized in polynomial
time by deterministic Turing machines, and is the class of languages accepted in
polynomial time by nondeterministic Turing machines. A language L is said to be
-complete if L is in and every language in ;f is polynomial-time reducible to
L. A wide variety of problems (currently estimated at 2,000) have been shown to be
V’-complete. Inherent in such studies is the general conviction that any V’-complete
language has the difficulty of the whole classV embedded in it and hence it acts as a
"representative" of the class

For many V-complete languages, if n is the length of the input, a nondeter-
ministic algorithm exists requiring a total number of moves which is a polynomial in n,
but the number of nondeterministic moves is at most linear in n. (By a nondeterministic
move, we mean a "strict" nondeterministic move where there are at least two choices
for the next step of the machine.) As a matter of fact, one can easily show that the
v/3-clique problem (given a graph G with v vertices and e edges, does G have a clique
of size v/3?) is-complete and that there is a nondeterministic polynomial algorithm
for this problem making at most O(x/) nondeterministic moves on inputs of length n,
given any "standard" representation of the graphs as strings. On the other hand, the
nondeterministic polynomial-time algorithm for accepting primes described by Pratt
[7] needs f(n 2) nondeterministic moves even though the recognition of primes has not
been shown to be 3"-complete.

These observations on the nondeterministic-step requirements of the candidates
for the languages in V’- suggest that we study the class from the viewpoint of
restricted nondeterminism.

DEFINITION 1.1. For any function g(n)>=0, let

,(,,) {LIL
_

{0, 1}* and there is a constant c such that L is accepted by a polynomial-
time bounded Turing machine making at most g(n) c-ary nondeter-
ministic moves}.

Clearly, t.J k=O ink. Also,

0 log (log rt)2 (log

(The first equality comes from the fact that log n nondeterministic moves of a Turing
machine can be simulated deterministically by following at most c log n branches, i.e. a

* Received by the editors June 28, 1978, and in revised form January 30, 1979.

" Computer Science Department, University of Southern California, Los Angeles, California 90007.
Department of Computer Science, Pennsylvania State University, University Park, Pennsylvania

16802.

46

REFINING NONDETERMINISM 47

polynomial number of branches.)x Refining the original question ? ;V, we can ask
whether (ogn)k ? (togn)k/l for any k => 1. We have not been able to answer the latter
question for any k and suspect that these questions will be difficult to solve. To support
this we can relativize the question analogously to the work of Baker, Gill, and Solovay
[1], and show that for every k => 1, the corresponding relativized questions have
affirmative answers for some oracles but negative answers for other oracles. We also
construct oracles for each k such that the relativized version of the above hierarchy is
distinct up to the kth level but collapses from the kth level onwards. The behavior of
these relativized classes under the operation of complementation is also investigated.
The results we obtain indicate that the power of even "small" amounts of nondeter-
minism in polynomial-bounded machines is not amenable to the traditional methods of
analysis. On the other hand, in Kintala [5] related questions in some other familiar
classes of computations have turned out to be tractable.

Note. Some readers may prefer to allow O(g(n)) binary nondeterministic moves
instead of g(n) c-ary nondeterministic moves in Definition 1.1. All our results in this
paper will carry over with this definition also. We have, however, chosen the above
definition because (i) it appears unnatural to us to restrict the machines to just two
choices at any step and (ii) the proofs would not be simplified if the latter definition were
used since the "fan-out" constant c would be replaced by a constant c’ to be applied to
g(n).

Some of the results in this paper are contained in Chapter 3 of [5]. Related results
were first presented in [6]. Many of the proof methods used here are analogous to those
of Baker, Gill and Solovay [1].

2. The model and the definitions. The model for computations in this paper is the
query machine which is a nondeterministic multitape Turing machine with an additional
work tape called the query tape, and three distinguished states, called the query state, the
yes state, and the no state. The action of a query machine is similar to that of a Turing
machine with the following extension. When a query machine enters its query state, the
next operation of the machine is determined by an oracle. An oracle for a set X will
place the query machine into its "yes" state if the binary string written on the query tape
is an element of X; otherwise the oracle places the machine into the "no" state. We will
identify an oracle for a set X with the set X itself and shall deal only with recursive
oracles. The language accepted by a query machine with oracle X is the set of input
strings for which some possible computation of the machine halts in one of the
designated accepting states. Henceforth, we fix {0, 1} as the alphabet in which all the
languages are encoded. A query machine is polynomial-time bounded if there is a
polynomial p(n) such that every computation of the machine on every input of length n
halts within p(n) steps, whatever oracle X is used,

A c-ary nondeterministic move of a machine is a move in which the number of
choices for the next step of the machine is c. Such a nondeterministic move is sometimes
said to have a fan-out of c. Any query machine M can be so designed that all the
nondeterministic moves made byM have the same fan-out c for some constant c, which
depends on M. The relativized version of Definition 1.1 can now be provided.

xDEFINITION 2.1. For a given function g(n) and any oracle X, let g(n
{L[L {0.1}* and there is a constant c such that L is accepted by a polynomial-time
bounded query machine with oracle X making at most g(n) c-ary nondeterministic
moves}. We also define ;Vx 13 k=0 nk.x

log n the largest integer m such that 2" =< n.

48 CHANDRA M. R. KINTALA AND PATRICK C. FISCHER

A recursive enumeration of all nondeterministic polynomial-time bounded query
machines can be obtained by listing all pairs (O, p) where O is a query machine and p is
a polynomial and attaching a p(n)-clock to O. The new machine O’ will halt whenever
its computation exceeds p(n) steps. We will use such an enumeration as our "standard
enumeration" and let M,.x denote the ith machine in this enumeration.

For each i, we can effectively determine a ci and an ai such that ci is the fan-out of
the nondeterministic moves made by M/x and p(n) ai + n a’ is a strict upper bound on
the length of any computation by Mx, for any oracle X.

Given a time-constructible function g(n) and an oracle X, we let xM,g(,,) denote the
query machine which results by attaching a g(n)-time clock to M/X.2 This clock stops
Mx i g(n) nondeterministic moves are exceeded. We observe that c bounds the
fan-outof xMi,g(n) and that p(n) still bounds its run time since the g(n)-time counter
runs in parallel with the main computation of Mx and makes no nondeterministic
moves of its own.

For the readability of our statements, we introduce the following additional
terminology:

DrIyIWIOy 2.2. Let

(1) ML x xMi,(logn)

(2) [x(logn)

(3) x u
k=l

For any oracle X,

We call the preceding hierarchy as the "relativized -hierarchy."
A language A is said to be polynomial-time reducible to B if there is a function f

computable by a deterministic Turing machine in time bounded by some polynomial,
such that x A if and only if f(x) B. (This definition is that of Karp [4].) For a given
class of languages, a language B is said to be R-complete if B and A is a
polynomial-time reducible to B for every A . As mentioned in the introduction,
many Y-complete languages are in n. We will exhibit k-complete languages for
all k -> 1.

3. = ?k/l relativized. Baker, Gill, and Solovay [1] have constructed an
oracle A such that A=wA. It is obvious that for any such A, /1 for
every k >_- 1. We will construct here oracles for which these classes differ.

DErINITON 3.1. For every k >- 1 and all oracles X, let

tk(X) (wl(y)[lyl (log (Iwl)) and wy X]}.

Clearly, Lk (X) , since one can nondeterministically guess y, then check whether
wyeX.

THEOREM 3.2. For every k >= 2, there is an oracle Bk such that ffk--)o1k.

Proof. We shall define the required oracle Bk in such a way that Lk (Bk)e -1.
Since Lk(Bk), the theorem will follow immediately. Bk will be constructed in
wyX.

2 A function g(n) is said to be time-constructible if there is a real-time-bounded deterministic Turing
machine which, given inputs of length n, will produce outputs of length exactly g(n). Functions of the form
(log n) k, log (n), n, n k, etc., are all time-constructible. See [5], [6] for related discussions.

REFINING NONDETERMINISM 49

stages. We denote by Bk(i) the finite set of strings placed into Bk prior to stage i. Let
Bk(O) , n-1 0 and start at stage 0.

Stage i. Choose a sufficiently large ni so large that
(i) ni > hi-l,

(ii) ni + (log hi)k > pi-l(ni-1),
(log ni)k--1 2 (log ni)k(iii) c pi(ni) <

where pi and ci are as described in Definition 2.2. The first two requirements can
Then a suitableobviously be satisfied, and one can note that 2(g n’)k (2ogn,)0og

can always be found.
MLt(i) 0n,.Simulate the machine M /.-1 on input x If M accepts x in any of its

possible computations, then place no string intoB at this stage. IfM rejects x, then add
some string of the form xy such that [y] (log Ix[) and xy is not queried during any

(logpossible computation ofM on x. Such a string exists because there are at most c

possible computations, each of length at most p(ni). Therefore, the,number of queries
(log hi)k-1the machine could have made in all its possible computations is c pi(ni)<

2 (lgn) by condition (iii). So some such xy is available. Set B,(i + 1) B,(i) (_J {xy} and
go to stage / 1.

The computation of MLg-1 on input x 0n’ is the same whether B or B,(i) is
used as an oracle because conditions (i) and (ii) guarantee that no string queried by
MLg_I in any computation of x is later added toB (strings are obviously never deleted
from B). This is true because no string queried is longer than the run-time bound pi(ni),
while strings added, if any, after stage are of length at least ni+l -b (log hi+l)k > pi(ni).
At stage i, we ensure that MLg_I does not recognize L(B), since, by construction,
MLiS./_I in any computation of x is later added toB (strings are obviously never deleted
[yl (log (lxl)) that is, if and only if x L(B). Hence L(B)= L_I. I3

We can modify the above construction to obtain a uniform oracle B for all k by
using the familiar dovetailing methods. We omit details.

THEOREM 3.3. There is an oracle B such that ?-1 - for every k >-2, i.e.,

The above results can be interpreted in the following manner. The question ?
W asks whether providing "full" nondeterminism to a class of polynomial-time
bounded machines increases the class of languages accepted by them. Baker, Gill, and
Solovay [1] have shown that the relativized ? question has an affirmative
answer for some oracles but a negative answer for other oracles, which is taken to be
further evidence of the difficulty of the ?Ac question. By the same token, our
observations indicate that the refined questions as defined in the Introduction are also
difficult in the sense that neither familiar diagonalization methods nor simulation
methods are applicable to resolve the original or the refined questions of ?Ac. The
preceding arguments do not however discount the possible use of information counting
methods, such as those initiated by Hartmanis and Stearns [3]. We have noted in
Kintala [5] and Kintala andFischer [6] that even those methods are probably not
applicable.

An interesting property of the relativized -hierarchy is exhibited by the
following theorem which shows that problems concerning this hierarchy do not
automatically reduce to equivalent problems in

THEOREM 3.4. For every k >-2, there is an oracle Dk such that;

50 CHANDRA M. R. KINTALA AND PATRICK C. FISCHER

Proof. For any given m, and any oracle X, define

m(X) (WI(Y)[IYl (log [wy] is even; wy X]}.

Note that this definition adds only the restriction "]wyl is even" to the definition for
Lk (X). Thus, it is immediate that ,(X)e x. We shall construct here the required
oracle Dk in such a way that"

(1) For all d and for any given x such that Ixl>-d and p(Ixl)<lxl11’, M
accepts x is and only if for y Odlx l0t, such that lyl-- pa(lxl)/ 1, (i w)[Iw[- (loglx l) /

e, e 0 or 1,]ywl is odd, and yw Dk].
(2)L,,(Dk) -1 for every m such that 2<-m <-k.
Requirement (1) will guarantee ok o as follows" Given any language

L aV’, there is an index d such that L is accepted by Ma. We can then construct a
machine M ML.f for some j which, given x, constructs y Odlx 10 if Ixl---d and

21xl / 2 < p(Ixl)< Ixl’)’ so that [y[p(Ixl)/ 1. This is possible except perhaps for
a finite number of x. M then guesses a string w such that Iwl- (loglxl) / where e 0
or 1, so that [yw[is odd. M then queries Dk and accepts x if and only if yw Dk, If w is
such that the above conditions on Ix[are not satisfied, thenM accepts x if and only if it is
in a finite table stored in M. Thus, information about the acceptance of strings in
is encoded into strings in Dk of odd lengths.

Requirement (2) is satisfied by "attacking" the classes x, 9-1 in a

cyclic manner through some strings in Dk of even length. This will imply &l
ok for 2 <- rn <- k.

We will say that a string y Odlx l0 is admissible if Ixl-> d and ly[--< xl11/. As
before, Dk will be constructed in stages. Let Dk(i) denote the set of strings added to

prior to stage i. During the course of construction, some strings will be reserved for
An index e (/’, rn) (for some canonical enumeration of the pairs of the form (/’, m) such
that f =>0 and 2 <- m---k) will be canceled at some stage ne when we ensure that

DtMLj.,,_ does not accept ,,(Dk). Set Dk(0)= , n_ 0, and start at stage 0.
Stage i" Execute the following two routines.
Routine A (Towards requirement (1)). For every string y of length i, if y 0d lx 10

is admissible, simulate all the computations ofM (i) on input x for up to 1 steps. In
any such computation only strings of length less than are queried.

For each such y and the associated d and x, if any computation of Ma(accepts x,
then place some string of the form yw into Dk where

(i) w {0, 1}*; Iwl-- (log Ixl) + where e 0 or 1 so that lyw] is odd and
(ii) yw has not been reserved for Dk in an earlier stage.

(We will ensure in condition (iv) of the following routine, which is the only routine
reserving strings for/k, that such w is available, if needed. It is of course possible that
no strings will be added to Dk at this stage by Routine A.)

Routine B (Towards requirement (2)). Let e (/’, m) be the least uncanceled
index. If is such that + (log i)" is odd, or if any of the following four conditions is not
satisfied, then skip this routine and go to stage + 1. Otherwise, cancel e at this stage and
choose ne as follows: suppose e 1 (g, h) for some g -> 0 and 2 h <- k.

(i) >pg(ne_);
(ii) no string of length -> is reserved for
(iii) ci

(lgi)’-I pi(i) < 2(lgi)’(Recall Definition 2.2);
(iv) there is no admissible y 0a lx l0 with lyl -> such that there is an e 0 or 1 so

Dk(i)that v.,.-l, in all its possible computations on input 0i, queries all strings of
the form yw where w {0, 1}* and Iw] (loglxl) k + e.

M. D’Simulate the machine M /-i.,-1, where D’= Dk(i)J {the odd length strings you

REFINING NONDETERMINISM 51

just added by Routine A in this stage}, on input z 0i. In this simulation, reserve for/k
all strings of length at least queried during any possible computation of M on z and
which are not members of D’. IfM accepts z then add no element to Dk in this routine
at this stage But, if M rejects z, then add to Dk some string of the form zv such that
Iv[(log i) and zv is not queried during any possible computation of M on z. Such a
string exists because of conditions (i) and (iii) of this routine. Cancel the index e and go
to stage + 1.

End of stage i.
It is easy to see that for a given e (, m), conditions (i), (ii) and (iii) of Routine B

will be satisfied for large enough i. Condition (iv) will also be satisfied because of the
following"

For large enough and for any admissible y 0a lx 10’ such that
_-< lyl =< Ix[(lglxl)’/k 2 (glxl)’k+’)/)

D (i)MLi,-I, will reserve at most

C
(log i)m-1 (log (2(log Ix (k +l)/lt))’- -1

Pi(i) <---- c pi(2 gll)’+l’/k)
C i(lglxl)(k +l)(ra-1)/k p](2 0lxl)(k+l/)

<:2 (llxlk for large enough x

since (k+l)(m-1)/k <k if 2=m-<_k and k->2.
Hence, every index e is eventually canceled, thus satisfying requirement (2), It is

straightforward to see that Routine A works for requirement (1).
Our construction given above is based on Robertson’s [8] observations that

(lX)[x ,x wx]. His proof, in turn, is similar to that of Theorem 4.5 in the next
section.

4. Closure under eomplementation. We do not know whether k is closed
under complementation for any k -> 2. However in the relativized case we can exhibit
oracle sets for each side of the question.

THEOREM 4.1. For each k -> 2, there is an oracle Ek such that is not closed
under complementation.

Proof. The proof is by a construction very similar to that of Theorem 3.2.
It is obvious that if A WA, then SfkA is closed under complementation for all

k, since x is closed under complementation for all oracles X. Thus, the closure of a
particularc under complementation depends on the oracle X. However, we can
exhibit an oracleFk such that’ is closed under complementation butF #.

LEMMA 4.2 (Constant speed-up). For any time-constructible g(n and any oracle X,
x x

g(n) ’g(n)/2.
Proof. Clearly, x x x

g(,)/2 c g(,) Suppose L x(,). Let M M,(,) be a machine
accepting L and making g(n) nondeterministic moves of fan-out c ci. Then construct a
new machine M’ which initially makes g(n)/2 c 2- ary nondeterministic moves to write a
string of length g(n)/2 on a special guess tape using a special alphabet {3’011 =< i-< c;
1 -</" <= c}. Then M’ simulates M; wheneverM needs to make a nondeterministic move,
the nondeterminism in coded form is available on this guess tape with two c-ary
nondeterministic moves available on each square of this tape. Thus L xg(.)/2. ["]

We shall use the following languages in the construction of Fk. Observe that if a
language A is -complete for a class , then A is (co-)-complete where co-C is the
class of complements of the languages in cC

DEFINITION 4.3. For every k >= 1, and any oracle X, let Ak (X) {0 lx 101 some
xcomputation of ML.k accepts x in no more than steps}.

52 CHANDRA M. R. KINTALA AND PATRICK C. FISCHER

xLEMMA 4.4. Ak (X) is k-complete. Moreover, is closed under complemen-
tation if and only ifAk (X) .

Proof. Clearly, Ak(X). Suppose L kx, say L is accepted by ML.k for
some d. Set f(x) 0d lx 10pd(Ixl). Then f(x) is computable in polynomial time. Now x L
if and only if ML.k accepts x in no more than pa(]xl) steps making no more than
(log]xl) k nondeterministic moves. So x eL if and only if f(x) Ak(X). Hence Ak(X)is
’c-complete.

If is closed under complementation then obviously Ak(X)G). Con-
versely, suppose Ak(X)c. Let Ak(X) be accepted by a machine M ML for
some j. For any L kx, since L is polynomial-time reducible to Ak (X), there exists a
function f such that x 6/2 if and only if f(x) Ak (X) and If(x)] --< Ix b for some constant b.
Construct a machine N to accept L in the following manner. Given a string x, N
transforms x to f(x) and then simulates M on f(x). Obviously the number of
nondeterministic moves made by N is bounded by (log If(x)])k <- b. (log Ix[) k. Invok-
ing Lemma 4.2, we can now infer that/2 6. F1

THEOREM 4.5, For every k >-2, there is an oracle Fk such that
(1) q’ is closed under complementation and
(2) Fk ’.
Proof. For the given k and any oracle X, define

L’k(X) {w[[wl 2m+l for some rn = 0; (ly)[ly rn ’, wy X]}.

Clearly, L’k(X) L. Fk will be constructed in such a way that
(1) for any string u, u Ak(Fk) if and only if (lv)[Iv[(log lul)k and uv Fk]
(2) L’k(Fk) - F.Then Ak(Fk) .k from (1), so that by Lemma 4.4 will be closed under

complementation; and since L’k(Fk) we can infer from (2) that Fk kF.
AS usual, Fk will be constructed in stages. At stage i, we decide the membership in

F of all strings of length i. In the course of construction, some strings will be reserved
for Fk, that is, designated as nonmembers of F. An index e will be canceled at some
stage when we ensure that MeF. (i.e., the eth machine of the class of deterministic
polynomial-bounded query machines) does not recognize L’k(Fk). Let Fk (i) denote the
set of strings placed into Fk prior to stage i; n-I 0, Fk(O)= ; and start at stage 0.

Stage i" If 2" + m k +j for some m, j such that 0 <- j < 2", then go to Routine A.
If 2"/ + m k for some m _-> 0 then go to Routine B. Else go to Routine C. Observe
that for every integer n _-> 1, n 2 +,] for m and] such that 0 _-<] < 2". The following
"integer line," for sufficiently large m, might be helpful to the reader in determining
which routines are executed at various stages of the construction of Fk.

Routine B

Routine C) [Routine A) (Routine C) [Routine A
2" + m k 2"+1 + m k 2"+1 +(m + 1) k

Routine A. Here 2" + m k

__
j for some m -> 0 and 0 _-< j < 2".

Notice that log (2" +j) m. For every string z of length i, not reserved forF at an
earlier stage, determine the prefix u of z having length 2" + j. If u 0a lx 10 then place

F (i)z into Fk if and only if MLd,’ does not accept x in fewer than steps making no more
than (log [xl)k nondeterministic moves. If u is not of the above form, then place z into
Fk. Go to Stage + 1.

Routine B. Here 2"/1 + m k for some m ->_ 0.

REFINING NONDETERMINISM 5 3

Let e be the least uncanceled index. Choose ne 2"+1 if and only if the following
conditions are satisfied"

(i) No string of length -> is reserved for Fk;
(ii) ne > Pe-l(ne-1);

(iii) pc(he) < 2 (g(n’-l)k.
If 2"+1 does not satisfy the above conditions then go to Routine C. Otherwise,

simulate the machineM Me.V3(i) on input x 0"- and reserve for/?k all strings of length
-> queried during the computation ofM on x. IfM accepts x then add no element toF
at this stage. But if M rejects x then add to F some string of the form xv such that

Ivl m Thus Ixvl- i. Such a string exists because M is deterministic and hence could
have queried at most pc(he) < 2 (lg(n’)-l)k 2" strings in its computation on x. Cancel
index e and go to stage + 1.

Routine C. Add no element to Fk at this stage and go to stage + 1.
End Stage i.
Every index e is eventually canceled because for a given e and some sufficiently

large m conditions (i), (ii),,(iii) will be satisfied after index (e- 1) is canceled. When
index e is canceled at stage i, our construction guarantees that MeF does not recognize
L’k(Fk), satisfying requirement (2).

At any stage of the form (2"/1 + ink), fewer than 2" strings are reserved for/k.
Thus, for any/" such that 0 =</" < 2", fewer than 2k + 2k + +2"-< 2" strings of
length 2" +m k + are reserved for ffk before stages of the form i=2" +rn k +.
Therefore, every string u of length 2" +/" is the prefix of at least one string z of length
(2" +) + m k which is never reserved for/k. Moreover the computations in Routine A
when processing u Oalx l0 at stage 2" +/" + m k never query strings of length greater
than 2" +/’. The memberships of the strings of length not exceeding 2" + in Fk are
determined at earlier stages. Hence, by construction, any string u of length 2" + is in
Ak(Fk) if and only if u is the prefix of a string of length 2" +/" + m k in Fk. Therefore,
Ak (Fk , satisfying requirement (1).

Acknowledgment. The authors would like to thank Professors Edward Robertson
and Joel Seiferas for many helpful discussions. They are indebted to Professor Seiferas
for pointing out a serious mistake in an earlier version of Theorem 3.4. They are also
grateful to the referees for their careful reading of the paper and their helpful comments
and suggestions.

REFERENCES

[1] I. BAKER, J. GILL AND R. SOLOVAY, Relativization of the P ? NP question, SIAM J. Comput., 4
(1975), pp. 431-442.

[2] S. COOK, The complexity oftheorem provingprocedures, Proc. 3rd Annual Symp. on Theory of Computing
(1971), pp. 151-158.

[3] J. HARTMANIS AND R. E. STEARNS, On the computational complexity of algorithms, Trans. Amer.
Math. Soc., 117 (1965), pp. 285-306.

[4] R. M. KARP, Reducibilities among combinatorial problems, Complexity of Computer Computations, R.
E. Miller and J. W. Thatcher, eds. Plenum Press, New York-London, 1972, pp. 85-104.

[5] C. M. R. KINTALA, Computations with a restricted number of nondeterministic steps, Ph.D. dissertation,
Pennsylvania State University, University Park, 1977.

[6] C. M. R. KINTALA AND P. C. FISCHER, Computations with a restricted number ofnondeterministic steps,
Proc. 9th Annual Symp. on Theory of Computing (1977), pp. 178-185.

[7] V. PRATT, Every prime has a succinct certificate, SIAM J. Comput., 4 (1975), pp. 214-220.
[8] E. L. ROBERTSON, private communication, 1977.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0901-0004 $01.00/0

ON THE COMPLEXITY OF COMPOSITION AND
GENERALIZED COMPOSITION OF POWER SERIES*

R. P. BRENTf AND J. F. TRAUB

Abstract. Let F(x)=flX +f2x2+ be a formal power series over a field 4. Let Ft3(x) x and for
q 1, 2, , define Ftq3(x) Ftq-l(F(x)). The obvious algorithm for computing the first n terms of FtqJ(x) is
by the composition analogue of repeated squaring. This algorithm has complexity about log2 q times that of a
single composition. Brent showed that the factor log2 q can be eliminated in the computation of the first n
terms of (F(x)) by a change of representation, using the logarithm and exponential functions. We show the
factor log2 q can also be eliminated for the composition problem, unless the complexity of composition is
quasi-linear.

FtJ(x) can often, but not always, be defined for more general q. We give algorithms and complexity
bounds for computing the first n terms of Ft(x) whenever it is defined.

We conclude the paper with some open problems.

Key words, composition, fast algorithms, formal power series, symbolic computation, generalized
composition, functional equations, Sc.hroeder function, iteration, similarity transformations

1. introduction. Let
(1.1) F(x) flx + fg_x2 +
be a formal power series over a field . Let Ft(x) x and for q 1, 2, ., define the
q-composite of F by

(1.2) FtJ(x) Ft"-(F(x)).
The q-composite may also be called the q-iterate. Let H(x) be the reversion of F(x),
i.e., the power series inverse to F(x) under composition. For q 1, 2,..., define

(1.3) Ft-ql (x Htql(x).

As we shall see below, the q-composite of F can often (but not always) be defined for
more general q. If q is not an integer, we shall call Ft(x) a generalized q-composite. We
confine ourselves to the case that FtJ(x) is a power series. One important special case of
generalized composition is q l/r, where r is an integer. Then G Frl/r(x) is an rth
root of F under composition, and satisfies the equation Gtrl(x) F(x).

Let

(1.4)

(1.5)

F,(x)= fx +. +/,x",

G(x) Ft3(x) gx + gx +. .,
(1.6) G,(x) gx. + g,x".

Given q and Fn (x), we want to compute Gn (x).
In this paper we shall give algorithms and complexity bounds for computing G, (x)

whenever it is defined. For integer q these algorithms are asymptotically faster than the
obvious algorithms.

* Received by the editors May 23, 1978, and in revised form December 18, 1978. This research was
supported in part by the National Science Foundation under Grant MCS75-222-55 and the Office of Naval
Research under Contract N00014-76-C-0370, NR 044-422. The work of the first author was also supported
in part by the National Science Foundation under Grant 1-442427-21164-2 at the University of California at
Berkeley.

t Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania. Presently at
Computer Science Department, Australian National University, Canberra, Australia.

Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.

54

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 55

We discuss the last point. Let COMP1 (n) denote the complexity of computing the
first n terms of F(F(x)), and let q be a power of two. Then the obvious algorithm for
computing Gn(x) is by the composition analogue of "repeated squaring," and has
complexity COMP1 (n)lgq. (We shall denote log2 by lg.) Can we eliminate the
multiplicative factor of lg q ?

An analogous problem is that of computing Rn(x), the first n terms of (F(x))q.
Asymptotically in n, the complexity of forming R, (x) is the same as the complexity of a
single multiplication of two polynomials of degree n. This follows from the observation
that if A (x) is a power series with constant term unity, then (A (x))q -= exp (q In A (x)).
This may be viewed as a change of representation of A(x) to a new representation
where multiplication is replaced by addition, followed by the inverse change of
representation. Brent (1976) showed that the change of representation could be
computed "fast."

This suggests asking whether there is a change of representation which reduces
composition to multiplication. We shall see that there is, at least in the "regular" case
(see 3). Furthermore, the change of representation can be computed "fast." This
enables us to eliminate the multiplicative factor of lg q (unless the complexity of
composition is quasi-linear). In addition we shall show (4-6) that even in the
"nonregular" cases we can still eliminate this factor. A bonus is that our algorithms
apply for non-integer q (so long as Ftq(x) is a well-defined power series).

The problem of composition and generalized composition occurs in many appli-
cations including branching processes, asymptotic analysis, difference equations,
numerical analysis, and dynamical systems. See, for example, Acz61 (1966), Cherry
(1964), de Bruijn (1970), Feller (1957), Harris (1963), Henrici (1974), Knuth (1969),
Kuczma (1968), Levy and Lessman (1961), and Melzak (1973). The study of composi-
tion (often called iteration) may be viewed as a major subfield of mathematics. See
Acz61 (1966), Gross (1972), and Kuczma (1968) for very extensive bibliographies.
However, little attention seems to have been given to the development of algorithms for
computing FEql(x) when F(x) is a given power series.

The following conventions are adopted below. We deal with formal power series;
that is, we do not concern ourselves with convergence. Power series are denoted by
upper case letters such as A(x) or simply A, with coefficients denoted by the cor-
responding lower case letters such as ai. If A(x) akX

k + ak+lX
k+l +" , ak O, then

ord (A)= k. It is convenient to define ord (0)= m. If ord (B- C)_>-k we write B
C + O(xk). The polynomial bo + blX +’ + bk-lX k- is denoted either by B(x) mod x k

or by Bk-l(X). It is convenient to define y(n,q)=O(6(n,q)) to mean 13,(n,q)l_-<
Kl6(n, q)l for all sufficiently large integer n for all q under consideration.

We summarize the remainder of the paper. Our complexity model is specified in
2. In 3 we study the "regular" case when the multiplier fx is such that 0, [’ 1,

rn 1, 2, . In the following three sections we consider the cases1 0;/1 1; 1,
integer m > 1, but [1 1, respectively.

In each of 3, 4, and 5 we define an "auxiliary" function, demonstrate it can be
computed fast by "divide and conquer," and show how it can be used to compute FE1.
The case studied in 6 can be reduced to that of 5. In the concluding section we state a
theorem (Theorem 7.1) summarizing our results, state the defining equations for all
cases, and mention some open problems.

2. Complexity model. In this section we state our complexity model and sum-
marize the complexity results needed below. We assume that scalar arithmetic opera-
tions are performed exactly and have unit cost. Thus our time bounds are invalid if, for

56 R. P. BRENT AND F. J. TRAUB

example, exact rational arithmetic is used. However, our algorithms should still be
useful in this case.

Given power series A(x) and B(x), the time required to compute
A(x)B(x) mod x is denoted by MULT (n). If ord (B)-> 1, the time required to
compute A(B (x)) mod x is denoted by COMP (n). We assume that MULT (n) and
COMP (n) satisfy certain plausible regularity conditions (see Brent and Kung (1978,

1)). Then Brent and Kung (1978) show

(2.1) COMP (n)= O(min (n (+)/2, (n lg n) 1/2 MULT (n))),

if matrix multiplication has complexity O(nr). If the field A is such that fast algorithms
like the FFT are available, then

(2.2) MULT (n) O(n lg n)

(see Borodin and Munro (1975)), and it follows from (2.1) that

(2.3) COMP (n)= O((n lg n)3/2).
The bounds in this paper will be expressed in terms of the complexity function

(2.4)
Jig

COMP2 (n) Y. 2 COMP ([2-in).
/’=0

Assume (with notation as in Knuth (1976))

(2.5) COMP (n) (R)(ns (n)),

where a => 1, and s(n) is a monotonic increasing positive function. (For example, s(n)
might be (lg n)t for some constant/3 ->0.) Then, s(n)= O(n) for all e >0.

O(COMP (n)), if a > 1,
(2.6) COMP2 (n)=

O(COMP (n) lg n), if a 1.

If the field A is such that (2.3) holds, the0 a _-<23-. If a > 1, then COMP2 (n) may be
replaced by O(COMP (n)) in our bounds.

If a 1, we say COMP (n) is quasi-linear. If a 1 and q is a fixed integer, then
"repeated squaring" is asymptotically faster than our algorithms. Of course, if q is not
an integer, then "repeated squaring" is not an alternative to our algorithms. If a > 1,
our result (that we can eliminate the multiplicative factor of lg q) holds for all fields of
characteristic zero and all finite fields of characteristic p greater than n.

Iff is defined, we denote the complexity of computingf by POWER (q). If q is a
positive integer, then POWER (q)= O(lg q). To eliminate POWER (q) terms we
sometimes assume that f is given.

In Brent (1976) it is shown that the complexity of computing In (1 + A(x)) mod
is O(MULT (n)) for any power series A, ord (A)>0. Using Brent’s results it can
be shown that the complexity of computing (B(x))’modx is O(MULT(n)+
POWER (q)). By Brent and Kung (1978, Lemma 4.2) MULT (n) O(COMP (n)), so
we can absorb MULT (n) into COMP (n) in our analyses.

Recall that COMP (n) was defined as the complexity of computing the first n
terms of F(F(x)). it can be shown, by means similar to the proof of Brent and Kung
(1978) that the complexity of reversion and composition are asymptotically equal, that
COMP (n) O(COMP1 (n)).

3. The regular ease. In this section we study the computation of Fr’3(x) when

fl 0, f 1, m 1, 2,.... We call this the regular case. Define the Schroeder

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 57

function $(x) by

(3.1) S(F(x)) =flS(x) ord (S)= 1, sl 1.

S(x) exists and is unique (Schroeder (1871), Kuczma (1968, Chap. 6)). See also Parker
(1977). It is easy to prove that, for.all integer q,

(3.2) Ftl(x) S[-1](fS(x)).
S(x) and St-Xl(x) play the role that the logarithm and exponential functions play in
computing (F(x)) fast. They reduce self-composition to scalar powering.

Equation (3.1) has an interesting matrix interpretation. To the formal power series
F(x) and S(x), we may associate infinite matrices MF and Ms, respectively (see, for
example, Henrici (1974, p. 45)). Then SC-l(x) is associated withM. It is easy to show
that (3.1) corresponds to a matrix similarity transformation which transforms MF to a
diagonal matrix with diagonal elements flk, k 1, 2,- . The conditions f 0, f # 1
ensure that the eigenvalues of MF are all distinct.

If q is not an integer but q and the scalar fl are such that f is defined, then (3.2)
may be used to define FC. We shall use the "divide and conquer" strategy to compute
S(x) fast and then show how to compute Ft from (3.2) in total time O(COMP. (n)+
POWER (q)).

Although we wish to solve the functional equation (3.1), to make the "divide and
conquer" strategy work we embed (3.1) in the more general linear functional equation

(3.3) A(x) W(F(x))-B(x) W(x)- C(x) O,

where W is the re,known. Note that this equation includes reversion as a special case.
The "divide and conquer" algorithm introduced to solve (3.3) may therefore be used to
revert power series. This algorithm is different from the one derived by Newton
iteration and given in Brent and Kung (1978).

Lemma 3.1 gives the basis for a "divide and conquer" algorithm for solving (3.3).
The proof is by substitution. Lemma 3.2 gives sufficient conditions for the existence of a
formal solution, and Lemma 3.3 gives an upper bound on the time required to compute
an approximate solution.

LEMMA 3.1. If n, p are nonnegative integers, ord (F)_-> 1,

(3.4)

and

(3.5)

then

(3.6)

where

A(x)U(F(x))-B(x)U(x)-C(x)= x"R(x)

A(x)(F(x)/x)nV(F(x))-B(x) V(x) +R (x) O(xO),

A(x) W(F(x)) B (x) W(x) C(x) O(x+)

(3.7) W(x) U(x) + x"V(x).

Remark 3.1. If Lemma 3.1 is applied for n =p 2/,/’=0, 1, 2,..., we have an
algorithm for approximating W(x) which is quadratically convergent in the sense of
Kung and Traub (1978).

LEMMA 3.2. If ord (F)>- 1,

(3.8) aof’ bo for m 1, 2, 3,...

58 R. P. BRENT AND F. J. TRAUB

and

(3.9) ao bo implies Co 0

then there is a formalpower series W, satisfying (3.3), with ord (W) 0 unless Co 0 and
aobo.

Proof. We shall construct Wo, wl," such that W(x)= --o wxi satisfies (3.3).
We let

(3.10) W,(x)= E wix
i=0

and show by induction on m that, for some power series R,,+l(X),

(3.11)

Let

A(x) W,,(F(x))- B(x) W,,(x)- C(x) xm+lRm+l(X) O(xm+l).

1 if ao bo,
(3.12) w0= Co/(ao-bo) otherwise.

Then (3.11) holds for m =0, starting the induction. Assuming that (3.11) holds for
m _-> 0, we define

Rm+l(0)
(3.13) w,,+

bo_ aof,+
and apply Lemma 3.1 (with n m + 1, p 1, U W,, V w,,+a) to deduce that (3.11)
holds with m replaced by m + 1. Thus, the result follows by induction on m. 71

LZMMA 3.3. Suppose that Wo," w,_ can be found in time t(n) whenever the
conditions ofLemma 3.2 apply. Then

(3.14) t(2n)<=2t(n)+COMP (2n)+ O(MULT (n)).

Proof. In time t(n) we find Uo, , U,-x such that (3.4) holds for some power series
n--1

R(x), where U(x)=Y’q=o ux. Compute U(F(x))modx" in time COMP (2n), and
then find

(3.15) R (x)
A (x) U(F(x)) B (x) U(x) C(x)

mod x
X

in time O(MULT (n)). [Note" MULT (2n)= O(MULT (n)).]
Since ord (F)=> 1, F(x)/x is a power series, and by an algorithm given in Brent

(1976) we can compute (F(x)/x) mod x ", and thus

(3.16) (x) A(x)(F(x)/x) mod x ",

in time O(MULT (n)). Now (3.5) with p n is just

A(x) V(F(x))-B(x) V(x) +R (x) O(x"),

so we can find Vo, , v,-a in time t(n). Using Lemma 3.1, we take

u if 0_<-] <n,
W

vi-n if n_-</’<2n,

and the result follows.
COROILAR 3.1. With the notation ofLemma 3.3,

(3.17) t(n) O(COMPz (n)).

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 59

Proof. This follows from Lemma 3.3, the definition of COMP2 (n), and the fact
that MULT (n)= O(COMP (n)). [3

COROLLARY 3.2. If ord (F) 1 andf’ 1 for m 1, 2, , then we can compute
the first n coefficients, So, , sn-1 of the Schroederfunction $(x) satisfying (3.1) in time
O(COMP2 (n)).

Proof. We solve a special case of (3.3), namely

(3.18) (F(x)/x) W(F(x))-f W(x) O,

to obtain w0, , wn-2 by the method of Lemma 3.2. Then $(x) xW(x) satisfies (3.1)
modx",sos0=0andsj=wi_lfor/’=l,...,n-1. [3

THEOREM 3.1. Assume ord (F)= 1, f 1 for m 1, 2,.... Let fi be defined
and let

(3.19) G(x) Ftq(x).

Then go," ", gn-1 can be computed in time

(3.20) O(COMP. (n)+ POWER (q)).
rl

Proof. Using the method of Corollary 3.2, we compute S,_x(x)= i= six such
that sa # 0 and

(3.21) S_I(F(x)) flS,-(x) + O(x)
in time O(COMP2 (n)). Now

(3.22) S,_(G(x)) fiS-(x)+ O(x),

and thus

(3.23) G(x) e-3,,,- (fiS-l(X))+ O(x).
et-l (x) mod x in timeUsing the method of Brent and Kung (1978), we can compute ,-1

O(COMP (n)), and the go,’", g-I are obtained from (3.23) in time COMP (n)+
POWER (q). The result follows. El

Remark 3.2. The condition f # 1 is necessary so that the divisor in (3.13) is
nonzero. Thus, we need only assume thatf # 1 for m 1, 2, , n 2. IfF is a formal
power series over a finite field with characteristic p, then it is necessary to assume n -< p.

The proofs above are constructive and give the following two algorithms.
ALGORITHM 3.1. The algorithm d(A,B, C,F, W, m) finds w0," ", w,-i such

that W(x) satisfies (3.3). It is defined recursively by:

if m 1 then {use equation (3.12) to define Wo} else

{n ,- m/21

(A,B, C,F, U, n);

Compute R using equation (3.15);

Compute using equation (3.16);

M(, B, -R, F, V, n);

for/’0 step 1 until n- 1 do {w. u; wn+j v.}}.
ALGORITHM 3.2. The following algorithm computes G(x)= Ftq3(x) if the condi-

tions of Theorem 3.1 apply:
1. TakeA(x)=F(x)/x,B(x)=f, C(x) 0 andfind w0," ’, w,_2 suchthat W(x)

60 R. P. BRENT AND F. J. TRAUB

satisfies (3.3) by applying (A, B, C, F, W, n 1) (see Algorithm 3.1).
2. Let So=0, si= wi-1 for/’= 1,..., n-1, and compute St-ll(fS(x))modx"

using the composition and reversion algorithms of Brent and Kung (1978).

4. Multiplier zero. In this section we study the case fl 0. Since the problem is
trivial if F(x)-O, we can assume ord (F)= k, 1 <k < oo. We define auxiliary power
series S(x) by

(4.1) $(F(x))=fk(S(x))k, ord (S)= 1, sa 1.

This reduces to Schroeder’s equation (3.1) if k 1. By induction on q we have, for all
positive integer q,

(4.2) F[q](x ,[-1]{f(kk"-)/(k-1) [,(x]k" }.

Remark 4.1. The restriction to positive integer q is essential here. For example,
take F x 3. Then Fto does not exist as a power series for q -1 or q 1/2.

The following lemmas reduce the solution of (4.1) to problems solved in the
previous section.

LEMMa 4.1. If ord (F)= k > 1 the equation.

(4.3) W(F(x))- kW(x) + {(k 1) + In [F(x)/(fxk)]} 0

has a solution W(x), and Wo, w,-1 can be computed in time O(COMP2 (n)).
Proof. Lemmas 3.1 to 3.3 are applicable to (4.3), so W(x) exists and Wo, , W,_l

can be computed in time O(COMP2 (n)) by the method used in the proof of Lemma
3.3.

LEMMA 4.2. If ord (F)= k > 1 and W(x) satisfies (4.3), then

(4.4) S(x) x exp (W(x)- 1)

satisfies (4.1).
Proof. Substitute W(x) 1 + In (S(x)/x) in (4.3). From (3.12), w0 1, so S(x) is a

power series. [-I

Using the algorithm of Brent (1976) we can compute the first n coefficients of

[S(X)/X]kq exp [kO(W(x) 1)]

in time O(MULT (n)) once w0," , w,-1 are known. We can also compute fkk-x)/(k-)
in time POWER ((k 1)/(k 1)). Then, using a slight modification of the composition
and reversion algorithms of Brent and Kung (1978) we have:

THEOREM 4.1. Assume ord (F)= k > 1, q _-> 1 is a positive integer, and

(4.5) G(x) Ftql(x)/x k".
Then go," ", gn-1 can be computed in time

(4.6) O(COMP2 (n)+POWER ((kq- 1)/(k- 1))).

5. Multiplier unity. Now we consider the case that the multiplier fl is equal to
unity. We define an auxiliary function T by

T(F(x))=F’(x)T(x), ord (T) ord (F(x) x).

T(x) exists and is unique up to a scaling factor (Kuczma (1968, Lemma 9.4)). Let
G(x) Ft"(x). Then we show below that G(x) may be computed from the equation

(5.2) T(G(x)) G’(x)T(x).

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 61

Remark 5.1. T may also exist if fl rs 1. If F is such that the Schroeder function S
exists, then T(x)= cS(x)/S’(x), where c is a nonzero constant.

Example 5.1. If F(x) 2x + x 2, then S(x) In (1 + x), T(x) (1 + x) in (1 + x),
F[q](x) (1 -]-X)2q 1. If F(x) x/(1 -x), then T(x) x.

Although we wish to solve the functional equation (5.1), as before we need to
embed (5.1) in a more general equation. Throughout this section we define d by
F(x) x +fax d +. , [0, and let k be any integer greater than d. Then we shall solve

(5.3) xl-d[(F(x)/x)ky(F(x))-F’(x) Y(x)]-A(x) 0

for Y(x).
Lemma 5.1 gives the basis for a "divide and conquer" algorithm for solving (5.3).

Lemma 5.2 gives sufficient conditions for the existence of a formal solution, and Lemma
5.3 gives an upper bound on the time required to compute an approximate solution.
Lemma 5.4 establishes (5.2) and gives a sufficient condition for G to be uniquely
defined.

LEMMA 5.1. Let n, p be nonnegative integers, ff
xl-a[(F(x)/x)kU(F(x)) F’(x)U(x)] A(x) x"R (x(5.4)

and

(5.5)

then

(5.6)

where

(5.7)

xl-d[(F(x)/x)+"V(F(x))-F’(x) V(x)] +R (x) O(x),

x-a[(F(x)/x)W(F(x))-F’(x) W(x)]-A(x) O(x"+)

W(x)=U(x)+x"V(x).

Proof. By direct substitution. Note that since F(x)= x +[dX d +’’’, the terms in
square brackets in (5.4) to (5.6) have ord_-> d- 1.

LEMMA 5.2. Them is a formal power series Y(x) such that

(5.8) xl-d[(F(x)/x)ky(F(x))-F’(x) Y(x)] a(x).

Proofi We shall construct yo, yx,’" such that Y(x)==o yix’ satisfies (5.8).
Recall our assumption that k > d ord (F(x)- x). Take

ao(5.9) yo=(k_d)fd
and let

(5.10) Y.(x)= . yix i.
/=0

Thus

(.11) x-a[(F(x)/x)ky._(F(x))-F’(x) Y,,_(x)]-A(x)= x"R,(x)

is true for n 1 (where R. is some power series). Define

-R, (0)(5.12) yn
(k + n -d)f

for n -> 1. Using Lemma 5.1 with p 1, it is straightforward to prove that (5.11) holds
for all n _-> 1, by induction on n. Thus, the result follows.

62 R. P. BRENT AND F. Jo TRAUB

LEMMA 5.3. Suppose that yo,"" ", y,-1 can be found in time t2(n) whenever the
conditions ofLemma 5.2 apply. Then

(5.13) t2(2n) <- 2t2(n + COMP (2n + d 1) + O(MULT (n)).

Proof. In time tz(n) we find Uo,’’ ", u,-1 such that (5.4) holds for some power
n-1 2n+d-1series R (x), if U(x) Y..=0 uix .Compute U(F(x))modx andthenR(x)modx

from (5.4). Then.find v0,’’’, v,_l such that V(x) satisfies (5.5) with p n (this takes
time t2(n)+ O(MULT (n))). From Lemma 5.1 we can take

u. ifO<=j<n,
Yi= v._. ifn-<]<2n,

so we get Y0,’’’,y2,- in time 2t2(n)+COMP(2n+d-1)+O(MULT(n)) as
required. 71

CortoiLar, 5.1. With the notation ofLemma 5.3, t(n)= O(COMP (n)).
COOLLr 5.2. There exists a formalpower series T(x) such that ord (T) d and

(5.14) T(F(x)) F’(x)T(x).

Moreover, ta, t,_ can be found in time O(COMPz (n)).
Proof. If

(5.15) A(x) x’2d[F’(x)xCI--(F(x))d] (fat+1--]e22) +
and

(5.16) xl-a[(F(x)/x)/1Y(F(x))-F’(x) Y(x)] A(x)

then

(5.17) T(x) x + xa+ Y(x)

satisfies (5.14). Thus, the result follows from Lemma 5.2 and Corollary 5.1.
LEMMA 5.4. Let q be an integer, T satisfy (5.14), and

(5.18) G(x) F[q](x).
Then

(5.19) T(G(x)) G’(x)T(x),

and the power series G(x) is uniquely determined by (5.19) and the condition

(5.20) ord (G(x) x qfax a) > d.

Proof. It is easy to prove (5.19) by induction for positive q, and the result for
negative q then follows. It is also easy to prove by induction that (5.20) holds if G is
defined by (5.18). From Lemma 9.4 of Kuczma (1968) the solution of (5.19) satisfying
(5.20) is unique, so the result follows. 13

One T(x) is known, we can solve (5.19) for G(x), using the "initial condition"
(5.20). Since (5.19) is a nonlinear differential equation for G, we can use a Newton-type
method as described in Brent and Kung (1978). The algorithms are given below. First
we summarize the result:

THEOREM 5.1. Assume f 1 and let G =F[q](x). Then go,’", g,-i can be
computed in time O(COMP2 (n)).

Proof. First find ta,"’; t,-1 such that T(x) satisfies (5.1), as in Corollary 5.2, in
time O(COMP2 (n)). Then solve (5.19) and (5.20) by Algorithm 5.3 below (in time
O(COMP (n)) to find go,"’, g,-1. []

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 63

Remark 5.2. Note that q need not be an integer in Theorem 5.1. Kuczma (1968,
Thm. 9.15] considers the question of when Ftq(x) is analytic. See also Baker (1964) and
Szekeres (1964).

ALGORITHM 5.1. The algorithm (A, F, Y, k, d, n) finds yo," ", y,- such that
Y(n) satisfies (5.8). It is assumed that n > 0, ao, , a_ and fx, , fd/,- are given,
and that the conditions stated after Example 5.1 are satisfied. (A, F, Y, k, d, n) is
defined recursively by"

if n 1 then {define yo by (5.9)}

else {p <- In/2]

(A, F, U, k, d, p);

Compute U(F(x)) mod xd/2-1"

Compute R (x) mod xp from (5.4) with n replaced by p;

((-R, F, V, k + p, d, p);

for j <- 0 step 1 until j 1 do

{Yi *- ui; Yt,+i <’ vi}}.

ALGORITHM 5.2. The algorithm (F, T, d, n) finds ta,’", t-x such that T(x)
satisfies (5.14). It is assumed that fx,’" ", f- are given and that the conditions of
Corollary 5.2 are satisfied.

Y0; T0; td 1;

i[n > d + 1 then {compute A(x) mod x"-d- from (5.15);

(A,F, Y,d+l,d,n-d-1);

for j <- d + 1 until n 1 do t. yi-d-X}.

ALGORITHM 5.3. The following algorithm computes go,"’, gn-1, such that
G(x)=Ftq(x). It is assumed that ta,’",t,-1 have been computed using
Algorithm 5.2.

G -x +qfdx d"

k-l;

while k + d < n do

{k -min (2k, n- d);

R - T(G(x))- G’(x) T(x)
mod xk-.xT(x)

d T’(G(x))
_

U--- mod x
x T(x)

E exp (Io U(y) dy)modx-1"

V -E(x) E(y)R (y) dy mod x

G G +xdV mod xk+d}.

64 R. P. BRENT AND F. J. TRAUB

Remark 5.3. It can be verified that all the quantities appearing on the lefthand
sides in Algorithm 5.3 are indeed power series.

6. Multiplier nontrivial root of unity. In this section we consider the only remain-
ing case" fx # 1, f 1 for some integer m > 1. By Remark 3.2 we may assume
m _-< n- 2. We also assume q is an integer.

Remark 6.1. The restriction to integer q is essential here. For example, let
F -x + x z + x 3. There is no formal power series for FtX/Zl(x). That is, there is no power
series G(x) such that G21(x)= F(x) (Kuczma (1968, p. 304)).

In what follows we shall use the following algebraic relations:

(6.1) F"+q(x Ft"(Fq(x)),

(6.2) Ft"a(x) RtO(x), where R (x) Ft(x),

for integer p, q. If q is negative we compose Ft-13 instead of F, so without loss of
generality we may assume that q is positive. Let

(6.3) q mr + s,

where r => 0, 0-< s < m. We can evaluate M Ft" x +. , and Fs by the obvious
"squaring" method in time O(COMP (n) lg m)= O(COMP (n) lg n). Then, using the
method of 5, we can evaluate Ft"’=Mt’ in time O(COMPz (n)). Finally, Ftl=
Ftm(F) may be evaluated by performing one composition. (An additional reversion
is required if q < 0.) Thus we have established

THZORZM 6.1. Assume ord (F)= 1, fx 1, f7 1 for some m such that 1 < m <=
n-2, q integer, and let G=F. Then gl,"’,gn- can be evaluated in time
O(COMP (n) lg m + COMPz (n)).

Remark 6.2. If A is the real field (so the only roots of unity are + 1) then Theorem
6.1 shows that gx,""", gn-1 can be evaluated in time O(COMPz (n)).

7. Summary and open problems. From Theorems 3.1, 4.1, 5.1, and 6.1 we have
THEOREM 7.1. Let F(x) be a formal power series, ord (F) >- 1, and let G(x)=

Ftq(x). If q satisfies the following conditions:
(i) If ord (F)> 1, then q is a positive integer;
(ii) If the multiplier fx is a nontrivial root of unity, then q is an integer;
(iii) f is defined;

and"iff is given, then gx, , gn can be computed in time O(COMPz (n)) and this bound
is independent of q.

Different defining equations are used for the various cases we have had to consider.
For the reader’s convenience we summarize them here. As before, G Ft.

I. Regular case: fx#0, f # 1, m 1,2,.... Define $ by $(F(x))=fx$(x),
ord (S)= 1. Then G(x)= S[-1](fS(x)).

II. fl=0. Define $ by S(F(x))=f(S(x))k, ord(S)=l, Sx =1. Then G(x)=
S[-1]{f(kk’-)/(k-1) [S(x]k’ }.

III. fX 1. Define T by T(F(x))=F’(x)T(x), and ord (T) ord (F(x)-x). Then
determine G(x) from T(G(x))= G’(x)T(x) and (5.20).

IV. fx 1, f 1 for some integer m > 1. This can be reduced to case III.
It is possible to compute G using the same functional equation for cases I-III.

Define U(x) by

F’(x)(7.1) U(F(x))=U(x),
ord (F)

ord (U(x)) ord (F(x)-x).

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 65

U(x) exists and is unique up to a scaling factor. In fact, in cases I and II we have

(7.2) U(x) cS(x)/S’(x),

and in case III we have U(x) c’T(x), for some nonzero constants c and c’. Also, it is
easy to prove that G satisfies

O’(x)
U(x).(7.3) U(G(x))

lord (F)]

Although a unified treatment of cases I-III using (7.1) and (7.3) would be possible,
it is simpler to use the Schroeder function S(x) of (3.1) in case I and the generalized
Schroeder function of (4.1) in case II, for then G is given explicitly by (3.23) or (4.2)
instead of implicitly as a certain solution of (7.3). Also, in proving properties of
algorithms for the computation of G by either method, it is natural to consider cases
I-III separately.

The techniques of 3 and 5 can be applied to far more general nonlinear
functional equations. We shall report on this elsewhere.

To conclude we list some open problems suggested by the results of the paper.
1. If the field A is such that MULT (n)= O(n lg n) then the fastest algorithm

known for composition is O((n lg n)3/2). No nontrivial lower bound is known.
a. Is composition harder than multiplication? (It is at least as hard.)
b. Although there are only n inputs and n outputs, the best upper bound known is

O((n lg n)3/2). This is comparable to matrix multiplication where there are 2n 2 inputs
and n 2 outputs but the best upper bound known (Pan (1978)) is 0(/’/2"79). Can the
Brent-Kung upper bound be reduced?

c. Is a > 1 in the notation of (2.5)? An affirmative answer would show that
COMP2 (n)= O(COMP (n)).

2. Brent and Kung (1978) showed that, for the reversion problem R (x) F(-(x),
the complexity of computing R,(x) is O(COMP (n)). Consider computing R,,(Xo) for a
scalar x0. This problem has n inputs and one output. Brent and Kung (1978) showed its
complexity to be O(MULT (n)). If G(x) Ft3(x), what is the complexity of computing
G, (x0)? Is it less than the complexity of computing G, (x)?

3. What are the numerical properties of our algorithms? For example, we expect
the computation of the Sehroeder function to be ill-conditioned if fF is close to 1 for
some m -< n 2; see (3.13). Cherry (1964) discusses this problem in conjunction with a
problem in dynamical systems.

4. What are the complexity bounds for exact arithmetic over the rational field?

Acknowledgment. We are deeply indebted to M. L. Fredman who pointed out to
us the critically important idea of using the Schroeder function to effect a change of
representation in the regular case. We thank D. E. Knuth who pointed out to us that a
single functional equation, (7.1), can be used for three of the cases. Finally, we thank
M. Sapsford and M. Sieveking for their careful reading of the manuscript.

REFERENCES

J. ACZL (1966), Lectures on Functional Equations and Their Applications, Academic Press, New York.
I. N. BAKER (1964), Fractional iteration near a fixpoint of multiplier 1, J. Austral. Math. Soc., 4, pp. 143-148.
A. BORODIN AND I. MUN,O (1975), The Computational Complexity of Algebraic and Numeric Problems,

American Elsevier, New York.

66 R. P. BRENT AND F. J. TRAUB

R. P. BRENT (1976), Multiple-precision zero-finding methods and the complexity of elementary function
evaluation, Analytic Computational Complexity, J. F. Traub, ed., Academic Press, New York, pp.
151-176.

R. P. BRENT AND H. T. KUNG (1978), Fast algorithms for manipulating formal power series, Department of
Computer Science Report, Carnegie-Mellon University, 1976. Also J. Assoc. Comput. Mech., 25,
pp. 581-595.

T. M. CHERRY (1964), A Singular Case of Iteration of Analytic Functions: A Contribution to the Small-
Divisor Problem, Nonlinear Problems of Engineering, W. F. Ames, ed., Academic Press, New York,
pp. 29-50.

N. G. DE BRUIJN (1970), Asymptotic Methods in Analysis (Third Edition), North-Holland Publishing
Company, Amsterdam.

W. FELLER (1957), An Introduction to Probability Theory and its Applications, vol. I, Second Edition, John
Wiley, New York.

F. GROSS (1972), Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington,
DC.

T. E. HARRIS (1963), The Theory of Branching Processes, Springer-Verlag, Berlin.
P. HENRICI (1974), Applied and Computational Complex Analysis, vol. 1, John Wiley, New York.
D. E. KNUTH (1969), Thee Art of Computer Programming, vol. 2, Addison-Wesley, Reading, MA.

(1976), Big omicron and big omega and big theta, SIGACT News 8, no. 2, pp. 18-24.
M. KUCZMA (1968), Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warsaw.
H. T. KUNG AND J. F. TRAUB (1978), All algebraic functions can be computedfast, Department of Computer

Science Report, Carnegie-Mellon University, 1976. Also J. Assoc. Comput. Mech., 25, pp.
245-260.

H. LEVY AND F. LESSMAN (1961), Finite Difference Equations, Pitman, London.
Z. A. MELZAK (1973), Companion to Concrete Mathematics, John Wiley, New York.
V. PAN (1978), Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and canceling for

constructing fast algorithms for matrix operations, 19th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society.

D. S. PARKER, JR, (1977), Nonlinear recurrences and parallel computation, High Speed Computer and
Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H. Sameh, eds., Academic Press, New
York, pp. 317-320.

E. SCHROEDER (1871), Ober iterierte Funktionen, Math. Ann., 3, pp. 296-322.
G. SZEKERES (1964), Fractional iteration of entire and rational functions, J. Austral. Math. Soc., 4, pp.

129-142.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/09-01-0005 $01.00/0

THE SEMANTICS OF CALL-BY-VALUE AND
CALL-BY-NAME IN A NONDETERMINISTIC ENVIRONMENT*

M. C. B. HENNESSY"

Abstract. Nondeterministic recursive procedures are considered in which parameters may be passed by
use of call-by-value or one of two different formulations of call-by-name. These procedures are given an
operational semantics via an evaluation mechanism. We define a denotational semantics using so-called
nondeterministic domains, which are function spaces endowed with two partial orders. An operational
characterization of equality of procedures under this denotational semantics is then given.

Key words, recursive programs, nondeterminism, call-by-value, call-by-name, mathematical seman-
tics, computation rules, full-abstraction

Introduction. The problem of defining an adequate semantics for recursive
definitions which allow various types of parameter-passing mechanisms has generated a
considerable amount of interest in the literature (see [1], [2], [3], [20]). Consider for
example the well-known rcursive definition

F(X, Y),: IFX 0THENOELSEF(X- 1, F(X, Y)).

Interpreted as a fix point equation over the fiat cpo of nonnegative integers it has as its
least solution

f(x, y) {3_0 ifx=mforanynonnegativeintegerm,

otherwise ("_1_" means undefined).

This also happens to coincide with the computed function if a call-by-name (or
outside-in) evaluation mechanism is used. However, if a call-by-value (or inside-out)
evaluation mechanism is used the computed function is

j0 if x 0,
fv(X, y)

1 otherwise.

In [20] the conclusion is drawn that the call-by-value evaluation mechanism is incorrect.
This situation can, however, be viewed from a different perspective. Both these

evaluation mechanisms exist a priori and we can pose the problem of finding a
denotational semantics which adequately reflects the operational behavior of programs
under each of these mechanisms. Since the two mechanisms lead, in general, to different
computed functions we have to define a call-by-name denotational semantics to model
the call-by-name mechanism and a call-by-value denotational semantics to model the
call-by-value mechanism. As will be seen below such denotational semantics can be
defined and are similar in many ways. Indeed the only difference is that different
methods are used to compose functions. Therefore we extend the notion of recursive
definition so as to allow the procedures to be called using either the call-by-name or
call-by-value mechanisms.

In fact the recursive definitions used will be nondeterministic. Thus we can form
definitions such as

F(X)X or F(S(X))

* Received by the editors, April 14, 1977, and in revised form January 12, 1979.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada. Now at
Department of Artificial Intelligence, University of Edinburgh, Edinburgh, Scotland EH8 9NW.

67

68 M. C. B. HENNESSY

and the presence of a term T1 or T2 indicates that we can choose to evaluate T1 or to
evaluate T2. In the presence of such nondeterminism a dilemma occurs as to the exact
meaning of the call-by-name mechanism. Consider for example the definition

F(X) IFZ(X)THENXELSE2

where Z is a test for 0. To evaluate the term F(0 or 1) we must decide how to apply the
procedure to the parameter ’0 or 1’. One approach is to consider ’0 or 1’ as a set and a
procedure is applied to a set by applying it to an (arbitrary) element of the set. Thus one
would get two possible outcomes by

F(O or 1) F(O) -... 0

F(O or 1)- F(1)- 2.

Another approach is to use the body substitution rule of ALGOL. In this case we would
get not only the possible outcomes 0, 2 but also 1 via the evaluation

F(0 or 1) IFZ(0 or 1)THEN0 or 1ELSE2

IFZ(0)THEN0 or 1ELSE2

Rather than make a choice between these two approaches we allow both. The
former will be called call-time choice because all choices in the parameters must be
made when a call to the procedure is made. The latter will be called run-time choice
because in this case choices may be made at any time during the execution of a call to a
procedure. Thus for the remainder of the paper ’call-by-name’ will not be used.
However for deterministic programs run-time choice and call-time choice both coincide
with the usual notion of call-by-name.

In this paper we give a mathematical or denotational semantics of recursive
definitions which allow call-by-value, call-time choice and run-time choice parameter-
passing mechanisms. A knowledge of the mathematical approach to semantics is
assumed (see [12], [19]). In 2 the programming language (i.e. recursive definitions)
and evaluation mechanisms are defined. In 3 the mathematical model is introduced
and in 4 we investigate the relationship between the mathematical and denotational
semantics. In 1 we isolate the necessary mathematical definitions and constructs which
are needed throughout the paper. The reader may wish to skip over this section on first
reading and refer to its contents when required. The results in this paper were originally
reported in 1-9] and outlined in [7].

Related work. The relationship between call-by-value and call-by-name for
deterministic programs has been discussed by many authors. For example in [20], [13]
call-by-name is considered correct and call-by-value incorrect. These opinions are
discussed at length in [1] where the author shows that the call-by-value computed
functions are also least fixpoints with respect to a partial order. However the partial
order is defined operationally. In [18] an attempt is made to give a first-order reduction
of call-by-name to call-by-value but the results seem invalidated because of the
confusion between call-time choice and run-time choice. Call-by-name and call-by-
value are discussed in a different setting in [17].

Nondeterministic programs are discussed in an operational setting in [4], 11] and
in a denotational setting in [5], [16]. This paper owes much to the original approach to
nondeterminism in [5]. However the models used can be obtained by using the
powerdomain construction of [16]. More details concerning the actual choice of model,
from the point of view of nondeterminism, may be obtained in [10].

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 69

1. Mathematical preliminaries. Let SORT be a set of elementary sorts. We will
always assume that tr SORT. A sort is any vector of elementary sorts. Elementary
sorts and sorts of length one will usually be identified. A type is any expression of the
form m - n, where m, n are sorts. Elementary sorts will usually be denoted by symbols
such as s, t, etc., sorts by m, n, k, etc. and types by a, b, c.

A partial order or po is a tuple (D, =<) where D is a nonempty set and -< is a
reflexive, transitive and anti-symmetric ordering on D. A =<-chain in D is a sequence of
elements {x, 6 D" n -> 0} such that x, -< x,/ 1. A po D is a complete po or cpo if (i) D has a
least element 2_ with respect to -< and (ii) every -<-chainX in D has a least upper bound
in D, denoted V{X}. (D, <-) will be denoted by D if -< is clear from the context.

A relation R __. X x Y is bounded if for every x X there is at most a finite number
of y Y such that (x, y) R. R is total if for every x X there is at least one y such that
(x, y) R. If X and Y are cpo’s then R is complete if whenever {x," n N}, {y," n N}
are -<-chains, with limits x, y respectively, such that (x,, y) R for all n then (x, y) R.
If R is a total complete function then it is said to be continuous. A (total) function f from
X to Y, as above, is monotonic if x -< x2 in X implies f(xl)-< f(x2) in Y.

A nondeterministic domain, written nda, is a triple (D, -<, ___) such that
(i) (D, -<) is a cpo,
(ii) (D,) is a po in which every two elements dl, d2 D have a least upper bound

dl d2D,
(iii) LI is =<-continuous i.e. (continuous with respect to -<),
(iv)

is -<-complete.

Suppose (D1, -< 1, - 1), (D2, <-2, g2) are both nda’s. Let [D1, D2] denote the set of
-monotonic, <=-continuous (total) functions from D1 to D2.
PROPOSITION 1.1. D1 D2 and [D1, D2] are both nda’s under the pointwise induced

partial orderings.
Proof. The proof is by standard techniques.
A fiat cpo is a denumerable cpo D such that Vx, y D, x -< y implies x y or

x 2_. For any sort m (Sl, , Sk) let D, denote Dsl " Dsk, where each D, is a
fiat cpo. Let D, be the set of k-tuples (X1, , Xk) such that Vi, 1 -< -< k,

(i) X

D,,

(ii) X d,
(iii) [X]= c 2_ Xi.

The elements of Dm will usually be denoted by the symbols X, Y, Z and the ith-
component of Y will be denoted by ei(Y). An element X [Dm is called a value if it is a
vector of singleton sets. If any one of these singleton sets contains 2_ it is called an

undefined value. Otherwise it is a defined value. Values are very similar to elements of
D, and to emphasise this similarity they will be denoted by lower case symbols v, w etc.
Moreover we will write v X in place of v

_
X. If a is the type (m n), will denote

the nda lID,,, D.].
For X, Y ,, let X

_
Y if e(X)

_
ei(Y), 1 <- -< k. Note that X

_
Y if and only if

for every value v, v X implies v 6 Y. Let X _-< Y if Vi, 1 -< -< k,
(i) Vx eg(X)::ly ei(y), x < y,
(ii) Vy eg(X)::lx ei(Y), X -< y.
PROeOSITIO 1.2. (D,, -<, _) is an nda.

Proof. The proof follows in a straightforward manner from the definition if Lemma
1.3, which is stated below, is used.

LEMMA 1.3. For every value v and -< -chain {X, n N} in D,, v V{X,} if and
only if there exists a K such that v X,, Vn >-K.

Let R ___D Dr, an elementary sort, be a total bounded relation. The

70 M. C. B. HENNESSY

extension of R is the function from D., to [[])t defined by

f (X) LI (y [(x, y) R for some x X).

Note that fn may or may not be in [D,, Dr]. IfR
_
Dm x Dt is a bounded relation it can

be extended to a total bounded relation R+/- as follows:
(i) if di +/- for any i, then ((dl,’", dk), +/-)R+/-,

(ii) if there does not exist a d such that

((dl, dk), d) R then ((dl, , d), +/-) R+/-,

(iii) otherwise if ((dl,""", d), d)6 R then

((dl, d), d) R_.

The natural extension of a bounded relation R is defined to be the U-extension of
R+/-.

LEMMA 1.4. The natural extension ofa bounded relation R D,, Dt is in [,,,, Dt].
Proof. For convenience we let f denote the natural extension of R. We must first

prove that for every X,,f(X)t. It suffices to prove that [f(X)l oo implies
+/- Z(x). It le (x)l is finite for all then since R is bounded IZ(x)l is finite. Therefore if
If(X)] oe there exists an such that +/- ei(X) and from the definition of natural
extension it follows that +/- f(X).

Let X V{Xn: n N}. We now show that f(X) V{f(Xn) n N}. For any d +/-,

d f(X):> 3e V{X, :n N} such that (e, d) R.

, :lk N, e V{X,, n N} such that (e, d) R

and e X,Vn _-> k, from Lemma 1.3.

<=> =lk E N such that d [(X,)Vn k

:d V{f(Xn) n N}, from Lemma 1.3.

Suppose +/- f(X). Then (x, +/-) Rx for some x X. Now from the construction of R +/- it
follows that if (d, +/- R+/- and d’ _-< d then (d’, +/-) R+/-. For each n N there exists an
x, X,, x, _-< x. Therefore (x,, +/- R +/-. So _1_ f(Xn) for each n N. From Lemma 1.3 it
follows that +/- V{f(Xn): n N}. Suppose +/- V{f(X,): n N}. Then for each n there
exists x, X, such that (xn, +/-) R. If [X[is infinite there exists at least one such that
[ei(X)[is infinite. It follows that +/- ei(X) and therefore +/- f(X). On the other hand if
IX[is finite then there exists an n such that X, X. Therefore x,, X and +/- f(X).]

An element X ,,, is finite if for each i, ei(X) is a finite set. The next proposition
states that continuous functions are completely determined by their effect on finite
elements.

LEMMA 1.5. If]:, g [D,,, IDt] andf(Xr) g(Xr) for every finite elementXf thenf= g.
Proof. We prove that f(X)= g(X) for an arbitrary X e D,. If]ei(X)[c we let

ei(X) be {n o, n 1, n 2, }, where n o +/-. Now define a sequence of finite sets {X." n
N} as follows:

(i) Xo={(+/-,..., +/-)},

ei(X) if lei(X)[# cx,
(ii) ei(Xk.+l)

ei(Xtc) [..J {n /1} otherwise.

Then Xn Xn+l and it is easy to prove that X V{X.: n s N}. Therefore f(X)=
V{f(X,) n e N} V{g(X,) n N} g(X). [-1

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 71

2. Programming languages.
2.1. Syntax. For each s SORT let K be a set of data-constant symbols of sort s.

Let {Xi: N} be a set of data-constant variables; let G1, , G, be constant function
symbols, and F1, , F,, be variable function symbols, each with a specific type of the
form (m s), s an elementary sort. Type and sort indications will be omitted whenever
possible. The set of terms together with their associated types is defined as follows:

The notation T a is used to denote T is a term of type a.
(i) Xi (n si), where n
(ii) if C Ks, C (n - s) if n (sl, ", s, ", Sk);
(iii) if G is of type (m s), where m (sl," , Sk) and T (n &), 1 <- _-< k, then

G(T1, Tk) (n s);
(iv) if T1, T2 a then T1 or T2 a;
(,) if T1 (n tr), T2, T3 (n s) then IF (T1, T2, T3) (n s);
(vi) if F/is of type (m s), where m (sl, , Sk) and Ti (n si), 1 <-_ <-_ k, then

F?(T1, Tk)6 (m s), 3/= ’r’, ’c’, ’v’.
A program P is a set of recursive definitions of the form

(1)
FI<X1,’",Xn,>P1,

"_Fk (XI, X,, <(::: Pk,

where P is a term whose associated type is the same as that of Fi. For reasons of

convenience the following restrictions are made"
(i) if X. occurs in P then 1 <= j -< n;
(ii) if Fi occurs in any P. then 1 =< <= k;
(iii) every occurrence of Xj in Pi has associated with it the type (rag sj) where

mi=(S1, ,si, ,Sk);
(iv) if C e K has an occurrence in Pi then it has associated with it the type (rni s),

with tn as above.
However, these conventions do not raise problems because for the most part types

are ignored. In fact they will only be used in 3.2 where we associated a function with

every term. When the typing conventions are ignored the resulting programs are

identical to the recursive definitions in [13], [20] except that the nondeterministic ’or’ is

used and the superscripts r, c, v appear on the F’s. These superscripts denote which

parameter-passing mechanism is allowed.
A term T is called a P-program term if every Fi which appears in Tappers in P. For

the remainder of the paper we will assume the existence of some (arbitrary) program as

in (1) and consequently a P-program term will be simply called a program term.

2.2. Operational semantics. We assume that in each K we have an ’error
constant’, es, which is meant to denote an error condition in a program. We also assume
that Ktr= {t, f, etr}. Finally if rn (sl, , Sk) let K Ks .. Ks.

To define an evaluation mechanism we must have associated with each G of type
(m s) a total bounded relation over K, Ks, which we denote by E(G). Given such an
association we can define an immediate reduction relation, -, between constant terms,
i.e., terms not involving any data-constant variables, as follows"

(i) Data-manipulation.

G(C1,’’ ", Ck)-Y-> C’ if C1,"" ", Ck, C’)E(G),

G(T1,. ., T,. ., T)2> G(T1,.. ., T,. ., T)

72 M. C. B. HENNESSY

(ii) Testing.

IF (t, T1, T2,) - T1,

IF (f, T1, T2)- T2,

IF (e, Ta, T2)+ e,

IF (T1, T2, T3) - IF (T, T2, T3)

(iii) Choice.

(iv) Procedure calls.
(a) Run-time choice. This is akin to the body-replacement rule of ALGOL 60 and

consequently no restrictions are made on what may be passed to the procedure.

F(T1,.. ., rk)-2> [TIIX,.. ., TklXk]Pi

where the term on the right-hand side denotes the result of simultaneously substituting
T. for X. in Pi for each , 1 _-< f =< k. In programming terms this means that pointers to the
’code’ for T. are passed to the procedure Pi and each time Pi requires a value it ’runs the
code’ itself. Note that because of the nondeterminism we may get a different result each
time T. is evaluated.

(b) Call-time choice. Here Pi can be called only if it can be assured that whenever
the T. is evaluated no choices will have to be made---that is, the T. are all deterministic.
The exact definition of deterministic is somewhat tricky and is given in the Appendix.

F(TI, r,)[ralXl, rklxk]Pi if r. isdeterministic, l <=f <-k.

F(T1,’",Ti,’",Tk)-F(Tx,"’,TI,"’,Tk) ifTi2T, T not deterministic.

(c) Call-by-value. This is the well-known and well motivated ALOOf. 60
mechanism whereby procedures will only accept as parameters real data constants.

F(C, C,)> [CxIXx, cIx]P,,
F Ti, Ti T, eF’{ T T T, if Ti e-> T

Let be the reflexive transitive closure of -. If T1 T2 we say that T reduces to 71/2.
Note that the notions of ’call-by-value’ etc. are no longer computation rules in the

sense of [20]. That is they are not algorithms for specifying the next occurrence of an F
to be expanded. Instead they specify certain characteristics that the actual parameters
of a particular call to an Fi should have before that call can be made. The evaluation of a
term always proceeds from the outside-in, subject to these constraints. But for example
if each F has the superscript v then the net result is an inside-out (or call-by-value as in
[20]) evaluation.

2.3. Examples. Many data-structures such as S-expressions, stacks, etc. (see 13])
can be formulated within this framework. We give as a simple example the natural
numbers.

Let SORT ={i, tr} and let K ={kn :n N}k3{ei}. The set of constant function
symbols consist of Z (i tr), S, P (i i). The intended interpretation is that k,, is a
notation for the natural number a, Z is a test for zero, S is the successor function and P

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 73

the predecessor function. With this interpretation in mind we define

E(S){(k,. kn+l): n e N} U{e, e},

E(P)={(k,,+I, k,):n N}{(ko, e), (ei, e)},

E(Z) {(k,+a, f): n 6 N} U {(ko, t), (el, err)}.

Consider the program

(2) F<X1, X2> <= IF(Z(X1), ko, F <P(Xx), F <Xx, X2))).

Then F(k,, k,) ko if and only if n 0. However, if the program

(3) F<Xx, X2> <= IF(Z(X,), ko, F <P(Xx), F <X,, X2>>)

is used then FV(k,, k,,) ko for every n, m N. A simple example of a nondeterministic
term is the program

(4) F(X),(=X or Fv(s(x)).

With this program the term F (k.) can be reduced to k,. for any m >_- n. Finally consider
the program

(5)
F,<X>,(= IF (Z(X), ko, F <S(X) or F; <X>> or X),

F2<X> <= IF (Z(X), ko, F <F <X) or P(X)> or X).

Then FO(k,+l) k, for every n, m N.

3. The mathematical semantics.
3.1. Nondeterministic domains. In Scott’s approach to semantics 19] it is usual to

associate with each program a functional over some domain and to consider the
meaning of the program to be the least fixpoint of this functional. To ensure the
existence of such a fixpoint, domains can be taken to be cpo’s over which the functionals
associated with programs are continuous. Since we are dealing with unstructured
data-types it is sufficient to consider flat cpo’s. However, as pointed out in [6], [16],
when dealing with nondeterministic domains it is necessary to consider some form of
power-domain. Because we only use fiat cpo’s this construction is relatively simple and
is given in 1. In that section we also isolated what we deem to be the necessary
properties of these power-domains (see [6]) and the resulting structure is called a
nondeterministic domain, or nda.

Every program term T (m s) will be interpreted as an element of an nda
Ds]. This interpretation is achieved by associating with every program (such as (1)) a
<_--continuous -monotonic functional over the relevant cross-product of function
spaces and interpreting F,. as the ith-component of the least fixpoint of this functional.
This least fixpoint is taken with respect to the ordering -<, called the computational
ordering. The order ordering, _, is called the subset ordering and is used to model the
nondeterminism. HoWever, before these functionals are defined we must say exactly
which nda’s will be used and we must associate with each syntactic construct in the
language a corresponding semantic construct.

For each s SORT let Ds be the fiat cpo obtained by adjoining to K the undefined
symbol _1_ Let Ds be the nda generated by Ds as in 1. If m is a sort and a a type, let
[,,,, D, be the nda’s as defined in 1. If these subscripts are obvious from the context
they will be omitted. We now consider the various semantic constructs used to interpret
programs.

(i) Datamanipulation. We let g denote the natural extension of E(G), for every

74 M. C. B. HENNESSY

constant function symbol G.
(ii) Testing. Let

g will be used to interpret G.

dif(x, y, z)

y ifx =t,

z ifx =,
2_ if x-- _1_,

e ifx =e.

Let a, b be the types (m tr), (m s) respectively. For fl a, f2, f3 Db define
if (fl, f2, f3) by

if (f,f2,f3)(X)= t_J{dif (Xl, X2, x3)lxi fi(X)} fX,.

The functional if will be used to model the syntactic construct IF.
(iii) Choice. If f, ga then f t_Jga. Moreover since Da is an nda t_J is

<- -continuous. This functional will be the semantic counterpart to the syntact construct
O!’.

(iv) Tupling. Let ai be the type (m si), 1 <= -<_ k and let a be the type (m n),
where n (Sl, , Sk). If fi ,, 1 <-- <--_ k, define (f, , fk) by

(f," ", fk)(X) (f(X)," ", fk(X)) for all X

(v) Procedure-calling. Suppose we have assigned a ’meaning’ f to a program
module T1 and a ’meaning’ g to another module T2. Then the meaning assigned to the
composite module T1 followed by T2 is simply the composition of f and g. The
composition gf is defined by gf(X)= g(f(X)). However, when different parameter-
passing mechanisms are used the module T2 may not accept arbitrary inputs from T1.
Instead these inputs must satisfy certain criteria, which are now considered.

(a) Call-by-value. If T2 requests input from T, specifying call-by-value, then it
will only accept as input data constants. Thus if T can supply a vector, all of whose
components are data constants, T2 will hapily operate on them. Moreover if T supplies
a vector of inputs in which at least one component is not a data constant then T1 will not
stir. Instead T1 will patiently wait for the entire vector to become defined. If this never
happens the composite module will diverge. This leads to the following definition"

For f fl)a, a (m s) define ff by

fv (X)= U{f(d)ld X, d a defined value}
t.J {_t_ Iv X, v an undefined value}.

The functional’f--ff will be denoted by cv and is called call-by-value operator.
(b) Call-time choice. In this case T. will accept a vector as input from T only if it is

certain that each component of the vector is deterministic. This leads to the following
definition of the call-time choice operator cc’f--ff For f a, a (m s), let ff be
defined by

ff (X) U{f(v)[v X, v a value}.

(c) Run-time choice. Here no restrictions are made on the input which T2 will
accept from T1. Therefore the run-time choice operator rc :f--ff is simply the identity
functional.

Reconsidering the modules T1, T2 above, if we specify that call-by-value is to be
used the resulting composite module will be modeled by gf, whereas if call-time choice
is specified gCf will be used.

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 75

The required properties of these propositions are summarized in the two following
propositions.

PROPOSITION 3.1.1. (a) If a, b, c are the types (m + n), (n k) and (m k)
respectively and if C denotes the composition operator then C IDa Db, Dc].

(b) 1]: a is the type (m s) then cv, cc, rc
(c) If a, b are the types (m tr), (m s) respectively then if IDa Db b, Db].
(d) Ifai is the type (m si), 1 <- <- k anda is the type (m n) where n (Sl, , Sk)

then <. [D x x D,k, D,].
Proof. See Appendix. 1-]

In consequent discussions the symbol C will not be used to denote composition.
Instead the result of composing g with f will be simply denoted by gf. It is important to
note that in the above proposition the types used are of the form (m s), except in parts
(a), (d). If more general types are allowed, i.e., types of the form (m n), the results are
no longer true. For example cc [D,] if a (m n). This will not affect us as all
terms have types of the form (m + s).

A function f [Dm, Ds] is said to be a value-junction if, for all X D,,, f(X) is a
value in Ds. It is said to be a d-value]’unction if these values are all defined.

PROPOSITION 3.1.2. Letfl, f2,]’3, f, g, h be]:unctions over D of the appropriate type.
(a)

(i)

(ii)

(iii)

(b) lfh is a value-function
(i)

(ii)

(iii)

(fg)rh =f(grh),

(fl U f2)rh fh Clfh,

(if (fl, f2,/3))rh if (flh, fh, fh).

(fg)Ch =f(gCh),

(fl I0 f2)g fg IO fg,

ff (gl I0 g2) fig1 I,.J leg2,

(if (f, f2, f3))h if (fh, fh, fh).

(c) If h is a d-value-function then (b) holds with v in place of c.

Proof. See Appendix.
We can easily find examples of h which do not satisfy the restrictions of parts (b)

and (c) and for which these statements are false.

3.2. The mathematical semantics. In this section we use the functionals of 3.1 to
define the semantics of programs and terms.

Referring to program (1) let ai be the type of F and letD, bea " Dak. With
each term T a (m s) we associate a functional A (fl," , fk).[T] [D0, D] as
follows:

(i) T X (m --> s), 7/IT] Ax Dm.Xi,
(ii) T C s (m -, s), r[T] Ax s D,,.{C},
(iii) T= T1 or T2, 7/’IT] [T1] LI r[T2],
(iv) T=G(T1,...,T,),[T]=g([T1],...,[T,]),
(v) T=F(T1,..., T), [T]=ff([T1], [T,]), 3, r, c, v.

From Proposition 3.1.1 it follows that A (fl,"’", fk).[T] [D, D]. Considering the
program (1), we let d//(F) be the ith component of the least fixpoint of
A (fl," , fk).([P1]," ", [Pk]). Then for any term T we can define d//(T) to be the

76 M. C. B. HENNESSY

result of applying the functional h(fl,’’’ ,fk).V[T] to the vector of functions
(,JJ(Fx),’’’, (Ft,)).

Examples. For convenience we let idi denote the ith projection function and C the
function Ax.{C}. The exact types of these functions will be clear from the context.

The program (2) gives rise to the functional

Af.if (z idl, ko, fV(p idl, ff(idl, id2)))

and if T is the term F (X, X2) then /(T) is the natural extension of

=)ko ifx=k0,
h(x, Y)

e ifx =e.

The program (3) gives rise to the functional

hf.if(zidl, ko, ff (p idl, ff (ida, id2)))

and if T is the term F(X, X2) then (T) is the U-extension of

ko if x k,, for any m,

h(x,y)= e ifx=e,

1 otherwise.

The program (4) gives rise to the functional

hf.fo (id ffs id)

and t/(Fo(X)) is the natural extension of the relation

H {(k,, k,): m => n} LI {(e, e)}.

3.3. Equivalent definitions of At. Let T s (m --> s) be a P-term. We define /,(T),
for all n => 0, by induction on n.

(i) n 0: ://0(T) hx Din.{ _t_ s}.
(ii) Assume n(T) has been defined for every term T. ://n+(T) is defined by

structural induction on T.
(a) T Xi s (m --> s), (//,+l(r) idi,
(b) T C s (m --> s), ,////n+l(T) Ax [Dm.{C},
(c) T= T1 or T2,I/I,,+I(T)=I/I+(T)t3I/I,,+(T2),
(d) T= IF (T, T2, T3), ///+I(T) if (/n+l(T1), +(T2), ,,+1(T3)),
e T G T Tk ///+I(T) g l/l + T el/l + Tk
(f) T F? (.T, Tk), I/ln+(T) l/l,,(Pi)V(l,,(Tx), I/[,,(Tk)), , r, c, v.
LEMMA 3.2.1. ,,(T) -///,,/I(T).
Proof. Since all of the functionals preserve _-< the proof is trivial. 1,1

PROPOSITION 3.2.2. /(T) V{///,, (T) n -> 0}.
Proof. Let ///(P) represent ///(P1), ", l(Pk) and similarly for ///n (P) and [P].

Also let f represent (fl, , fk). A simple proof by structural induction on T shows that
///, + (T) Xf. o//.[T](d//,, (P)).

Now for any cpo (D, _-<) and any continuous function f: D --> D the least fixpoint off
is V{f,,:n >= 0}, where f0 _1_ and f,+ f(f,,) (see [11]). if we apply this result to the

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 77

functional Af. [P] we get that (P) V{///,, (P)’n >= 0}. Therefore

d//(T) M. 7#[T](d//(P))

A . F’[T](V{(d// (P))" n 0})

V{M. F[T](///n (P))" n ->_ 0}

V{,,,.(P)" n -> 0}.

Another useful characterization of (T) is given by considering a sequence
{T":n >= 0} of recursion-free programs which approximate the behavior of T. Roughly
speaking T" is the result of restricting the depth of recursive nesting in T to at most n
levels. If a call to a procedure is made at a lower level then the ’value’ _L is returned. For
an exact definition of T" we must introduce into the syntax of the programming
language the distinguished function symbol A e a for every type a and the dis-
tinguished data-constant _L e K for every s. The evaluation mechanism is then aug-
mented by the rules:

(i) A<TI,"" ", Tk) l for every sequence T1,"" ", Tk,
(ii) G(T1,..., Tk) +/- if any Ti +/-, l<-i<-k,
(iii) FV(T1,. ., Tk) - +/- if any T +/-, 1 -<_ -_ k.

The definition of ?/’ is also extended by defining

[A(T,...,Tk)]=Xxm.{.+/-} ifA(ms).

Given the program P (see (1)) and the P-program term T, we define, for every
n _>-0, the program P" and the terms T" as follows"

(i) T= A(_L,..., +/-). p0 is the program

F1,1(X1, ", Xtu) P,

F,,<X, , X,, P.
(ii) Assume T" and P" have been defined. The P"-program term Tn+l is defined

by structural induction"
(a) if T contains no occurrences of any F, T"+= T,
(b) T F’ (T1, T), T"+ -’Fi,n+l (T1, Tk),
(c) T T1 or T2, Tn+l Tn+l Tn+lor 2

,T,n+I I,.2[,T,n+I T+1(d) T=G(Tx,’..,Tk),a =,tal ,’’"
n+l n+l ,T,n+l ,T,n+(e) T IF (rx, T2, T3), T IF (T1 a2 3).

pn/l is the program obtained from P" by adding the k equations

Fl,n+2(Xl, ", Xn>P7+,

Fk,n+2<Xl, ,Xn>P+1.

Example. Let P be the program

F(X) ,(::: G(X, F (X, X)),

F2(X, Y) (=H(F’ (F. (X, Y)), X).

78 M. C. B. HENNESSY

Then p1 is the program

FI.2<X> <::: G(X, F,, <X, X>),

F2.2<X, Y> H(F., <A< +/-, _I_ >>, X),

F.<X> a<
_

>,
F:.I<X, Y> A< +/-, +/->.

PROPOSITION 3.2.3. (T)= V{(Tn):n _-> 0}.
Proof. From Proposition 3.2.2 it suffices to prove that /,(T)=/(Tn), ’’n _->0.

This is proven by induction on n. For n 0 the proof is trivial and the case k / 1 is
proven by structural induction on T. We consider only one of the various cases. The
others are similar. Suppose T- F’(T, , T,). Then

by induction

see Lemma 4.1.1

4. Investigation of the mathematical semantics.
4.1. Properties of the model. In this subsection we give some useful properties of

the mathematical model. For convenience we let T represent a sequence of terms
TI,..., Tk and X the sequence X,...,Xk. Thus [TIX]S denotes the result of
substituting T for X/in $, 1 _-< _-< k. Also /(T) will denote (l/t (T1),. , (Tk)).

LEMMA 4.1.1. (application lemma).
(i) (F’<T)) ./PI(P,)’I(T), 3’ r, c, v.
(ii) I(G(T))= g(T).
(iii) /(IF (T1, T., T3)) if (/(T1), /(T:), ///(T3)).
(iv) ff//(T1 or T:)=J/I(T,)t(T:).
Proof. (i)

///(F’ T>)
V{+I(F? <T>)" n _-> O} from Proposition 3.2.2

V{l/l,(Pi)Vl/l,,(T)’n _-->0} by definition

(V{ll,(Pi)" n >-- O})’V{dtt,(T): n _-->0} since the 3" function preserves V

g(P)Vg(T) from Proposition 3.2.2.

Parts (ii), (iii) and (iv) are similar.
LEMMA 4.1.2 (substitution lemma). If Ti, 1 <- <- k are constant terms and S is any

term then
(i) ([TIX]S)= l(S)*dtt(T),
(ii) ([T[X]S) dR (S)t4(T) if T are deterministic, 1 <- <- k,
(iii) tl([T[X]S) dtl(S)Ot(T) if T are data-symbols, 1 <= <= k.
Proof. For the purposes of this proof we let (L) be denoted by l, for any symbol L

representing a term. We prove only part (ii).
(ii) We can easily show by structural induction that if T is deterministic and

constant then t is a value-function. We omit the proof. We use structural induction on S

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 79

to prove the lemma.
(a) S C, C a data-symbol. Then set Ax.{C} /([T IX], S). Similarly if S Xi.
(b) S $1 or $2. Then

sCt (Sl (.J s2)t from Lemma 4.1.1 (iv)

st st from Proposition 3.1.2 (b), (ii)

([TIX]SI) (J ([TIX]S2) by induction hypothesis

([TIX]S) from Lemma 4.1.1 (iv)

(c) S IF (S, $2, $3). Then

st (if (Sl, s2, s3))t from Lemma 4.1.1 (iii)

if (sxt, s2, st) from Proposition 3.1.2 (b), (iii)

if (([rlx]s), ([rlx]&), ([TIX]S3))
by induction hypothesis

J//([TIX]S) from Lemma 4.1.1 (iii).

(d) S- F’ (S), where $1 is a sequence of terms. Then

st=(p?s)Ct

p ? (sl t)

piJ/[([T[X]S)
[[([TIX]S)

from Lemma 4.1.1 (i)

from Proposition 3.1.2 (b), (i)
since is a value-function

by induction hypothesis

from Lemma 4.1.1 (i).

(e) S G(Sa), where $1 is a sequence of terms. The proof is similar to part (d).
It should be pointed out that the substitution lemma is not in general true if the T

are not constant. For example if $ is the term IF (Z(X), X, k2) and T the term X, then
y/4 ([TIX]S) (S)/t T).

As a simple consequence of these two results we have that the mathematical model
is at least consistent with the evaluation mechanism.

PROPOSITION 4.1.3. For any two constant terms T, T2, T1- T2 implies /(T1)_
I/l T2).

Proofi If T- T2 then we can prove by structural induction on T that /4(T1)_
/(T2). Four examples of the various cases are given. The remainder are similar.

(i) Suppose T is IF (t, S, $2). Then T2 is $1. Therefore

///(T) :///(IF (t, S, $2))

if (/(t), ,(Sl), J//(S2)) from Lemma 4.1.1 (iii)

=(S) by the definition of ’if’.

(ii) Suppose T1 is IF (T, S, S2) and T2 is IF (T’, Sl, S2). Then by definition T - T’.
So by induction hypothesis /(T)

//(T’). Therefore

J//(Tx) if (/ (T), :g (S), //($2)) from Lemma 4.1.1 (iii)___
if (//(T’), //(Sl), R(S2)) since if preserves

_
J//(T2) from Lemma 4.1.1 (iii).

80 M. C. B. HENNESSY

(iii) Suppose T1 is F?’ (S) where S is a sequence of terms and T2 is [S]X]Pi. Then

t(T1) I/I(Pi)VAt(S) from Lemma 4.1.1 (i)

All ([SIX]Pi) by applying the appropriate section of Lemma 4.1.2.

(iv) Suppose T1 is Sl Ol" $2 and T2 is S2. Then

/(T) J//($1) (3 el//($2) from Lemma 4.1.1 (iv)

=_ t(s) from the definition of ’(.J’.

Therefore T1 - T2 implies /(T1) (T2). The proposition now follows by induction
on the length of the derivation from T1 to T2. 71

4.2. Characterization of equality in the model. Before considering which terms
are given the same denotation via the mathematical semantics it is convenient to
determine exactly the nature of (T) for every constant term T. For every such term
T (m - s), A/(T) is always of the form Ax D,.a where c Ds. For convenience we
will identify a and Ax

For any constant term T let EVAL (T) {v Ds[T v}.
LEMMA 4.2.1. EVAL (Tn) (Tn), ’n ->0.
Proof. See Appendix.
For any constant term T define LIMEVAL (T) by
(i) C LIMEVAL (T) if T" C for some n >_- 0,
(ii) _1_ LIMEVAL (T) if T" +/- for every n _-> 0.

Thus LIMEVAL (T) contains all those data-constants which can be derived from the
finite approximations to T together with _1_ if T can give rise to sequences of recursive
calls of arbitrary length.

PROPOSITION 4.2.2. (T) LIMEVAL (T).
Proof.
C LIMEVAL (T) :> C EVAL (Tk) for some k

C J/[(Tk) from previous lemma

CrUCial(T)

+/- LIMEVAL (T) :> _1_ EVAL (Tk)
:> ,1, /(Tk)

from Proposition 3.2.3.

for every k

for every k from previous lemma

1, /(T) from Proposition 3.2.3.

We can now consider what it means behaviorally for two terms to receive the same
denotation, i.e., for /(T1) to be equal to (T2). A natural definition of behavioral or
operational equivalence which has been used in [6], [14], [20], is to say that two terms
are operationally equivalent if and only if it is impossible to distinguish between them
using the evaluation mechanism. Because of the nondeterminism it is necessary to take
into consideration the ability of a term to diverge. If we use LIMEVAL then this ability
will be taken into account via the presence or absence of 2_ because .1_ e LIMEVAL (T)
if T can give rise to arbitrary long sequences of recursive calls. This notion of
operational equivalence may be formalized as follows:

For Tx, T2 (m s) we say T1 -----opT2 if for every sequence of constants terms S

LIMEVAL ([SIX]T)= LIMEVAL ([SIX]T2).
THEOREM 4.2.3. d/t(T) //(T2) T1 op T2.

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 81

Proof. First suppose /(T1) /(T2). Then from Lemma 1.5 there exists a finite Xr
such that (T1)(X,) (T2)(Xr). Now for any finite set F D there exists a constant
term S such that (S) F. Now Xr above is of the form (X,. ,X), where eachX
is finite. Let S be the term corresponding to X and let S (S ,..., S). Then
/(T1)(S) /(T2)(S). From Lemma 4.1.2 ./I/I([S[X]T) ([S[X]T2). It follows
from Proposition 4.2.2 and the definition of -op that T1 - op T2.

Conversely suppose T1-oT2. Then for some vector of constant terms S,
LIMEVAL ([S[X]TI) LIMEVAL ([SIX]T2). By Proposition 4.2.2, ([SIX]T1)
./Ill([SIX]T2). Using Lemma 4.1.2 we see that ./l/l(T1)r/l(S) ///(T2)r///(S). Since S is a
vector of constant terms ./I/l(S)=hx.as where aD,. It follows that /(T1)(a)
l(T:z)(a), i.e., ///(T1) /(T2). 11

4.3. Discussion of operational equivalence. The use of LIMEVAL in the
definition of operational equivalence may be justified by the observation that in any
particular implementation of recursive languages there is a bound on the depth of
recursion allowed. Thus LIMEVAL captures the behavior of programs over all possible
implementations.

However, a more natural definition of operational equivalence could be given
using the sets IEVAL (T) where IEVAL (T)= EVAL (T)U { 2- IT can diverge}. It is
easy to show that in the absence of call-time choice IEVAL (T) LIMEVAL (T). But
when call time choice is allowed then there is a difference.

Example.

FI(X, Y> ,(=X or Y,

FE(X> F <X> or F (x).

Then consider the term T F (ko, Fz(ko)). Because F.(ko) can never be reduced to a
deterministic term IEVAL (T) {_1. } whereas LIMEVAL (T) {k, 2- }. The latter
follows because A{ 2_ } is deterministic.

The problem arises because certain procedures Pi which, when using call-time
choice, do not actually use all of their parameters and therefore whether or not some
such parameter is deterministic or not is immaterial. However, in our particular
implementation of call-time choice these T. must be reduced to a deterministic term
even if they are not required. A solution is to implement call-time choice in a slightly
different manner such that this problem does not arise. One such implementation is
based on the delay rule in [19]. Here when evaluatingF(T) a pointer to the storage for
T is passed to the procedure P and if Pi needs a value for T it uses the pointer to
evaluate it. However the difference between this and run-time choice is that here T is
only ever evaluated once and if P subsequently needs a value for T the same value is
used. In short, in run-time choice many copies of T are used whereas in compile-time
choice only one copy is used.

We omit the proof that in this implementation of compile-time choice LIMEVAL
coincides with the more natural IEVAL, as this implementation will be used in a more
general setting in [8].

Appendix.
Definition ol deterministic. Consider the program (1). F,. is said to be directly

dependent on F. if /" and F. occurs in Pi. Let dependent be the transitive closure of
directly dependent. F is said to be directly nondeterministic if ’or’ occurs in Pi or if some
constant function symbol G occurs in P such that E(G) is not a function. F is
nondeterministic if it is directly nondeterministic or if there is some F. on which Fi is

82 M. C. B. HENNESSY

dependent such that F. is directly nondeterministic. A term T is nondeterministic if ’or’
occurs in T, if some nondeterministicF occurs in T, orif some G, such that E(G) is not a
function, occurs in T. T is deterministic if it is not nondeterministic.

Proof of Proposition 3.1.1. These results follow directly and laboriously from the
various definitions. The only slight difficulty occurs in proving cc [IDa, Da] and as an
example we prove this.

We first show that if]" IDa then fc a. For this it is sufficient to prove that (i) if
X, Y m and X

Y then ff (X)

_
ff (Y) and (ii) if X V{X,,} in ,, then ff (X)

v{f(x.)}.
(i) Let v e ff (X). Then there exists a v’ e X such that v e [(v’). Since X

_
Y, v’ e Y

and it follows from the definition of ec that v e [(Y). Therefore [(X)_ f(Y).
(ii)

v ff (X)=> v f(v’) for some v’ V{X,,}

v e f(v ’) for some v’ Xn, ’tin -> N, for some N

’n -> N, for some N

,v e v{/(x.)}.

It remains to show that cc is ___--monotonic and -<-continuous. The _-monotonicity is
similar to (i) above and is omitted.

Let f V{fn} in a. We must show that if= V{fC}. Let X ,, and v if(X).
Then there exists a v’X such that v f(v’). But f(v’)= V{fn(v’)}. Therefore there
exists and N such that v 6fn(v’) /n >=N. That is v ff(X) /n >=N. Therefore v
V{ffn}(X). Conversely suppose v V{f}(X). If v is defined (i.e. v # 2- then v f, (X)
for some n. Thus v f,(v’) for some v’ X. Since f, -<f it follows that v f(v’) and
therefore v 6 ff (X). If v 2- then v f (X) ’n >- 0. Therefore for each n there exists a
v such that v f, (v"). For any element a of D,, let ci be its ith component. We define
the new value v’ as follows" if 2. Xi let v 2.. Otherwise Xi is finite. Therefore there
must exist at least one c such that v ’ c for infinitely many n. Let v’i c. Then v’ =< v
for infinitely many n. Therefore]’,(v’)-<f,(v) for infinitely many n. It follows that
2.]’,(v’) for infinitely many n and since v’ X, 2. ff(x).

Proof of Proposition 3.1.2. The proofs of the three parts (a), (b) and (c) are very
similar and follow more or less directly from the definitions. Accordingly as examples
we prove (c), (i) and (iii).

(c) (i) Let X D,, and let w denote the defined value h (X). Then

v (fg)Vh(X)czv (fg)V (w)

:v 6 f(g(w))

v e f(g’h)X.

Therefore ([g)h f(gh).
(c) (iii). Let X and w be as above. Then

v if (fh, fh, fh)(X)

:>v e dif (Xl, X2, X3) for some Xi e (fh)(X)

=>vedif (X1, Xz, X3) forsome Xi fi(W)

:,v eif (fx, fz, f3)(w)

:> v e if (fl, f2, f3)Oh (X).

SEMANTICS IN A NONDETERMINISTIC ENVIRONMENT 83

Proof of Lemma 4.2.1. Suppose v EVAL (T"), n => 0. Then T v. Therefore
from Proposition 4.1.3, d/l(Tn)d/t(v)={v}. So d//(T")____EVAL (Tn). To prove the
converse we need a complicated induction hypothesis. A constant term T is said to be
okay if EVAL (T):/g(T). Let Prop (n) be the property: for all terms T1,’’., Tk
which are okay and any term $, [TIX, , TIX]S" is okay. We prove Prop (n) true
by induction on n. The result will follow because if S is a constant term then
S [TIX, TIX]S". As usual the proof of Prop (0) is trivial. Assuming Prop (n) is
true we prove Prop(n + 1) is true by structural induction on S. We will use the notational
conventions introduced in the beginning of 4.1.

(i) S X/. Then [T[X]Sn+l-- Ti and is therefore okay.
n+l(ii) S=G(Sa,.,+.. S,). Then [TIX]S"+I= G([TIX]Sa [TIX]S+1) and

by induction [TIX]S is okay. Now suppose v ([TIX]S"+I). There are two cases:
(a) there exists values Vl, v,, vi6eR([TIX]S’/1) and v g(vl, v,).

n+l n+lSince [T[X]Si is okay [TIX]Sg - vi and therefore [TIX]S+1 v.
(b) _1_ ([TIX]S+1) because _I_ ([TIX]S’+1) for some i. Then [T]X]S7+1 _I_

and therefore [TIX]S"+1, +/-.

(iii) S $1 or $2. The proof is similar to (ii).
(iv) S F’ ($1, , S,,). There are three cases depending on what 3’ is.
(a) 3’ ’r’. Then T[X]S’’+1 F.,+I ([TIX]ST,... TIX]S). Therefore

:R ([TIX]S+1) J/l (p’)r (d/l ([TlX]S’))

[[TIX]S2IX]]PT) by Lemma 4.1.2 (i).

Now because Prop(n) is true [T]X]S’ is okay. So, again using Prop(n),
EETIX]SIX1,]P is okay. Now if v ([T[X]S"+1) then v (EETIX]S IX ,... leT).
Therefore [[TIX]$1IX1,.]P7 v. It follows that [TIX]$- v since [Tlx]$-
[[TlX]Salxl,.]P’.

(b) y=’v’. In this case we have that ([TIX]S"+I=(P(([TIX]ST,...).
Now suppose v J/I([TIX]S"+I). If there exists defined values vl,’", v, such that
vi J/I([T[X]S’) and v J//(P’)(Vl, , v,,), then using a proof similar to part (a) we
can prove that F,,+l(Vl,..., v)v. Also by induction [TIX]S’ v. Therefore
[TIX]S"+a v. Otherwise for some i, _t_ J/I([T]X]S’). Then ./bl([T[X]S)= _t_ and by
induction [T]X]S’ _1_. It follows that [T]X]S _t_.

(c) 3’ ’c’. The proof is similar to part (b). [3

Acknowledgments. The author would like to thank E. A. Ashcroft under whose
supervision this work was carried out. Thanks are also due to E. Egli whose ideas on
nondeterminism as expressed in [5] are used throughout the paper and to J. Morris
whose comments are incorporated in 4.3. Finally I would like to thank M. Wang for
typing the manuscript.

REFERENCES
[1] J. W. DE BAKKER, Leastfixpoints revisited, Theoret. Comput. Sci., 2 (1976).
[2] J. W. DE BAKKER AND W. P. DE ROEVER, A Calculus for recursive program schemes, Automata,

Languages and Programming, M. Nivat, ed., North-Holland, Amsterdam, 1972.
[3] J. M. CADIOU, Recursive definitions of partial functions and their computations, Ph.D. thesis, Stanford

Univ., Stanford, CA, 1972.
[4] E. W. DIJKSTRA, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[5] H. EGLI, A mathematical model for non-deterministic computations, unpublished.
[6] M. HENNESSY AND E. A. ASHCROFT, The semantics of non-determinism, Third International

Colloquium on Automata, Languages and Programming, Edinburgh, 1976.
[7] ., Parameter-passing mechanisms and non-determinism, Ninth Annual ACM Symposium on the

Theory of Computing, Boulder, 1977.

84 M. C. B. HENNESSY

[8] M. HENNESSY, Inside-out and outside-in evaluations, to appear.
[9] ., A formal approach to parameter-passing mechanisms and non-determinism, Ph.D. thesis,

University of Waterloo, Waterloo, Ontario, 1976.
10] M. HENNESSY AND E. A. ASHCROFT, The semantics of a non-deterministic types h-calculus, Theoret.

Comput. Sci., to appear.
11 Z. MANNA, The correctness of non-deterministic programs, Artificial Intelligence, (1970), pp. 1-26.
[12], The Mathematical Theory of Computation, McGraw-Hill, New York, 1974.
[13] Z. MANNA AND J. VUILLEMIN, Fixpoint approach to the theory of computation, Comm. ACM, 15

(1972), pp. 528-536.
[14] N. NEWEY, Axioms and theorems for integers, lists and finite sets in L.C.F., Stanford memo AIM-184,

Stanford Univ., Stanford, CA, 1972.
15 G. D. PLOTKIN, L.C.F. considered as a programming language, Theoret. Comput. Sci., 1977, to appear.
[16],A powerdomain construction, this Journal, 5 (1976) pp. 452-487.
17] W. P. DE ROEVER, Call-by-value versus call-by-name: a proof theoretic comparison, Lecture Notes in

Computer Science Vol. 28, Springer-Verlag, New York, 1975.
18] ------, First-order reduction ofcall-by-name to call-by-value, Lecture Notes in Computer Science, Vol.

32, Springer-Verlag, 1975.
[19] D. SCOTT, Outline of a mathematical theory of computation, Oxford Mon. PRG-2, Oxford University

Press, Oxford, England, 1970.
[20] J. VUILLEMIN, Correct and optimal implementations of recursion in a simple programming language, J.

Comput. Systems Sci., 9 (1974), pp. 332-354.
[21] C. P. WADSWORTH, The relation between computational and denotational properties for Scott’s Doo-

models of the lambdacalculus, this Journal, 5 (1976), pp. 488-521.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0900--0006 $01.00/0

ON THE OPTIMALITY OF LINEAR MERGE*

PAUL K. STOCKMEYER" AND F. FRANCES YAO-

Abstract. Let M(m, n) be the minimum number of pairwise comparisons which will always suffice to
merge two linearly ordered lists of lengths rn and n. We prove that M(m, rn + d)= 2m + d-1 whenever
m => 2d-2. This generalizes earlier results of Graham and Karp (d 1), Hwang and Lin (d 2, 3), Knuth
(d 4), and shows that the standard linear merging algorithm is optimal whenever rn _-< n =< [3m/2J + 1.

Key words, merging, algorithm, paired comparisons

1. Introduction. Suppose we are given two linearly ordered sets A and B consis-
ting of elements

and

a < a2 < < am

b < b2 < < b.
respectively, where the rn + n elements are distinct. The problem of merging these sets
into a single ordered set by means of a sequence of pairwise comparisons is of obvious
practical interest, and several algorithms have been devised for handling it.

An intriguing theoretical problem is to determine M(m, n), the minimum number
of comparisons which will always suffice to merge the sets in a decision tree model [5].
Evaluating this function in general seems quite difficult, and values are known for only a
few special cases, including rn -<_ 3 ([1], [2], and [4]). In one direction, an upper bound
for M(m, n) is provided by a simple procedure variously referred to as the normal,
standard, linear, or tape merge algorithm. Here the two smallest elements (initially al
and bl) are compared, and the smaller of these is deleted from its list and placed on an
output list. The process is repeated until one list is exhausted. It is easy to see that this
algorithm requires m + n 1 comparisons in the worst case, so that

M(m,n)<-_n+m-1.

Although better algorithms exist for many cases, R. L. Graham and R. M. Karp
independently observed that this algorithm is optimal when In- m is 0 or 1. That is,
they showed that

and

M(m, rn)= 2m -1

M(m,m+l)=2m.

Later Hwang and Lin [3] proved that

M(m,m+2)=2m+l

and

for m => 2

M(m,m+3)=2m+2 form->4,

* Received by the editors June 2, 1978.
t Department of Mathematics and Computer Science, College of William and Mary, Williamsburg,

Virginia 23185. The work of this author was supported in part by the Office of Naval Research under Contract
N00014-76-C-0673, NR044-459, and by the William and Mary faculty research leave program.

: Computer Science Department, Stanford University, Stanford, California 94305. The work of this
author was supported in part by National Science Foundation Grant MCS-77-05313.

85

86 PAUL K. STOCKMEYER AND F. FRANCES YAO

while Knuth [5, p. 204] verified that

M(m, rn + 4) 2m + 3 form=>6.

In this paper we generalize these results by proving that

M(m, m + d) 2m + d-1 form_->2d-2.

Intuitively, this means that the standard merge algorithm is optimal, in the worst-case
sense, whenever m _<-n _-< L3m/2J + 1.

2. Oracles. A lower bound for M(m, n) will be produced by means of an "oracle",
the proof technique utilized, for example, by Knuth [5, 5.3.2]. In his formulation,
when presented with a comparison ai vs. b., an oracle announces which is larger and
simultaneously chooses a strategy for answering further questions so as to force a large
number of additional comparisons to be made. A useful lower bound is obtained from
an oracle that has an effective strategy for dealing with any comparison it might
encounter.

In addition to an oracle that provides a lower bound for M(m, n), oracles are
needed to furnish lower bounds for two other functions. Let/M(m, n) be the number of
comparisons required to merge two lists for which, unknown to the merger, a is in fact
greater than bl. An oracle for this function must therefore make all pronouncements
consistent with al > bl. Similarly, let/M\(m, n)be the number of comparisons required
when a is greater than bl and a,, is less than b,,, again unknown to the merger.
Occasionally we shall use the notation M\(m, n) to denote the number of comparisons
required to merge two lists when a,,, is less than bn. This is not another new function,
though, since by symmetry we have M\(rn, n)=/M(m, n).

To illustrate these definitions, suppose rn 2 and n 4. It is well known that
M(2, 4) 5. However, there is a way to perform this merge in only 4 comparisons if in
fact al > bl, by first comparing al with b2. If al > b2, the problem reduces to M(2, 2);
otherwise, comparing al with bl reduces the problem to M(1, 3). Thus/M(2, 4)-<4.

3. An example. We illustrate the use of Knuth’s oracles, and the strategies
available to them, by verifying that M(4, 7)=> 10. Assume that oracles for achieving
M(m, n) and/M(rn, n) exist whenever rn + n -< 10 (see [5]). We consider four cases.

(i) First, suppose a merge algorithm begins by comparing a with bl. The oracle
declares that al > bl, and requires that subsequent comparisons merge {al, a2, a3, a4}
with {b2, b3,’’’, bT}, using an M(4, 6) oracle. Thus M(4, 7)=> 1 + M(4, 6)= 1 + 9 10
in this case.

(ii) If a merge algorithm begins by comparing a with b, with]=>2, a more
complex strategy is needed. The oracle declares that al < b., and requires that later
comparisons merge {a l} with {bl} and {a2, a3, a4} with {bl, b.,..., bT}, with the
restriction that all future pronouncements are consistent with a <bl<a2. These
restrictions ensure that information gained in merging one subproblem is of no help in
the other, even though bl is in both. The situation is illustrated in Fig. 1. The top row is
A, the bottom B, with smaller elements to the left. The dotted lines represent the

FIG. 1. a<bi, j>-_2.

OPTIMALITY OF LINEAR MERGE 87

restrictions the oracle imposes on itself, and the subproblems are encircled. With this
strategy, the oracle can force at least 1+M\(1, 1)+/M(3,7)= 1+1+8- 10
comparisons to be made in this case as well. Thus any algorithm which initially uses a
requires at least 10 comparisons.

(iii) An algorithm that first compares a2 with bi, with/"-< 3, can be handled in a
manner similar to (ii). The oracle declares that a2> b. and requires that future
comparisons merge {al} with {b, b., b3, b4} and {a2, a3, a4} with {b, bs, b6, b7}, under
the restrictions a < b < a.. See Fig. 2. The number of comparisons required in this case
is at least 1 +M\(1, 4)+/M(3, 4)= 1 +3+6= 10.

FIG. 2. a2>bi, j<-3.

(iv) If the first comparison is a2 vs. b with/" -> 4, a simpler strategy will work. The
oracle declares that a2bi, and insists that later comparisons merge {a l, a2} with
{bl, b2, b3} and {a3, a4} with {b4, bs, b6, by} as in Fig. 3. The number of comparisons
required is at least 1 +M(2, 3)+M(3, 4)= 1 +4+5= 10.

FIG. 3. a2<bi, j>-4.

We have shown that any merge algorithm that begins with a comparison using
either a or a2 requires at least 10 comparisons for this problem. By symmetry, the same
is true for a3 and a4. Having considered all cases, we conclude that M(4, 7)-> 10.

The two types of strategy illustrated above endow an oracle with sufficient power to
prove our main result in the next section. In the "simple" strategy, the oracle answers
the query and divides the merge problem into two disjoint unrestricted problems. In the
"complex" strategy, there is an element of B in both subproblems, which are handled
by suitably restricted oracles. Oracles for the functions/M(m, n) and/M\(m, n) use
the same strategies, with one or both subproblems inheriting the restrictions of the
original. A subproblem may have one list empty in degenerate cases, as in case (i) above.
In all cases, though, each subproblem contains fe.wer elements than the original
problem, so that inductive proofs can be used.

4. The main result. The proof of our theorem is simplified by first establishing a
few preliminary results.

LEMMA 1. (i) /M\(m, n) <- /M(m, n) <-_M(m, n).
(ii) /M(m+l,n+l)>-/m(m,n)+2.

(iii) /M\(m + 1, n + 1)>-/M\(m, n)+2.
Proof. Part (i) is obvious; any merge algorithm performs at least as well on more

restricted problems. In part (ii), an oracle for /M(m+l,n+l) can make all
pronouncements consistent with ba < al < b2 < a2, and force {a2, a3,’’’, a,,+l} to be
merged with {b2, b3, bn+}. Then the comparisons aa vs. bl and al vs. b2 can not be
avoided. The proof of part (iii) is similar.

88 PAUL K. STOCKMEYER AND F. FRANCES YAO

We are now ready to prove the main result. Although we are really interested only
in part (a), bounds for all three functions must be proved simultaneously, as each oracle
requires the help of at least one other.

THZOrZM 1. (a) M(m,m+d)>=2m+d-1 form =>2d-2;
(b) /M(m, m + d) >= 2m + d 1 for m 2d 1;
(c) /M\(m,m+d+2)>-2m+dform ->2d-1.
Proof. If (b) and (c) are true for the threshold values rn 2d- 1, then they are also

true for m > 2d- 1 by repeated application of Lemma 1 (ii) and (iii). Also, if (b) is true
for m >= 2d 1 then Lemma 1 (i) implies that (a) is also true for rn >_- 2d 1. Thus it is
sufficient to prove the theorem for the threshold values of rn only, that is,

and

M(2d-2,3d-2)>=5d-5,

/M(2d 1, 3d 1) -> 5d 3

/M\(2d 1, 3d + 1) >- 5d 2.

The proof is by induction on d. The starting values for 1 <= d <-3 are given in Knuth
[5, p. 203].

Part (a). Suppose an algorithm begins by comparing a with bi, where 2k- 1
and =< 3k 2, for some integer k satisfying 1 =< k < d. The oracle proclaims that a > bi
and follows the simple strategy, yielding

M(2d-2, 3d-2)- 1 +M(2k-2, 3k-2)+M(2(d-k), 3(d- k))

>= 1 +(5k-5)+(5(d-k)- 1)

=5d-5.

If 2k-1 and/’>=3k-1, the oracle announces that ai <bj and uses the complex
strategy, with b3k-2 in both subproblems. This leads to

M(2d- 2, 3d 2) _-> 1 +M\(2k 1, 3k 2) +/M(2(d k)- 1, 3(d- k) + 1)

>= 1 +/M(2k- 1, 3k-2)+/M\(Z(d-k)- 1, 3(d- k) + 1)

>_- + (5 -4) + (5(a- to)- 2)

=5d-5.

This settles the case where i is odd. Reversing the order of the elements in A and B
maps all points of A with even subscripts onto those with odd. Thus by symmetry we
have handled the even case as well.

Part (b). Suppose the first comparison of an algorithm is ai vs. bj with 2k- 1
and] -< 3k 2, where 1 -< k -< d. The oracle proclaims that a > b. and uses the complex
strategy, with b3k-1 in both subproblems. In this case we have

/M(2d 1, 3d- 1) -> 1 +/M\(2k 2, 3k 1) +/M(2(d k) + 1, 3(d k) + 1)

_-> + (5- 5) + (5(-) +)

=5d-3.

OPTIMALITY OF LINEAR MERGE 89

If = 2k 1 and/" => 3k 1, the oracle announces that ai < b.. The simple strategy yields

/M(a- , 3-)>-_ 1 +/M(c- 1, 3-)+M(e(t- c), 3(a-c)+ 1)

>=l+(5k-4)+5(d-k)

=5d-3.
Now suppose 2k and/" -< 3k, with 1 =< k < d. Choosing ai > bi, the oracle follows

the complex strategy, leading to

/M(2d- 1, 3d- 1)--- 1 +/M\(2k- 1, 3k + 1)+/M(2(d-k), 3(d-k)- 1)

->_ + (5- 2) + (5(-)- 2)

=5d-3.

Otherwise, if 2k and j -> 3k + 1, the simple strategy with ai < bi produces

/M(2- 1, 3 1) ->_ +/M(2g, 3g)+M(2(a g)- 1, 3(/- g)- 1)

->_ 1 +(5g-) + (5(-)- 3)

=5d-3.

Part (c). Assume an algorithm begins ai vs. bj with 2k 1 and/" <_- 3k 1, where
1 _-< k -< d. The oracle picks a > b and follows the simple strategy, yielding

/M\(2d- 1, 3d + 1) -> 1 +/M(2k 2, 3k 1) +M\(2(d- k) + 1, 3(d k) + 2)

>- 1 +/M\(2k- 2, 3k- 1)+/M(2(d-k)+ 1, 3(d-k)+ 2)

_-> 1 + (stc- 5)+ (5(-)+ 2)

=5d-2.

The case 2k- 1 and j >-3k is the mirror image of this case.
If 2k and j _-__ 3k + 1, with 1 <_- k < d, the simple strategy works again. The oracle

declares ai > bi, and we have

/M\(2d- 1, 3d + 1)=> 1 +/M(2k- 1, 3k + 1)+M\(2(d- k), 3(d-k))

>= 1 +/M\(2k 1, 3k + 1)+/M(2(d- k), 3(d- k))

_-> 1 + (5 2) + (5(t- :)- 1)

=5d-2.

Finally, the case 2k and j >-3k + 1 is contained in the mirror image of this case.
In conclusion, we note that Knuth [5, p. 206] has made several conjectures

concerning the behavior of M(m, n), such as

M(m + 1, n + 1)_->M(m, n)+2.

In view of Theorem 1, it seems reasonable to add

M(m +2, n + 3)->M(rn, n)+5

to the list.
Also, it would be interesting to know the precise range of m and n for which the

linear merge algorithm is optimal. No instances have been found outside the range
m -<_ n _-< [3m/2/+ 1, but cases as small as rn 7, n 12 remain open.

90 PAUL K. STOCKMEYER AND F. FRANCES YAO

Note added in proof. It has come to the authors’ attention that essentially the same
results have been proved independently by C. Christen in On the optimality of the
straight merging algorithm, Publication number 296, D6partement d’informatique et
recherce op6rationelle, Universit6 de Montr6al.

REFERENCES

[1] R. L. GRAHAM, On sorting by comparisons, Computers in Number Theory, A. O. L. Atkin and B. J.
Birch, eds., Academic Press, London, 1971, pp. 263-269.

[2] F. K. HWANG, Optimal merging o] 3 elements with n elements, to appear.
[3] F. K. HWANG AND S. tiN, Some optimality results in merging two disjoint linearly-ordered sets, Bell

Telephone Laboratories internal memorandum, 1970.
[4] ., Optimal merging o] 2 elements with n elements, Acta Informat., (1971), pp. 145-158.
[5] D. E. KNUTH, The Art o]’ Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/09001-0007 $01.00/0

BOUNDS FOR LIST SCHEDULES ON UNIFORM PROCESSORS*

YOOKUN CHOir AND SARTAJ SAHNI$

Abstract. Bounds are derived for the worst case performance of list schedules relative to minimum finish
time schedules for uniform processor systems. The tasks to be scheduled are assumed to be independent and
only nonpreemptive schedules are considered.

Key words, list schedules, nonpreemptive schedules, uniform processors, independent tasks

1. Introduction. A uniform processor system consists of m, m-> 1, processors
P1, P2, , P,. Associated with each processor is a speed si, si -> 1. In one unit of time Pi
can carry out si units of processing. Without loss of generality, we may assume si <= si+ 1,

1 <- < rn and Sl 1. We are given n independent tasks that are to be processed. Task
requires ti units of processing (ti is the task time of task i). If task is assigned to Pj then
ti/si time units are needed to finish this task. A nonpreemptive schedule is an assignment
of tasks to processors such that each task is assigned to exactly one processor. For each
processor the order in which tasks are to be processed is also specified. If T/is the set of
tasks assigned to Pi then the finish time of Pi is (ieT,ti)/Si. The finish time of the schedule
is the time at which all processors ’T.,t" have finished processing.

For the case when si 1, 1 <- <- m the processor system defined above is known as
a system of identical processors. It is well known that finding minimum finish time
nonpreemptive schedules for identical processors with rn _-> 2 is NP-hard (see e.g. [7]).
Several heuristics to obtain "near optimal" schedules for identical processors have been
studied. Graham [4] has studied the performance of LPT schedules. In an LPT schedule
tasks are assigned to processors in nonincreasing order of task times. Whenever a task is
to be assigned, it is assigned to that processor on which it will finish earliest. Ties are
broken arbitrarily and tasks are processed in the order assigned. Let be the finish time
of an LPT schedule for any given task set. Let f* be the finish time of an optimal
schedule. Graham [4] has shown that

lf*<-4/3-1/(am).
Another heuristic studied by Graham is the list schedule. This scheduling rule differs
from the LPT rule only in the order in which tasks are considered for assignment to
processors. A list (or permutation) of the indices 1, 2,..., n is provided. Tasks are
considered in the order in which they appear on this list. If [is the finish time of a list
schedule and f* that of an optimal schedule for any given task set then it is known [3]
that"

/f* _-< 2
1
o
m

Hence, for identical processor systems LPT schedules are better than arbitrary list
schedules by only a constant factor. Note that an LPT schedule is a special case of a list
schedule (i.e., the case when the tasks in the list are ordered in nonincreasing order of
task times). Other heuristics for identical processor systems have been studied by
Coffman, Garey and Johnson [1] and Sahni [9].

Received by the editors July 25, 1978. This research was supported in part by the National Science
Foundation under Grant MCS 76-21024.

" Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455. Presently
at Seoul National University, Korea.

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

91

92 YOOKUN CHO AND SARTAJ SAHNI

Another special case of a uniform processor system is when si 1, 1 _-< < m and
s,, > 1. This case has been studied by Liu and Liu 18] and Gonzalez, Ibarra and Sahni
[2]. Liu and Liu [8] considered a variation of the LPT rule defined here. They require a
task to be assigned to that processor that becomes idle first rather than to the processor
on which it will complete first. For this rule they show that

]/f.<{ 2(m-l+s,)/(s,,+2) fors,,-<2,
(m 1 + s,)/2 for s,, > 2.

Gonzalez, Ibarra and Sahni [2] show that for LPT schedules

<_/1+4---1-7-, m= 2,

/2-1/(2m), m>2.

Finally, LPT schedules fo general uniform processo systems have been analyzed
by Gonzalez, Ibarra and Sahni 2J. They show that

/f* <- 2m/(m + 1).

Liu and Liu 8J have analyzed list schedules for the case when s 1, 1 _-< < m and
s, (1. Thei analysis assumes that the nxt task on the list is to be assigned to the first
idle poeesso. Unde this assumption they obtain the bound:

m-1

s+m-l"
A survey of similar results for other machine and task set models appears in [5]. In

this paper we analyze arbitrary list schedules for the case of general uniform processor
systems and also for the special case when s 1, 1 < m and s > 1.

In 2 we show that for the general case

/ (1 + 4)/2, m 2,
/ 1 + (g2m 2)/2, m > 2.

For the case of m 6 the bounds given above are tight in the sense that there exist
task sets and lists for which /f* equals the stated bound. For m > 6 we are unable to
show the bound tight and suspect that it is not tight. We also present an example that
shows that f/f* is not bounded by any constant. Hence, while for identical processors
LPT schedules are better than list schedules by only a constant factor, for general
uniform processor systems the ratio of the finish time of an LPT schedule to that of an
arbitrary list schedule is not bounded by any constant (but by some function of m).

In } 3 we consider the special case of si 1, 1 1 < m and s > 1. For this case we
show that

[(1 + 4)/2, m 2,
=/3-4/(m+1), m3.

Furthermore, the bound is tight.

2. General unitorm processor systems. In this section the following theorem is
established:

THEOREM 1. Let t, 1 n be the task times ofn independent tasks. Lets, 1 m
be the speeds of the m processors in the system. Let be the finish time of the schedule
obtained using any given listL and &tf* be the finish time ofan optimal schedu& for the

LIST SCHEDULES ON UNIFORM PROCESSORS 93

task set. Then,

/f.I (1 + 4-g)/2,
1 +(42m-2)/2,

Furthermore, form <= 6 there exists task sets, lists andprocessor systemsfor which/f*
equals the above bound.

Theorem 1 will be proved in several steps. First, we derive some relationships
between]//’* and the si’s and ti’s. In the following it will be assumed that sl <= sz <=" <-
s,,, sl 1 and f* 1. We shall also assume that the tasks have been indexed so that the
list is given by L (1, 2, 3,..., n). Note that these assumptions do not affect the
generality of the proofs. Any problem instance that violates one or more of these
assumptions may be transformed into an equivalent problem instance satisfying all the
assumptions by sorting the si’s, reordering the tasks and appropriately scaling the
and ti’s. We shall also assume that in case of a tie, the list scheduling algorithm assigns
the task to the processor with highest index. Since our proof will be a proof by
contradiction, it is necessary to develop relationships only for the smallest n (for any
given m) for which the theorem may be violated. Thus, if h," , t, defines a task set
with least n for which the theorem does not hold then it is easy to see that the finish time
of the list schedule is determined by task n. To see this, observe that if < n determines
the finish time then we can eliminate tasks i+ 1,..., n and consider only tasks
1, 2,..., i. For this set,/ is unchanged and f* is not increased. So,//f* does not
decrease and we have a smaller instance violating the bounds of the theorem. Now,
since task n finishes at/ we can imagine the list schedule to look like Fig. 1. Here/" is any
index in the range [1, m] and =F.+t,/si. Let Fi be the finish time of P, l<=i<=m,
before task n is scheduled.

PI

F
FIGURE

Since we are assuming f* 1, it follows that

(1) Et,<-Es,,

(2) t.<max{ti}<s.,.=

From the definition of list schedules, it follows that

(3) Fi + t,/s, >-_ l <- <= m,

94 YOOKUN CHO AND SARTAJ SAHNI

or siF/+ tn _-> s., 1 <= <- m. Using (3) with m we obtain

(4) s.f <= s,F. + tn <= ti " si.

Si/Sm.Hence, =< Ei
From (3), we obtain

(5) si(f -Fi) <= tn, 1 <= <- m,

Summing (5) for 1-<i<_-m and using (1), we get

E Si?-- E siFi (m 1)t, + t,

or

Hence,

E Sif (m 1)t, + siFi -- t,

_-<(m 1)t,, +. ti

<=(m-1)tn+Y’.si.

(6a) f<=l+(m-1)t, si

(6b) N 1 + (m 1)s,

LZMMA 1. /f* <-- (1 + /4m 3)/2, m >--_ 2.
Proof. Assume the lemma is false. Consider the smallest n for which it is false. From

the preceding discussion we may assume f* 1 and that the list is (1, 2, , n). Hence
equations (1)-(6) hold.

Using x to represent the ratio si/s,, we obtain (7) from (4) and (6b).

(7) 1=< min {x, 1 +(m 1)/x}.

The maximum value of the right hand side of (7) is obtained when

x=l+(m-1)/x or xZ-x-(m-1)=O or x=(l+/4m-3)/2.
Hence, 1<-(1 +/4m 3)/2. So, the lemma must be true for all m, all task sets and all
lists. El

When m =2, (1 +/4m-3)/2 =(1 +/)/2. This observation together with the
following example proves Theorem 1 when m 2.

Example 1. Let sl 1, s2=(1 +/)/2, tl 1 and t2=(1 +/)/2. (Note that by
assumption L (1, 2).) It is clear that f* 1. In the list schedule however, both tasks 1
and 2 get assigned to Pa and

= (t + ta)/sg. (1 + /)/2.
When m 3, (1 + /4m- 3)/2 1 + (/2m -2)/2 2. This together with Example

2 establishes Theorem 1 for m 3.

LIST SCHEDULES ON UNIFORM PROCESSORS 95

Example 2. Consider, sl s2 1, $3 2, tl t2 1 and t3 2. Again, f* 1. In the
list schedule all three tasks get assigned to P3. Hence, f 2. Note that if a different tie
breaking rule is used then we may replace s3 and 13 by 2+e. In this case [=
(4 + e)/(2 + e) whuch approaches 2 as e - 0.

The bound of Lemma 1 is not tight for m > 3. This is established by obtaining a
smaller bound. First, we derive some more inequalities. We readily observe that in
every list schedule, task I is always assigned to P,,. Since we may assume n > 1, it follows
that P,, always has at least one task (other than task n) assigned to it. Consider the status
of the list schedule just before task n is assigned to a processor. Let t’ be the task time of
the last task assigned to Pm (note that this task cannot be task n as it has not yet been
assigned). Let Gi be the finish time of Pi, 1 _-< _-< m just before t’ was assigned to P,,. It
follows that Gi _-< F, 1 _-< m. Since t’ was assigned to P,,, if follows that:

(8) Fi + t’/si >- Gi + t’/si >- Gm + t’/s F, 1 <= <- m.

Using to denote tn and substituting m in (3) we obtain

s,F,+t>=s,[or Fm >-f-t/s,.

Substituting into (8) we get

(9) Fi + t’/Si >- f t/sm or siFi + t’ >= sif tsi/ Sm, l<=i<_m.

Further, it follows from f* 1 that

(10) t’+t<=s,-+s,.

(11)

LEMMA 2.]/f* <-- 1 + (x/2m 2)/2, m _--> 4.
Proof. Suppose the lemma is not true. Consider the least n for which

/f* > 1 + (42m 2)/2.

We may assume f* 1 and that the list is (1, 2,. ., n). Let t’ and be as defined
before. We first recall the following inequality:

(12) ,siFi+t= ti<--ESi.
From (3) with m and m 1 we get

Sm-lFm-1 + s.F. + 2t >-_ (s,- + s,,).

E siFi + 2t >-f(Sm-1 "}" Sm).

This together with (2) and (12) yields

(13) E Si "at" So, f(Sm--1 -[- Sin)

Equations (11) and (13) together yield"

x/2m 2
1+

2

or /<=1+ ? Si Sin-1

Sin-1 +Sm

<1+Er S Sin-1

Sin-1 + Sm

96 YOOKUN CHO AND SARTAJ SAHNI

or

(14) (s.-i + s.) <
42m +/- 2.\ si- s.,_

Summing up m- 1 inequalities from (3) (i.e. 1 <i=< m) and inequality (9) with
1, we get

E siFi + (m 1)/+ t’>= E si?- slt/s.,.

Substituting (12) into the above equation, we get

Y’. si + (m -2)t + ’>- Y. si- st/s.,.

From this and (2)we get

(15) si + (m 2)t + t’+ sa _-> Z si

Also, from (6b) and (11) we get

(16)
/2m -2

2
<(m- 1)s. si.

The next step is to show that if (11) holds then > s,._l. Suppose <- Sin-1 then from
(15) and the knowledge t’=<max {ti}<-s,. we get

Y. s + (m 2)s.,-1 + s., + Sl --> Y. sd

Rearranging terms, we get

(17)

This together with (11) gives

)-< 2 + (m-3)s,._/s.

1 + (x/2m- 2)/2 < 2 + (m-3)s.,_X/lS
or

(18)
x/2m -2-2
2(m -3)

Adding 1/(m- 1) times (16) to (18) we get

Sm-1

(19) x/2m-2-2 x/2m -2
+

2(m-3) 2(m- 1)

Combining (19) and (14) we get

x/2m 2- 2 x/2m 2

2(m-3) 2(m- 1)

Sin-1 + Sm

E7 Si

2 (l_S.,-x]x/2’ 2 Y. s,’/"

LIST SCHEDULES ON UNIFORM PROCESSORS 97

Simplifying, we get

s.-i /2m -2-2
E?Si 2(m-3)

This contradicts (18). So, > s,,,-1. Hence, task n is scheduled on P., in f*. If t’ is
also on P. then t’ =< s. t. Otherwise, t’ <- Sm-. Hence,

(20) t’ =< max {s,-l, s. t}.

We shall now show that no matter which of s,_ and s., is maximum we arrive at
contradicting relations. So,/ <- 1 + (42m- 2)/2.

Summing (3) with rn and m 1 and (9) with 1 =< =< m 2, we obtain

m--2

E siFi "" 2t + (m 2)t’-_>/E Si- sit/sin

Substituting from (2), (10), and (12) we reduce this to

rn m--:2

Si+Sm-lq-Smh’(m--a)t’-I Si>.ESi

or

(21) f=< 2+ (m-3)t’ Si.

First, let us consider the case s,,,_ -> s., t. (20) yields t’ <-_ Sin-1. Substituting into
(21) we get

f=<2+(m--3)Sm-/Si.
This is the same as (17) and together with (11) and (16) can be used to derive (19)

and arrive at a contradiction as before.
If s._ <s.-t then t’<=s.-t and <s.-s.-l. Substituting into (21)we get

(22) f<= 2 + (m 3)(s. t) Si.

Adding (22) and (m- 3)/(m- 1) times (6a) we get

2m 4. m-3 (m 3)s
m 1

_<-2+ +
m-1 si

Substituting for/ from (11) we get

(/2m-2) m-3 (m-3)s.2m-4
1+ <2++

m-1 2 m-1 Ysi

or

2m-4 (2m-4)/2m-2 m-3 (m-3)s.
+ -2-<
m-1 2(m- 1) m-1 ’si

or

(m 2)/2m -2 (m 3)s,.
-1<

m-1 Y’ Si

98 YOOKUN CHO AND SARTAJ SAHNI

or

(m-2)x/2m-2-(m-1)
(m- 1)(m-3)

Combining with (4) we get

am

(m 1)(m 3)
(m-2)42m-2-(m-1)"

One may easily verify that the right hand side of (23) is no more than 1 +
(x/2m-2)/2 for m >-4. This contradicts (11) and establishes the lemma, lq

To complete the proof of Theorem 1 we need to show that the bound is tight for
m 4, 5 and 6. The next three examples do this.

Example 3. m 4, sl sz 1, $3 x/-/2, $4 $3 "+" 1. tl t2 .5, t3 1, t4 x/-/2
and t5 1 + x/g/2. Clearly, f* 1.
Figure 2(a) shows the list schedule. 1 1 + x/g/2 1 + (x/m- 2)/2.

Exa,m_ple 4. m =5, s s2 s3 1, s4 /, s5 1 + /. tl t2 t3 1, t4 x/,
ts 1+42. f*= 1. The list schedule is shown in Figure 2(b) and]= l+x/=
1+ (/2m 2)/2.

Example 5. m 6, sa s2 s3 s4 1, ss /-i--2, s6 1 + x/10/2, t t2 .5,
t--- t4 ts 1, t6 /-i--6/2 and t7 1 + (/]-)/2. Again, f*= 1, /= 1 + /-i--d/2
1 + (/2m-2)/2 (see Fig. 2(c)).

s=l

(a) m=4
n=5 (b) m=5

n--5

s6 + lye2

s4

s3

se

s=l

FIG. 2. List schedules for Examples 3, 4 and 5.

(c) m=6
n=7

The question that naturally arises at this time is: What happens when m > 6? Is it
possible for 1/* to get as large as the bound given in Theorem 1 ? We have been unable
to generate examples achieving this bound for m > 6. The worst examples we were able
to generate for m 7 and 8 are given in Examples 6 and 7. These were arrived at by
considering a certain job distribution pattern, deriving inequalities that led to a cubic
equation. A root of this equation yielded s,, and the remaining numbers were obtained
by back substitution.

Example 6. m 7. Let r be a real root of the cubic equation 4r3-1 lr + r- 1 0.
Sl=S2=S3=I, s4=r+l/r--2, ss=r--r/(r--1), s6=r--1, s7=r. tl=r-3r+2-1/r,
tz=r2-3r+r/(r-1), t3=l-ta-t4, t4=rZ-3r+l, ts=l-t2, t6=l, t7=r+l/r-2,
t8 r- r/(r- 1), t9 r- 1, tao r. For an optimal schedule, the list is (10, 9, 8, 7, 6, 5, 4,
3, 1, 2) Clearly f*= 1. An approximate value for r is 2.691. This yields s4 1.063,
s5= 1.100, s6-1.691, s7-2.691, t1=.797, t2=.760, t3=.033, t4=.170, t5=.240,
t6 1, t7 1.063, ts 1.100, t9 1.691 and tao 2.691. For the list schedule consider

LIST SCHEDULES ON UNIFORM PROCESSORS 99

the list (1, 2, ., 10). The resulting schedule is shown in Fig. 3(a) and[2.69 The
bound of Theorem 1 when m 7 is 2.732.

Example 7. m 8. Let r be a real root of the cubic equation 4r3- l lr2-1 0.
S1"-$2"-$3--$4"-1, ss=r+l/r-2, s6=r-r/(r-1), s7=r-1, s8=r. tl=
r2-3r+l-1/r, t2=l, t3=r2-3r+r/(r-1), t4=rZ-2r-r/(r-1), ts=l-t3, t6"-
1-tn-tl, tT=l ts=r+l/r-2, t9=r-r/(r-1), q0=r-1, tll=r. For an optimal
schedule, the list is (11, 10, 9, 8, 7, 6, 5, 1, 4, 3, 2). Again 1* 1. An approximate value
for r is 2.782. Using this, we get s5 1.141, s6 1.221, s7 1.782, s8 2.782, tl .035,
t2 1, t3--.955, t4 .615, t5 .045, t6 -.350, t7 1, t8 1.141, t9- 1.221, tl0-" 1.782,
tll =2.782. Assume a list schedule is constructed using the list (1, 2,..., 11). The
resulting schedule is shown in Figure 3(b) and1 2.782 The bound of Theorem 1 is
2.87.

. 2.691

s7=2"691 ii2i i [87 I] 9’
s6 1.691

s5 1"100

s4 1.063

S3

S2

- 2.782

10

(a) m=7, n= 10

2.782

s7 1.782

s6 1.221

s.s 1.141

$4

(b) m=g,n 11

FIG. 3. List schedules [or Examples 6 and 7.

While we have been unable to establish a tight bound for m > 6, we can show that
the bound on//[* must increase as m increases. Hence, there is no constant k such that
1//*=< k for all m. This result should be contrasted with the bound for identical
processors which is itself bounded by 2.

THEOREM 2. There exist task sets, uniform processor systems, and lists]or which
/f* >= L(log2 (3m 1) + 1)/2J.

Proof. Let k (log2 (3m- 1)+ 1)/2. We shall construct an example that achieves
the above bound when m is such that k has integer values (i.e. when m 3, 11, 43,).
There are k sets of processors Gi, 1-< _-< k. Each processor in Gi has a speed of 2.
]GI 2k-i-1, 1 =<i<k and IGkl 1. Thus, the total number of processors is m
1 + 21 + 23 + 22k-3 2(4-1-1)/3 + 1.

We shall have k sets of tasks T, 1 =< <-k. The task time of a task in T/, is 2 i,
1 -< k. Also, ITI 22’-2i-1 1 < < k and ITs[1

It is easily verified that f* 1. Consider the list in which all tasks appear as follows"
T1 tasks followed by T2 tasks followed by T3 tasks etc. The resulting list schedule is
given in Fig. 4. The schedule consists of k columns. Each column contains tasks with
identical task times. In column i, 1-<_ < k the processors in Gj, + 1 <=] <= k will be
processing tasks with a task time of 2 i. The number of tasks on a processor in G.,
+ 1 -</" <= k is 2i-. Thus, the total number of tasks scheduled on all processors in Gi will

be 2i-i * Ial- 2i-i 2 2-2i-1 2 2t-i-i-1 for + 1 =< j < k and 2t-i for Gk. Therefore

100 YOOKUN CHO AND SARTAJ SAHNI

the total number of tasks in column is

k-1 k-i-1

22k-i-i-l’l-2 k-i 22k-Ei-l-iq-2k-i
j=i+l i=1

k-i-1

22k-2i-1 1/2 + 2k-i
]=1

22k-2i-1(1/2((1/2)k-i-l- 1)/(1/2- I))+ 2k-i

22k-2i-1 (1 (1/2)k-i-l) + 2k-1

22k-2i-1_ 2k-i q_ 2k-i 22k-2i-1.

In column i, we need 22k-2i-1 tasks with task time 2i. We observe that the number
of tasks with task time 2 is exactly 22k-2i-1 for 1 _--< < k. Thus, all tasks with the same
task time are scheduled in one column, i.e., all tasks from Ti, 1 _<- _<- k will be processed
in column i. Note that ’exactly k columns can be scheduled with the given tasks. It is clear
that any task in column i, 2 -< _-< k cannot be processed in column f, 1 _-< f _-< i. Hence,

Set si IG,

Gk 2

Gk--, 2k-- 2

(k-2 2 8

Gk-3 2k-3

G2 4 22k

G, 2 22k-3

2

2

2

2k’4i

task time of the tasks in each column
2

2

2

2 2

2 2

2

2-2 2 2

numbers inside the blocks represent the number

of tasks oh a single processor within each block.

FIG. 4. List schedule for Theorem 2.

3. The ease st = 1, 1 =< i < tn and s., > 1. In this section the following theorem is
established:

THEOREM 3. If Si 1, 1 <-- < m and s. > 1 then

.f/f, < (l + 4-)/2, m=2,
3-4/(m+1), m_->3.

For each m, m >- 2 there exists task sets, lists and s, for which /f* equals the above
bound.

LIST SCHEDULES ON UNIFORM PROCESSORS 101

For rn 2 and 3 the bounds for Theorems 1 and 3 are the same. Moreover, the
examples given in the last section for rn 2 and 3 can be used here too. So, the theorem
needs to be proved only for m > 3.

For rn > 3, consider any task set, m, Sm and list. Let s sin. Letfbe the finish time of
the corresponding list schedule and f* the optimal finish time. We shall show that the
following inequality holds.

(24) /f* <- 1 + (m 1)
min {s, 2}.

s+m-1

Since s/(s + rn 1) is an increasing function of s, it follows that the right hand side
of (24) is maximized when s 2. Hence, (24) reduces to

2(rn- 1)
m+l

3-4/(m + 1).

We prove (24) by considering two cases. Let F be the finish time of Pi in the list
schedule.

Case 1. If= Fm]. Let F mini#re{F/}. Clearly, the following inequality must hold"

(m-1)F+s<-ti

or

(25) F<- (t,-s)/(tn -1).

Let be the task time of the last task assigned to Pro. We may assume this is the last
task in the list. If not, we can dispense with the remaining tasks and not reduce f/f*. We
observe that F + =>/ and sf* >= t. Using these and (25) we get:

sf* >-P-F >-f (E t, sf") l m 1).

The preceding inequality together with the inequality ti -<- (s + m 1)f* yields:

(26) f/f* <-_ 1 + s(m 1)/(s + m 1).

Now, let t’ be the length of the last task assigned to Pm in the list schedule and which
was not assigned to Pm in the optimal schedule. Clearly such a task exists as otherwise
]= f*. Let SUC(t’) be the sum of the task lengths of the tasks assigned to Pm after t’ in
the list schedule. Clearly, SUC(t’) <=sf* and t’ _-<f*.
Also, F + t’ >=- SUC(t’)/s. Hence,

s(F + t’) >= sf SUC(t’)

>-sf-d*
or F+f*>=f-f* or F>=f-2f*

From this and (25) we obtain

(27)
ti --> (.f- 2f*)(m 1) + sf.

102 YOOKUN CHO AND SARTAJ SAHNI

Since Y’. ti _-< (s + m 1)f*, (27) results in (28)

(28) /f* <- 1+-
2(m- 1)
s+m-l"

Combining (26) and (28) we get (24).
Case 2. # F,,]. In this case,)> F,,. Without loss of generality, we may assume

/ F,,-1. Let be the length of the last task assigned by P,-I. As before, we can assume
that this is the last task to be assigned to any processor. Note that no F, # m may be
less than]-t. If any Fi, <m- 1 is greater than]-t then we can decrease the
processing requirements of the last few tasks assigned to Pi so that F is now equal to

1- t. This decrease will not change the list schedule but may decrease f*. So /f* does
not decrease and we will only be considering a worse case. Hence, we may assume

F=f-t=Fi, l <=i<=m-2.
It is easy to see that sF, ++ (m 2)F Y.’ ti -< (s + m 1)f*. Since F + 3 and

sF, + > s, it follows that sF, + + (m 2)(F + t) > (s + m 2)/. But, sF, + +
(m-2)F=ti<=(s+m-1)f*. So, (s+m-1)f*-+(m-1)t>(s+m-2) This
together with the equation <= sf* yields

s(m- 1)
(29) /f* < 1 + s+m-l"

Let t’ be the length of the last task assigned to P,, in the list schedule and which is
not assigned to P,, in f*. If such a t’ does not exist then F,, =< f*. If the task with length
was on P,, in f* then <= F, + t/s <= f*. Otherwise, -< f* and < F,, + t/s < 2f*. In either
case f/f* <2 and the theorem holds. So, we may assume t’ exists. Let SUC(t’) be as
defined in Case 1. Now, F+t’>=f-SUC(t’)/s. Since, SUC(t’)<=sf*, the previous
inequality becomes sF + st’>= s- sf* or F + t’=>/-f* or F >=1- 2f*.

Substituting sF,, + >fand)- F into sF,, ++ (m 2)F -< (s + m 1)f*, we get

(30) (m 1)F + s) =< (s + m 1)f*.

Using F ->1- 2/* in (30) yields

2(m- 1)
(31) //f*_-< 1+

s+m-l"

(29) and (31) yield (24). This completes the proof for the upper bound of Theorem
3. The next example shows that the bound is tight.

Example 8. For any fixed m, m => 3 let n (m 3)(m + 1)+ 3 and s, 2, s 1, 1 =<
< m. The n task times are t 1/(m + 1), 1 -< -< n 3, tn-2 tn_l 1 and t, 2. By

m-3

Sin=2

s=l

OVl

"1
o.I

FIG. 5. List schedule]’or Example 8.

LIST SCHEDULES ON UNIFORM PROCESSORS 103

assigning task n to Pro, tasks n 1 and n 2 to P,,-1 and Pro-2 respectively and assigning
(m + 1) of the remaining tasks to each of the remaining processors we get a schedule
with finish time 1. It is easy to see that this is optimal and so [* 1.

If the list for scheduling is (1, 2, , n) then the resulting list schedule is as in Fig.
5. For every two tasks with index _-< n -3 assigned to P,,, one task with index-< n -3 is
assigned to each of the remaining processors. The finish time) is (m-3)/(m + 1)+
4/2=3-4/(m+1).

REFERENCES

[1] E. G. COFFMAN, JR., M. R. GAREY AND D. S. JOHNSON, An application of bin-packing to multi-
processor scheduling, this Journal, 7 (1978), pp. 1-17.

[2] T. GONZALEZ, O. H. IBARRA AND S. SAHNI, Bounds for LPT schedules on uniform processors, this
Journal, 6 (1977), pp. 155-166.

[3] R. L. GRAHAM, Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45 (1966), pp.
1563-1581.

[4] Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969), pp. 263-269.
[5] R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN, Optimization and

approximation in deterministic sequencing and scheduling: A Survey, Mathematisch Centrum,
Amsterdam, BW 82/.77, 1977.

[6] E. HOROWITZ AND S. SAHNL Exact and Approximate Algorithms for Scheduling Non-Identical
Processors, J. Assoc. Comput. Mach., (1976), pp. 317-327.

[7] Fundamentals o[Computer Algorithms, Computer Science Press, Maryland, 1978.
[8] J. W. S. LIU AND C. L. LIU, Bounds on Scheduling Algorithms]’or Heterogeneous Computing Systems,

Proc. IFIP, (1974), pp. 349-353.
[9] S. SAHNL Algorithms]’or scheduling independent tasks, J. Assoc. Comput. Mach., 23 (1976), pp.

116-127.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0008 $01.00/0

WORST CASE EXPONENTIAL LOWER BOUNDS FOR INPUT
RESOLUTION WITH PARAMODULATION*

R. STATMAN-

Abstract. Input resolution with paramodulation is a theorem proving procedure complete for sets of unit
clauses with equality. This procedure recommends itself because it is easy to implement, and several
implementations are in use in more general theorem proving programs. In this note we show that input
resolution with paramodulation requires, in the worst case, proofs of exponential length even though the
satisfiability problem for sets of unit clauses can be solved in polynomial time.

Key words, input resolution, paramodulation, exponential, lower bounds

1. Introduction. General interest in the complexity of theorem proving procedures
stems partly from Cook [5] and Cook and Reckhow [6] where it is shown that there is a
polynomial bounded proof system for tautologies if and only if NP is closed under
complementation. In Statman [4b] it is shown that there is a polynomial bounded
intuitionistic proof s,stem if and only if NP P-space.

In this connection, particular interest in resolution based systems stems from
Tseitin [7] where it is shown that "regular" resolution requires, in the worst case, proofs
of exponential length on a class of sets of clauses whose satisfiability problem can be
solved in polynomial time. Input resolution with paramodulation is a theorem proving
procedure complete for sets of unit clauses with equality. This procedure recommends
itself because it is easy to implement, and several implementations are in use in more
general theorem proving programs (see e.g. Chang and Lee [1]). In this note we show
that input resolution with paramodulation requires, in the worst case, proofs of
exponential length even though the satisfiability problem for sets of unit clauses can be
solved in polynomial time.

Our proof proceeds by simulating input resolution by a special class of nondeter-
ministic pushdown stack automata. This class has not previously been discussed in the
literature. We derive upper and lower time and space bounds for these automata, and
these bounds apply automatically to input resolution. As a by product, we strengthen a
result of Kozen [8].

2. Symmetric nondeterministic pushdown stack automata. A SNPDA is a
nondeterministic pushdown stack automata without input all of whose transitions are
reversible. More precisely, an SNPDAM (A, S, R) consists of a finite pushdown
alphabet A, a finite set of states S, and a finite set of transition rules R. Each member of
R has the form s as2 to be interpreted as meaning both (1) if in s then push a and go
into s2, and (2) if in s and a is topmost in the stack then pop a and go into s. Below we
shall always assume that each member of A t.J S is mentioned in R.

A configuration o-s of M consists of a stack o- (possibly 4’), where bottom to
top left to right, and a state s. AnM computation from configuration - to configura-
tion ’n is a sequence -, , -n of configurations s.t. ’i+1 follows -i according to one of
the rules of M.

The space of a computation 3" is the maximum size of a stack in 3". The time of 3" is
the number of configurations in 3’. The size of M, IM], is the cardinality of R.

A SNPDA homomorphism h from M (At, S, R) toM (A, S, R2) is a map
h: A A and h: S-S s.t. sas R h(s)h(a)h(s) R.

* Received by the editors June 26, 1978, and in revised form January 19, 1979.

" Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.

104

WORST CASE EXPONENTIAL LOWER BOUNDS

3. Upper and lower bounds in runtime and space.
DEFINITIONS. Let 1 al, an and ya fl, ,/3,, be computations and

rA*
(1) /1 --On 01
(2) rxa),l o’a, ., o’a, (intuitively, "put o" below yx");
(3) ’1 t’2-" O1, On-l, O"’2 if o’, =o’fl

/ otherwise
(4) qz/3,z=a, a,-,oN3/z ifo-, =o-fl

yz otherwise.
PROPOSITION. Let M (A, S, R) be a SNPDA with s’, S; if there is an M

computation from s’ to s" then there is one with space <-IM[" 2.
Our proof is motivated by the construction of minimal machines from finite

automata. Call states s and s2 of M equivalent if there is an M-computation from s to

s2. We shall construct a system of representatives for the equivalence classes of S in such
a manner that there is an M-computation of space <_-]S[from each state to its
representative. In particular, we shall construct an SNPDA M* with states from S and
an SNPDA homomorphism h from M onto M* determined by certain cannonical M
computations. M* is deterministic with respect to pop. The definition of h insures that
each state of M has a representative among the states of M*. The determinism of M*
insures that these representatives are unique.

We proceed inductively constructing at stage n a set of computations F,, compu-
tations y, (s) for s e S, and a computation y,.

Stage 1. Fl- S[.J{sl, aSE’Sl,--)aSER}, /I(S)--" S, and
Stage k + 1. If there are computations tl, t2 Fk from Sl to trs and s2 to trs resp. for

s # s2, set ")/k+l 88. Let Tk+I(S) Tk(S)Xa])k+l and put Fk+I
g/(7’N 7k+1) 7 Fk}. Otherwise stop.

Let S, {s S’s begins or ends a member of F,}; the following are easy to see.
(1) y,(s) begins with s and ends in S,, and ,, and any y F, begin in S and end

with some rs for s e S and r b or o" A.
(2) Space (y(s)) _-< n and 3’ F :space (y) _-< n.
(3) I&l--< Isl- n / 1.

Thus the construction stops at some n0_-< Isl--< IMI 2. Let S* S,o, F F, and y(s)
y,o(S). Observe that

(4) if 3’ F has both ends in S then they are the same.
(5) If Yl, "Y2 1-’ end in the same configuration then they both begin with the same

member of S*.
Define an SNPDA M* (A, S*, R*) where s- as2 R*:df there is a compu-

tation from s to as2 in F. Set h(s)-dr end of y(s) for s S, then h is a SNPDA
homomorphism of M onto M* which is the identity on S*. Now M* is deterministic
w.r.t, pop so if there is an M computation from s to s2 then h(Sl) h(s2) so
y(Sl) y(s2)-a is an M computation from s to s2 with space -<-IM]" 2.

COROLLARY. If there is an M computation from s to s then there is one of time
_-< 2 [Ml((loglM]. 2)+ 1).

COROLLARY. If there is an Mcomputation from Sl to s2 and IA[1 then there is one

of time _-<4.]MI2.
COROLLARY. The following problem can be solved in polynomial time" Given

SNPDA M (A, S, R) and s1, s2 S, is there an M computation from Sl to S2?
Proof. The proof is by inspection of the proof of the proposition.
The reader may have observed that a straightforward dynamic programming

argument gives the preceding corollary and a space bound of [MI2 for the proposition.

106 R. STATMAN

However if this bound is plugged into the first corollary, the resulting time bound is not
polynomial in the bound stated there.

Define SNPDAMn=(An, Sn, Rn) by An={ai’O<=i<=n+l}, Sn={Sij’l<=i<-n
and 1 =<]-2}LJ{u, v,x, y}, and Rn-{Sil(--)aix, si2(---)aisil, si2(---)ai_lx" 1-< i-<_ n}Cl{y (-->

aox, v (-->anx, v (-->an/lU, x (-->an+lu}. We shall give an exponential lower bound on the
time of an Mn computation from x to y. In order to motivate the proof let us represent
SNPDAM (A, S, R) by a directed graph as follows: the vertices of the graph are the

members of S, and the edges (labeled by members of A) are defined by sl SE is an edge
if sl (--> as2 R. In this way we can always cross the edge from s to sE by pushing a, but
we can only cross the edge from sE to s (contrary to the direction of the arrow) if a is at
the top of the stack. The graph representing Mn is the union of the following:

y x;

for 1 =< =< n, and

Vn+l; x

In order to go from x to y one must first go around Tn/l counterclockwise leaving a
stack an. In order to get rid of an one must go around Tn clockwise; thus one must go
around Tn/l again to get a stack anan before going around Tn, finally leaving a stack
an-1. In order to get rid of an-1 one must go around Tn-1 clockwise; thus one must
repeat the whole trip so far to get a stack an-lan-1 before going around Tn-1, finally
leaving a stack an-E, etc. More precisely, let 3’ be a shortest Mn computation from x to y
and set 8 x, an+lU, v, anx, anan+lU, any, ananx, ansnl, Sn2. The following three lemmas
provide a decomposition of 3".

LZMMA. Suppose 3" 81, o’x, (ran+lU, BE, thenrx, ran+lU, 8E (r8, an-ix), 84for
some 84, provided r does not end in

Proof. Since 3’ is shortest 3"=81, (rx, ran+lU, rv, cranx,..., rax, (ra-lsnl,
k-2 k-2

o’a sn2, era a,,-lx, 84 for some 84, and 2 =< k. We show k 2. Suppose not; then 84
contains a part of the form o’anwl, crwE for wl, WE Sn. Clearly, wl {x, Snl} so since 3" is
shortest Wl Snl and wE- sn2, This contradicts the choice of 3’.

LEMMA. 3" X, 8n, Sn.2, an-lX, 8n-l, Sn-l.2, an-2X, 81, Sl.2, aox, y]’or some 8 1 <
i<n.

Proof. We have 3" 8, an-iX, r/, y for some r/and this determines 8,. Suppose now
that 3" x, 8n, Sn,E, an-lX, , akX, 8, Sg,2, ak-lX, r/, y. Now r/ does not begin with a
state w for such a w e {sg,2, s-1,1} and by shortness of % w s-1,1 but then r/begins
with Sg-l,1, a_lx contradicting the choice of 3". Thus either k 1 0 and we are done or
r/ contains ak-lWl, W2 for wl, wE eSn. As in the preceding lemma Wl= s-1,1 and
w2 s-1,2 is followed by ak-EX. The lemma follows easily by induction.

Let 3"k dfX, 8n, Sn,2, a,-lx, , akx, 8k, Sk,2.
LEMMA. akX, 8k, Sk,2 (ak "tX, k, akX), akSk,1, Sk.2 for suitable k.
Proof. Since 3’ is shortest akX, 8k, Sk,2

contains no part akWl, WE for wl, WE Sn so A ak ,aX, lk, akX for suitable r/k.

WORST CASE EXPONENTIAL LOWER BOUNDS 107

PROPOSITION. Any M, computationfrom x to y takes time2IMnl"/3+a 1.
Proof. Since y is shortest, time (akX, 6k, Sk.2)>=time(yk+l) SO time (yk)-->

2 time (yk+ 1) -t" 3. Time (yn) 9 so time (y) => 6.2" 1.
Define SNPDA Mn, (A,,,, S,,,, Rn,n) by An,, {a}, Sn,, {si" 1 -< <- n} LI

{ti" 1-<i<-_m}{ri" l<-i<=m}{x, y}, and R,,={Si+a---as" l<-_i<-n}{t--ar,
--) ar l <= -< m } { m -- ar x -- ar y -- as s -- ax -- ax }
The following establishes that the space bounds, and the time bounds for IAI 1

are optimal.
PROPOSITION. Any M,,, computation from x to y takes time >-_(nm + n)2 + 1 and

space >-n + 1.
Proof. The proof is by inspection.
COROLLARY. Any Mnl computation from x to y requires space -->lMal-3.
COROLLARY. Any M,,/2 computation from x to y takes time > IM/zI2 -A linear sentence is an object of the form Fp where F is a finite set of

propositional variables and p is a propositional variable. If F {Pl,""", Pn} we write
p,’’’,pnp for Fp, (F is the antecedent of Fp). The interpretation of
p, p,, p is (Pl/" /P,) p. (The use of "linear sentence" here is an abuse of the
terminology in Gentzen [2].)

By using the path problem (see Jones and Laasser [3]) it is easy to see that the
following problem is log-space complete for polynomial time.

Given a set L of linear sentences s.t. each antecedent of a member of L has size -<2
and a propositional variable p, is L p ?

A set L of linear sentences is normal if (1) each antecedent has size -<2; (2) no
variable occurs in more than two antecedents; (3) if a variable occurs in an antecedent of
size =2 it occurs in no other antecendent.

Suppose L satisfies 1), we define a set of linear sentences L satisfying (1) and (3) as
follows:

pLpL,
p - q Lp-q L,
p, q - r L:p - ps, q qs, p, q, - r L 1, for s p, q r and new variables

p, q.

Clearly L can be obtained from L in log-space and for p ps, L p :>L p. We
now define L2 satisfying (1), (2), and (3) as follows"

- p L :-p L2.

p, q - rL :: p, q - r L2"

ifsl=pq,’’’,s=Pqn are all members of L with antecedent p then

P P., ",P3 - P:, P3 q,PP, P2 q,Pq L2, for new variables
p ...p.

It is easy to see that L2 can be obtained from. L1 in log-space and for p
L2 p. We obtain the following:

LEMMA. The following problem is log-space complete for polynomial time. Given a
normal set L of linear sentences and a variable p, is L p ?

Let L be a normal set of linear sentences. We define a SNPDAM (A, S,
byA {a, b}, S {ss,s" p occurs in a member of L} U {xtx tx ’" p, q r L}, and

108 R. STATMAN

RL defined by

--> p 6 L: sp --> as’, s p --> as o R
_

if p --> q, p --> r are all the sentences in L with antecedent p then

so bso, s’ bs’o, sr -> aso, s o as o RL.
p, q--> r L:Xl-->aso, xl ->asp, xl (-->asq, xl (--->asq, Sr (-->axl,

Sr axl eL.
Clearly ML can be obtained from L in log-space.

LZMMA. 1]: there is an ML computation]:rom so to s’ then L p.
Proof. Suppose is a truth value assignment satisfying L. Let be the smallest

equivalence relation on the states of ML satisfying p T ::> so s, and, for p, q -->

r, ,p= T:xlx’l’, ,q T:x’l---x’[. Define SNPDAM* =(AL, S*,R*) by S*
{S/"" S SL}, R* {s1/.-.-(--->as2/..-., s3/(-->bs4/- s1 (--->as2, s3(--->bs4 RL}, then the map
h defined by h(s)= s[---, h(a)=a and h(b)= b is a SNPDA homomorphism from ML
onto M*.

It is easy but tedious to verify that M* is deterministic w.r.t, pop. Thus if there is an
0M* computation from sl/ to s2/--sl/ sz/’-. If ,p F then s, -? sp so there is no M

computation from sp to sp.
LEMMA. L p ::)> there is an ML computation]:rom so to s.
Proof. Define a truth value assignment by u by p T<=> there is an ML compu-

It is easy to see that , satisfies L. Thus if there is no ML computationtation from s to s p.

then L V: p.from s to s
PROPOSITION. The following problem is log-space complete lCor polynomial time.
Given SNPDAM (A, $, R) and sl, s2 $, is there an Mcomputation from s to s2?
Note that the above proof shows that completeness is attained even if we restrict A

to [AI-<2, this sharpens the result of Kozen I-8, p. 256, Cor. 3.1.10] to equations
containing at most two unary function symbols (see below).

4. Applications to input paramodulation. Let C be a set of ground unit clauses
with only unary function symbols, monadic predicate symbols, and an input refu-
tation with resolution and paramodulation is defined as in Chang and Lee [1, p. 173]
ex.cept

(1) arbitrary instances of x x are allowed, and
(2) paramodulations can have the form

L(ti) t0=tt

\ /
L(t i)

where L(t_i) is obtained from L(ti) by replacing 0 or more occurrences of ti by t-i for
0<i<1

More precisely, we consider a proof system with axioms for each term t, the
rule of resolution (ground), and the rule of paramodulation (2). If C is a set of clauses an
input derivation from C is a sequence of clauses C, , C, such that C1 is an axiom or
a member of C, and Ci/ follows from Ci and an axiom or a member of C by resolution
or paramodulation. An input refutation of C is an input derivation from C ending in the
empty clause. Below we shall represent input derivations in tree form making explicit
both premisses of each inference. If C is a set of (ground) unit clauses which is
unsatisfiable then there is an input refutation of C (see [1, Lemma 8.3, p. 176]).

WORST CASE EXPONENTIAL LOWER BOUNDS 109

C is called simple if
(1) each equation in C has the form 1 fC2 for ca t72,

(2) each inequation in C has the form ca c2,

(3) each other literal in C has the form +Pc.
If C is not simple define a simple C* as follows" Select a function symbol g from C,

for each equation E C a new constant cE, for each occurrence of a nonconstant term
in C a new constant c, and set c c. C* =a {ct =fc:ft an occurrence in C}t_J
{c,, gc,l=t2, ct2 gc,-_,2: tl t2 C} (.J {c, # c,2: tl # t2 e C} J {+/-Pc, +/-Pt C}.

Notice that C* can be obtained from C in log-space.
LEMMA. C is satisfiable :>C* is satisfiable.
Proof. The proof is routine.
If C is simple we define an SNPDA Mc (Ac, Sc, Rc) by Ac function symbols

in C, Sc=constants in C, Rc={cl--fc2:cl=fC2C}. For SNPDAM=(A,S,R)
define CM {sl as2 S as2 R }.

PROPOSITION. Suppose C is simple and has an input refutation of length then either
(1) there are Pca, Pc2 C with an Mc computation from cl to c2 with time -<_2

or
(2) there is Cl c2 6 C with an Mc computation from Cl to c2 with time _-<2 l.
Proof. Let T be the shortest input refutation of C and let T

Ln+

for Ln+l C. In case L,+I C we are done. Otherwise T,+I

L
go

g

\

g

Ln+

where To is an input derivation of E0 from C by paramodulation and
(1) Eo L,,+ and the Li for 0 _-< _-< n and the Ej for 1 <-/"-< n do not exist, or
(2) Lo, E,. , E, C.
In either case E0 has the form c or c. By Proposition 3.4 of Statman [4a]

110 R. STATMAN

there is an input derivation by paramodulation of c from C of the form

C=C E

C-’t

C-- tin+

where tm+ and rn + 1 _-< l, and E1, , Em+l C.
In case 1, since C is simple tm+l is a constant and the desired computation is

c, tl, , t,,/l. In case 2, Ln/ begins with +P. LetLi :i:P&,so So c, s t,/l and sn/
-1is a constant. The desired computation is 3/ =dfC, tx, , tin+I, S2, ", Sn+ or 3/

We have the following converse"

CONVERSE. Sttppose C is simple and there is an Mc computation from Cl to c2 with
time s.t. either

(1) -nPC l, PC2 C or
(2) 171 7 C2 C.

Then C has an input refutation of length <-_l + 1.
Proof. The proof is easy.
THEOREM. lnput resolution with paramodulation requires in the worst case, proofs of

exponential length.
Proof. Let Cn Ctn U {Px, Py}. There is no input refutation of C with length

<2 Ic.I/a 1.
THEOREM. The following problem is complete for polynomial time"
Given a set C of unit clauses, is C satisfiable ?
Proof. (1. Polynomial time). Given C construct C* and M =drMc.. For each pair

--nPc 1, Pc2 C* see if there is anM computation from c to c2, and for each c c2 C*
see if there is anM computation from c to c2. (2. Completeness). If L is a normal set of
linear setences set CL CM,_. Then, L p :> CL {-Psp, Ps’} is unsatisfiable.

Acknowledgment. The author would like to thank Professor S. A. Cook and the
referees for their valuable comments and suggestions.

REFERENCES

CHANG AND LEE, Symbolic Logic andMechanical Theorem Proving, Academic Press, New York, 1973.
[2] GENTZEN, On the existence of independent axiom systems for infinite sentence systems, The Collected

Papers of Gerhard Gentzen, Szab6, ed., North-Holland, Amsterdam, 1969.
[3] JONES AND LAASSER, Complete problems for deterministic polynomial time, Theoret. Comput. Sci., 3

(1977).
[4a] STATMAN, Herbrand’s theorem and Gentzen’s notion of a direct proof, Handbook of Mathematical

Logic, Barwise, ed., North-Holland, Amsterdam, 1977.
[4b] ., Intuitionistic propositional logic is P-space complete, Theoret. Comput. Sci., to appear.
[5] COOK, The complexity of theorem proving procedures, Proceedings 3rd Annual A.C.M.S.T.O.C. (May

1971).
[6] COOK AND RECKHOW, On the length of proofs in the propositional calculus, Proceedings 6th Annual

A.C.M.S.T.O.C. (April-May 1974).
[7] TSEITIN, On the complexity of derivation in propositional calculus, Studies in Constructive Math. and

Math. Logic II, Slisenko, ed., 1968.
[8] KOZEN, Lower bounds for natural proof systems, Proc. 18th Annual F.O.C.S. Symposium (I.E.E.E.),

October-November 1977.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0009 $01.00/0

AN EFFICIENT METHOD FOR WEIGHTED SAMPLING WITHOUT
REPLACEMENT*

C. K. WONG" AND M. C. EASTON"

Abstract. In this note, an efficient method for weighted sampling of K objects without replacement from
a population of n objects is proposed. The method requires O(K log n) additions and comparisons, and O(K)
multiplications and random number generations while the method proposed by Fagin and Price requires
O(K n) additions and comparisons, and O(K) divisions and random number generations.

Key words, sampling without replacement, algorithm, computational complexity

1. Introduction. In [1], Fagin and Price consider the following experiment, which
can be called weighted sampling without replacement. The experiment is described as
the drawing of balls from an urn without replacement. Assume that an urn contains n
balls numbered 1,..., n and that the probability of drawing ball is pi (i=
1,. ., n, ",iPi 1). SuppOse that ball il is selected first. Now renormalize the prob-
abilities of the remaining (n- 1) balls so that they sum to 1. Thus, the probability of
drawing ball becomes pj/(1 -Pil), for/" il. Select a second ball from the urn, say, ball
i.. Again renormalize the probabilities of the remaining (n 2) balls so that they sum to
1. Thus, the probability of drawing ball j becomes pj/(1-pil-pi:), for j il, i2.
Continue the process until K balls have been selected. Fagin and Price use this
experiment in the Monte Carlo evaluation of a combinatorial sum.

Another application of the experiment occurs in the design of sampling pro-
cedures. A sampling system called multistage sampling with probability proportional to
size (PPS) is discussed in [2, p. 283]. When sampling human, animal, or plant popu-
lations, it is often important to first partition the populations into units within which the
variation may be expected to be less than it is overall. In two-stage sampling, for
example, first a unit is selected and then individuals within that unit are selected at
random. In PPS sampling, the selection of the unit is done with the probability of
selection proportional to the size of the population of the unit. The selection of K units
is to be carried out. After a unit has been selected, it is no longer eligible for later
selection. This can be done by the urn experiment considered here if we represent each
unit by a ball which has associated probability equal to the fraction of the total
population that is contained in the unit.

A special case of the urn experiment occurs when all pi’s are equal and is referred to
as "sampling without replacement" in [3, p. 132]. A very efficient method for this case is
described in [4, p. 125], which requires O(K) multiplications, additions, random
number generations and computations of the floor function J. The method for the
case of unequal pi’s described in [1] requires O(Kn) additions and comparisons and
O(K) divisions and random number generations. Another method for the unequal pi’s
case, due to D. B. Lahiri, is described in [6, p. 347]. The number of operations required
by Lahiri’s method is a function of the probabilities (p,. ., p). If the distribution is
"flat", performance approaches that of the unweighted algorithm in [4]. On the other
hand, if the probabilities, say, follow Zipf’s law [7]" pi c/i where c 1/i= i, then
O(Kn/log n) operations are required. In the worst case, O(Kn) operations are
required. All methods described require O(n) operations of initialization before the
drawing of balls can begin.

* Received by the editors July 7, 1978 and in revised form February 5, 1979.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

111

112 C. K. WONG AND M. C. EASTON

In this note, we describe a method for performing weighted sampling that requires,
after O(n) initialization operations, O(K log n) additions and comparisons and O(K)
divisions and random number generations. After a sample of K balls has been drawn,
the experiment can be restored to its original state by O(K log n) operations. Thus, this
technique is well suited to the Monte Carlo application in 1], where the experiment is
repeated many times.

2. Method. The contents of the urn at any time are described by values
1, p," p’}. In general, p’ pi if ball is still in the urn; p 0 if it has been

removed. We maintain values $i k--1P,, 0, , n. Let Q Sn be the sum of the
{pi} of the balls remaining in the urn.

The method of drawing a ball is as follows. Choose x with uniform probability from
[0, Q]. (This step requires generation of a random number and multiplication.) Then
find such that Sj-1 X < ,j. The ball to be drawn is ball/’. It is easy to verify that the
probability that ball is drawn is p/Q.

We now describe an efficient method for implementation. There are two aspects of
the implementation’that contribute to the efficiency. The first is the method for finding]
such that Sj-1 =< x < Si. The second is the method for reflecting the change in value of p
to zero in the sums {s.}.

3. Initialization. The search for the index of the selected ball is carried out by
means of a binary search tree. As part of the initialization procedure, we construct a
binary tree having n leaves (external nodes) and having maximum path length from root
to leaf of O(log n). Methods for constructing such trees are described in [5]. The
construction requires O(n) operations.

The leaves of the tree are labeled, from left-to-right: 1, 2, , n. The other nodes
are given arbitrary labels that are distinct from each other and from the leaf labels.

As part of the initialization, we associate values Gi and with internal node i,
1, 2,..., n- 1. Let L(i) be the left-descendent of node i. Let R(i) be the right-

descendent of node i.
If node has a leaf as left-descendent, then define Gi p.i. Otherwise, Gi

GLi +HLi. If node has a leaf as right-descendent, then define Hi PRi. Otherwise
Hi GRi+HRi. The computation of the values of {Gi} and {Hi}, carried out from
"bottom to top" of the tree, requires O(n) additions.

It is not hard to see that Gi is the sum of values of {pi} that have indices on leaves of
the left subtree from node i. (See Fig. 1, where Gi values are shown at each node.) Hi is
the sum of values of {p/} that have indices on leaves of the right subtree from node i.
(The Hi values are used only in the initialization.)

P +P2 +P3 +P4)

FIG. 1. Example tree with n 7 (sums are Gi values).

WEIGHTED SAMPLING 113

At initialization time, Gi also is the sum of values of {p. } that have indices on leaves
of the left subtree from node i. It is this property that will be preserved as balls are
drawn.

4. The algorithm. At each step of the algorithm a ball is selected as follows. The
first node visited is the root node of the tree. Begin with C 0. At each node i"

if x < Gi + C then move to node/leaf L(i).
else set C C + Gi; move to node/leaf R (i).

The procedure ends when a leaf is reached. The label of this leaf gives the index of
the chosen ball. O(log n) additions and comparisons are required for this procedure.

At each node, the value of C + Gg gives the total of {p} values in leaves of parts of
the tree that lie to the left of the current position.

By the structure of the tree, if the final leaf chosen is leaf/" then the value of x
satisfies"

Si-l=p’l +p’2 +’" "-bp-i <--x <p’ +P’2 +’" "+P =Si.
In descending the tree, we keep track of which nodes are departed from via a left

branch. Once/" has been found, the value of Gi for each such node is decremented by the
amount Pi in order to reflect the removal of the ball. (This is equivalent to setting the
value of p to zero.) The value of Q is also decremented by Pi.

A list is maintained of all changes (index, value) made in {Gi}. In the course of
selecting K balls, at most O(K log n) entries are made on this list. At the conclusion of
the experiment, this list is used to reinitialize the values of {Gi}. (IfK is sufficiently large,
of course, it is better to rerun the initialization procedure after each experiment.)

It follows that, once initialization has been completed, additional experiments of
drawing K balls from a "full" urn can be performed at the expense of O(K log n)
additions and comparisons and O(K) multiplications and random number generations
per experiment.

In summary, the algorithm works as follows to draw the next ball.
(a) Select x uniformly from [0, Q] where Q is the sum of the probabilities of the

remaining balls.
(b) Let C 0. Traverse the tree from the root down. At node m, branch right if

x _-> G, + C, left if x < Gm + C. On left branches, record the label of the node. On right
branches, increment C by G,.

(c) When leaf j has been reached, decrement by Pi the values of {Gi} for the nodes
that were listed. The ball drawn is ball j.

Acknowledgment. Our use of sums of probabilities in the tree structure has been
simplified by a suggestion of a referee.

REFERENCES

[1] R. FAGIN AND T. G. PRICE, Efficient calculation of expected miss ratios in the independent reference
model, this Journal, 7 (1978) pp. 288-297.

[2] N. L. JOHNSON AND S. KOTZ, Urn Models and Their Application, John Wiley, New York, 1977.
[3] W. FELLER, An Introduction to Probability Theory and Its Applications, vol. 1, John Wiley, New York,

1970.
[4] D. KNUTH, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, MA, 1969.
[5], The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA,. 1973.
[6] F. YATES, Sampling Methods for Censuses and Surveys, Hafner, New York, 1960.
[7] G. K. ZIPF, Human Behavior and the Principle ofLeast Effort, Addison-Wesley, Reading, MA, 1949.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0010 $01.00/0

ON THE SUCCINCTNESS OF DIFFERENT REPRESENTATIONS
OF LANGUAGES*

J. HARTMANIS’

Abstract. The purposes of this paper is to give simple new proofs of some interesting recent results about
the relative succinctness of different representations of regular, deterministic and unambiguous context-free
languages and to derive some new results about how the relative succinctness of representations change when
the representations contain a formal proof that the languages generated are in the desired subclass of
languages.

Key words, representation of languages, succinctness, context-free languages, deterministic languages,
unambiguous languages, verified representations, Turing machines, valid computations

Introduction. It has been shown recently that there exist dramatic compressions of
the length of representations of languages in subclasses of context-free languages as we
go from restricted to unrestricted representations of these languages [3], [5], [6]. For
example, when we consider the representation of deterministic context-free languages
by deterministic versus nondeterministic pushdown automata, then there is no recur-
sive function which can bound the size of the minimal deterministic pushdown automa-
ton as a function of the size of the equivalent minimal nondeterministic pushdown
automaton [6]. It is well known that we cannot recursively decide whether a given
pushdown automaton has an equivalent deterministic pushdown automaton, but the
above result makes a considerably stronger statement: even if we would know (or be
given) which pushdown automata describe deterministic languages, we still could not
effectively write down the corresponding deterministic pushdown automata because of
their enormous size which grows nonrecursively in the size of the nondeterministic
pushdown automata. Therefore we see that though nondeterminism is not needed in
the description of deterministic context-free languages its use in the description permits
nonrecursively bounded shortening of infinitely many representations.

Similar results hold for the relative succinctness of the description of unambiguous
context-free languages by unambiguous and ambiguous context-free grammars [5], and
the description of finite or regular sets by finite automata and pushdown automata [3].

Some of the original proofs of these results are quite hard and they require special
results about context-free languages. In the first part of this paper we give a very simple,
elementary proof that the relative succinctness of representing deterministic context-
free languages by deterministic or nondeterministic pushdown automata is not recur-
sively bounded, and using a result about inherently ambiguous context-free languages
and Turing machine computations [4], derive an equally simple proof for the represen-
tation of unambiguous context-free languages by unambiguous or ambiguous context-
free grammars. The results about the representation of finite and regular sets ,can be
easily proven by the same methods.

We observe that in the representation of deterministic context-free languages by
deterministic pushdown automata we can easily check whether a given pushdown
automaton is deterministic, on the other hand, for a nondeterministic pushdown
automaton we have no uniform way of verifying that it accepts a deterministic
context-free language. Therefore the question arises whether the relative succinctness
of the two representations is caused by the fact that in one representation we can prove
what we are accepting but that no such proofs are possible in the other representation.

* Received by the editors July 10, 1978, and in final revised form March 9, 1979.

" Department of Computer Science, Cornell University, Ithaca, New York 14853. This work was
supported in part by National Science Foundation under Grant DCR75-09433 and MCS 78-00418.

114

REPRESENTATIONS OF LANGUAGES 115

Indeed a close inspection of the original proof [6] reveals that it does not hold when
we represent deterministic context-free languages by deterministic pushdown
automata and pushdown automata with attached proofs that they accept deterministic
context-free languages.

In the second part of this paper we show that our proof techniques furthermore
prove that, for example, the relative succinctness results hold for the representation of
deterministic context-free languages by deterministic pushdown automata and
nondeterministic pushdown automata with attached proofs that they accept deter-
ministic context-free languages.

Finally, to gain further insight how the inclusion of formal proofs or correctness in
representations of languages affects their succinctness, we consider the representation
of finite sets. We show that there is no recursive bound in the relative succinctness of the
representation of finite sets by finite automata or Turing machines (even if we attach
proofs that the Tm accepts a finite set). On the other hand, we show that the relative
succinctness is recursively bounded for the representation of finite sets by finite
automata or Turing machines with proofs which explicitly give the cardinality of the
finite set accepted.

It follows from the results that the relative succinctness is not recursively bounded
for the representation of finite sets by finite automata (or tables) or Turing machines
which accept them, but that there is a recursive bound for the representation of finite
sets by finite automata (or tables) and Turing machines which list them and halt.

It is interesting to observe that the succinctness results discussed in this paper do
not directly follow from Blum’s well known size of machines theorem [1]. This theorem
asserts that for any infinite, recursively enumerable set $ of Turing machines one can
effectively exhibit Turing machines in S which are arbitrarily (by any given recursive
function) bigger than other equivalent Turing machines. This is actually not a succinct-
ness result, in the sense used in this paper, since there is no guarantee that the shorter
descriptions are not in S itself. One can derive a succinctness result between restricted
and unrestricted Turing machine descriptions from Blum’s theorem if the minimal
machines in $ can be recursively enumerated (for example, if the machines in S are
total), Even then the results in this paper do not follow from this general theorem
because they deal with succinctness between two restricted representations and
furthermore, in several cases the class of machines (or grammars) considered in this
paper is not recursively enumerable, for example the class of unambiguous context-free
grammars.

Succinctness results about eli’s. We first establish notation and summarize some
well known facts about context-free languages (cfl’s).

We denote pushdown automata (pda) by Ai and deterministic pushdown automata
(dpda) by D.. Let IA, denote the length of the description of the automaton Ai over
some finite alphabet and L(A) the language accepted by A. We consider only one-tape
Turing machines, denoted by M, and for technical reasons we assume (without any loss
of generality) that M can halt only after an even number of moves, M accepts by
halting and that it makes at least two moves before halting, finally assume that M
cannot print a blank. An instantaneous description ofM depicts the symbols written on
the tape, indicates the tape square scanned by M,. and its state; they are strings of the
following form:

-X*(a, q)X*-, -(-, q)X*- or -X*(-, q)-,

where denotes a blank tape square, X is the finite alphabet of symbols m can print,

116 j. HARTMANIS

a .V_, and q is a state of Mi. For TmM IDo(x) denotes the instantaneous description of
the starting configuration on input x and IDl(x), ID2(x),. denote the successive
instantaneous descriptions of Mi on input x. If x=ala2,...,an then xr=
anal_l, , a2al. Let VALC [Mi] denote the set of valid computations ofM in which
every second instantaneous description is reversed, i.e.,

VALC [M] {ID0(x) 4 [ID (x)]r : ID2(x) # [ID2k-l(X)]"r

and IOEk (x) is a halting conngurauon}.

Let

INVALC IMp] F* VALC [M].

It is well known that INVALC [Mi] can be accepted by a nondeterministic pda and
therefore it is a cfl [2]. On the other hand, VALC [M] is a cfl itI L(M) is a finite set, since
otherwise for arbitrarily large inputs x the three first instantaneous descriptions must be
related and the cfl pumping lemma does not hold. This yields the well known auxiliary
result.

LEMMA 1. INVALC [M/] is a deterministic cfl iff L(Mi) is finite.
Proof. If L(M) is finite then INVALC [M] is a regular set and therefore a dcfl. If

L(M) is infinite then VALC IMp] is not a cfl and therefore INVALC [M] cannot be a
dcfl.

LEMMA 2. The set R {Ai IL(Ai) is not a dcfl} is not recursively enumerable.
Proof. Since INVALC [M] is a deterministic cfl iff L(M) is finite, a recursive

enumeration of R would yield a recursive enumeration of the set {M L(M) is infinite},
which is seen not to be possible by Rices’s theorem.

For two representations, such as the representation of deterministic cfl’s by
deterministic and nondeterministic pda’s, we will say that their relative succinctness is
not recursively bounded, if there does not exist a recursive function F such that for any
pda, A, that accepts a deterministic cfl, there exists an equivalent deterministic pda, D,
for which [D] -< F(IA I).

THEOREM 3. The relative succinctness of representing deterministic cfl’s by deter-
ministic and nondeterministic pda’s is not recursively bounded.

Proof. If such a recursive function F exists then for any pda A we can compute
F([A [) and effectively list the dpda’s whose length of description does not exceed F([A 1),
say D1, D2, , Ds. Then L(A) is a nondeterministic cfl iff none of the Dj, 1 <-] <= s, is
equivalent to A, but if this is so then we can detect it by comparing the Dij and A on
successive inputs from X*. Therefore the existence of F implies that the set

{A [L(A) is not a dcfl}

is recursively enumerable, which we know is not the case by Lemma 2. Therefore, F
does not exist as was to be shown. I-1

Next we consider the relative succinctness between the representation of unam-
biguous cfl’s by unambiguous and ambiguous cfg’s.

We exploit a recent result, which is given in a somewhat different formulation in
[4]. For any Tm, M, let

As(M)={#IDo (x) # ([IDi]T # IDi+l #)’1
IDa.+1 follows from ID/by one operation of M, x e E*},

A(Mi) {:(ID/4 [IDi+]T :)*ID2k 4 IDi+I follows from IDi in one operation
of M and ID2k is a halting configuration}

REPRESENTATIONS OF LANGUAGES 1 17

and define

A(Mi) As(Mi) A(Mi).

It is easily seen that A(Mi) is a context-free language and it links the ambiguity question
for A(M/) to finiteness of sets accepted by the Turing machine M/.

THEOREM 4. A(Mi) is an inherently ambiguous cfl iff L(Mi) is infinite.
Proof. For the proof see [4].
THEOREM 5. The relative succinctness of representing unambiguous cfl’s by unam-

biguous and ambiguous cfg’s is not recursively bounded.
Proof. If a recursive bound F exists, then the set

AMB {GIG cfg and L(G) is inherently ambiguous}

is recursively enumerable. To see this note that we can list for any cfg G all cfg’s whose
representations are shorter than F(IGI) and then cross off those grammars which are
found to be ambiguous or not equivalent to G as we test them on successive strings from
,*. L(G) is inherently ambiguous iff eventually all grammars from the list are crossed
off. Thus the set AMB is recursively enumerable and therefore, (by Theorem 4) so is the
set

{M IL(Mi) is infinite},

which leads to a contradiction. Therefore the recursive bound F does not exist.
By the same method we can give an easy proof for the next result [3].
THEOREM 6. The relative succinctness of the representation of cofinite sets by finite

automata and pushdown automata is not recursively bounded. Therefore the relative
succinctness of the representation of regular sets by finite automata and pushdown
automata is also not recursively bounded.

Proof. The proof is similar to the proof of Theorem 3, by using the set

R {A [L(A) is not cofinite}. 71

The same reasoning shows that there is no recursive bound between the size of
context-free grammars (which generate cfl’s whose complements are also cfl’s) and the
size of the cfg’s generating the complements.

THEOREM 7. There is no recursive function F such that]:or any cfg G]:or which
,*-L(G) is a cfl, there exists a cfg, G’, with L(G’)= E*-L(G) and IG’I _-<F(IG[).

Proof. The proof is similar to the proof of Theorem 3.

Succinctness results about verified representations. In the representation of
deterministic cfl’s by deterministic and nondeterministic pda’s we can easily verify that a
given automaton is indeed deterministic, but for an equivalent nondeterministic pda we
have no fixed way of verifying that it will accept a deterministic cfl. This lack of
symmetry in our representations suggests that we should consider only representations
by nondeterministic pda’s with attached proofs that they accept a deterministic
language and add the length of the proof to the length of the representation of the pda.

A close inspection of the original proofs [3], [5], [6] reveals that they do not extend
to representations with added proofs. On the other hand our proof techniques show that
the previous succinctness results can be extended to representations with attached
verifications that they accept the desired type of language.

More precisely, let FS be an axiomatizable, sound formal mathematical system
which is powerful enough to express and prove elementary facts about Turing
machines, context-free languages and pushdown automata. Since FS is axiomatizable

118 J. HARTMANIS

we know that we can recursively enumerate the set of provable theorems and soundness
assures us that the provable theorems are true. Instead of specifying FS in detail we will
describe what must be easily provable in FS.

(a) Let M(r be a simply and uniformly constructed Tm which for each input x
computes and saves the length of x, Ix[= n; then enumerates all one-tape Tm’s
up to length r, i.e., IM, I-> r, and simulates in a dove-tail manner the compu-
tations of this finite set of machines on blank tape. M(r halts (and therefore
accepts) iff M, IM, l<-_r, halts after performing n or more steps. From this
construction we see that for all r, r => 1, M,(accepts a finite set. We assume that
FS is sufficiently powerful that we can prove in FS that L(M() is finite and that
the length of these proofs is recursively bounded in r.

(b) We furthermore assume that there is a simple and uniform construction p which
yields for each Tm Mi a pda Ao(i such that

L(Ao(i)) INVALC [Mi]

and that it cata be proven in FS (by a proof whose length is recursively bounded
in i) that:

if L(M) if finite then L(Aoi) INVALC [Mi] is a deterministic cfl.

From these assumptions it follows that we can prove (easily) in FS that:

accepts a deterministic cfl.

It should be observed that in any logic designed to reason about computations we
should be able to formulate and prove easily the above result. Furthermore, to any
given sound formal system we can add the above assertions as an axiom scheme to
obtain the desired FS.

A nondeterministic pda with a proof in FS that it accepts a deterministic cfl is called
a verified pda or vpda.

THEOREM 8. The relative succinctness ofrepresenting dcfl’s by dpda’s and vpda’s is
not recursively bounded.

Proof. For r, r => 1, let M(be a Tm which accepts all inputs up to length Nr, where
Nr is the maximal running time before halting achieved by a Tm of size r on blank tape.
Let Ao(i be a nondeterministic pda which accepts INVALC [Mi]. It is assumed that or(r)
and p(r) are simple enough to compute and that FS is sufficiently rich that there exist
short proofs (whose length is recursively bounded in r) that L[M(r] is finite and
therefore L[Ao((r)) is a deterministic cfl.

If there exists a recursive bound F between IAo(([and the shortest equivalent
dpda, then we can list all the dpda’s

Di1, D2, D,s, such that _-<f_-<s.

From this list of dpda’s we can effectively construct a list of dpda’s which accept the
complements of these languages. From this new list we can effectively select the dpda’s
which accept finite sets and compute the longest string accepted by these dpda’s. Clearly
the length of this string is bigger than N and therefore Nr is recursively bounded in r,
which is a contradiction. [3

We get the next result by exploiting the fact that the length of the proof of
"L[Ao((r)) is a dcfl" (in FS) is recursively bounded in r.

COROLLARY 9. The relative succinctness of representing dcfl’s by dpda’s and
verified pda’s with attached proofs that they accept dcfl’s is not recursively bounded.

REPRESENTATIONS OF LANGUAGES 119

By assuming that we can easily prove in FS relations between A(Mi) and ambi-
guous cfl’s (i.e., Theorem 4) we obtain the next result.

COROLLARY 10. There is no recursive succinctness bound between the representation
of unambiguous cfl’s by unambiguous cfg’s and cfg’s with proofs that they accept
unambiguous cfl’s.

Representation of finite sets. The situation changes drastically if we consider
representation of finite sets and finite sets of known size.

THEOREM 11. (a) There is no recursive succinctness bound for the representation of
finite sets by finite automata and by Tm’s with proofs that they accept finite sets.

(b) There is a recursive succinctness boundfor the representation offinite sets by finite
automata (or tables) and Tm’s with proofs which explicitly give the size of the finite set
accepted.

(c) There is a recursive boundfor the relative succinctness ofrepresentingfinite sets by
finite automata (or lists) and Tm’s with proofs that they print a list and halt.

Proof (a) Let Mr(r) be the Tm constructed for the proof of Theorem 8 and recall
that we have assumed that Our formal system FS is sufficiently rich to prove, by proofs
whose length is recursively bounded in r, that L(M(r)) is finite. Therefore the length of
M(r) plus the length of the proof in FS that L(M() is finite is recursively bounded in r.
On the other hand, since L(M() is finite the number of states of any finite automaton
accepting L(M() must be no less than the length of the longest string in L(M(),
which by construction of M(r) is not recursively bounded in r. Therefore, the relative
succinctness of these two representations cannot be recursively bounded.

(b) The relative succinctness bound F can be constructed as follows. For n
construct all proofs of "Mi accepts a set of size k", i, k 1, 2, , such that [M] plus the
length of the proof is less or equal to n. For the M with such proofs let kn be the
cardinality of the largest set accepted and an the length of the longest string accepted.
Clearly kn and an are effectively computable and

F(n)=an kn +2

is such a recursive bound.
(c) For any n we can effectively list the finite set of Tm’s Mil, M2," , Mik, such

that

IM ,I + Iproof that Mii prints a list and haltsl _-< n.

Therefore we can run all the Tm’s on this list, which are guaranteed to halt because FS is
sound, and determine the length of the longest string printed, n,. Clearly n, is
recursively computable from n, by the above procedure, and, furthermore, the size of
the largest minimal finite automaton accepting the sets L(MiI), L(M2), ..., L(Mk) is
recursively bounded in n,. Therefore the size of the finite automata representation of
these sets is recursively bounded to n and therefore to the size of the Tm representation
with proofs.

REFERENCES

[1] M. BLUM, On the size of machines, Information and Control, 11 (1967), pp. 257-265.
[2] J. HARTMANIS, Context-free languages and Turing machine computations, Proceedings of Symposia in

Applied Mathematics, Vol. 19, Mathematical Aspects of Computer Science, American Mathema-
tical Society, Providence, RI, 1967, pp. 42-51.

[3] A. R. MEYER AND M. J. FISCHER, Economy ofdescription by automata, grammars andformal systems,
Conference Record, IEEE 12th Annual Symposium on Switching and Automata Theory (1971),
pp. 188-190.

120 j. HARTMANIS

[4] H. REEDY AND W. J. SAVITCI-I, The Turing degree of the inherent ambiguity problem for context-free
languages, Theoret. Comput. Sci., 1 (1975), pp. 77-91.

[5] E. H. SCHMIDT AND T. G. SZYMANSKI, Succinctness of descriptions of unambiguous context-free
languages, this Journal, 6 (1977), pp. 547-553.

[6] L. G. VALIANT, A note on the succinctness of descriptions of deterministic languages, Information and
Control, 32 (1976), pp. 139-145.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0011 $01.00/0

ADDITION CHAIN METHODS FOR THE EVALUATION
OF SPECIFIC POLYNOMIALS*

DAVID DOBKIN" AND RICHARD J. LIPTON

Abstract. Addition chains are considered for specific polynomials. It is shown that for a wide class of
polynomials the evaluation of their first n terms requires at least n + O(n2/3) additions. Included in this class
are the first n squares, the first n cubes,. , the first n kth powers. The results are established by making
contact with results in combinatorics.

Key words, polynomial evaluation, addition chains, Zaranckiewicz theorem

1. Introduction. Addition chains have been widely studied as a means of model-
ling problems of integer evaluation [1], [3], [5], [7], [9], [10]. In previous researches,
questions regarding the complexity of evaluating arbitrary integers via addition chains
have been considered. These results have been extended to upper and lower bounds on
addition chains for arbitrary sequences of integers [1], [7], [10]. In all cases, algorithms
have been produced which give upper bounds derived from counting arguments for
worst case sequences. We turn in this paper to an extension of this problem posed by
Knuth. That is, we consider the problem of finding addition chains for particular
sequences of integers. In particular, we shall be interested in chains that are derived as
the ranges of particular polynomials evaluated at sets of integer points. For example, we
ask for the complexity of an addition chain for evaluating the first n squares or cubes or
the first n values of a particular polynomial, rather than an addition chain for evaluating
an arbitrary set of integers. In its present formulation, this problem is of significant
practical interest, as it provides a means of modeling the problem of evaluating lacunary
polynomials. Typical of such polynomials are the theta functions as defined by Jacobi
[9] which can be used to describe certain constants associated with elliptic functions and
integrals. Three of these functions (evaluated at z 0) are given by:

(i) 02(O,q)=2ql/4[1 +ql.2+q2.3+...+q,O,+l+...],
2

(ii) 03(0, q) 1 + 2[q + q22+ q32_}..., q_ q q_...],
32 nq(iii) 0,(0, q)=l+2[--q+q22--q +’’’+(--1) ,,2+ .]

in the range 0 < q < 1. It.is clear from this example that fast methods of evaluating the
addition chains (ii) and (iii) consisting of the first n squares and (i) consisting of the first n
integers of the form p(p + 1) for p an integer would yield fast methods for evaluating
these functions and hence fast methods for determining the necessary constants. This
application is a sample of the type of problem which can be best approached by studying
addition chains for computing particular sequences of integers. And indeed, the
methods described here lead to algorithms which give a factor of 2 speedup over naive
methods for evaluating these polynomials.

Our goal in what follows is to find for polynomially generated sequences addition
chains which are optimal. This problem is different from previous approaches in that we
are concerned with tight bounds for particular problems where previous studies have

* Received by the editors June 6, 1978, and in revised form January 12, 1979.

" Department of Computer Science, Yale University, New Haven, Connecticut. Now at Department of
Computer Science, University of Arizona, Tucson, Arizona 85721. The work of this author was supported in
part by the National Science Foundation under Grant MCS 76-11460.

Department of Computer Science, Yale University, New Haven, Connecticut. Now at Department of
Electrical Engineering and Computer Science, University of California, Berkeley, California 94720. The
work of this author was supported in part by the National Science Foundation under Grant MCS 76-81486.

121

122 DAVID DOBKIN AND RICHARD J. LIPTON

derived bounds by counting arguments and thus made statements of the form:

There is a hard sequence and any sequence can be computed
within the number of steps required by the hard sequence.

Our goal is to make statements of the form:

Computing the sequence pl, ",Pk generated as the
first n values of the polynomial

p(t)=
i=1

requires at least a certain number of steps.

The impact of such a statement would be a lower bound on algorithms in this class for
evaluating a particular polynomial.

Our main results deal with lower bounds and, in particular, we show a lower bound
of n + O(n2/3-) on the complexity of evaluating the first n terms of any polynomially
generated sequence satisfying certain restrictions, which are known to be satisfied by an
infinite set of polynomials.

2. Uller bounds. We begin with a presentation of our model. We shall use the
standard notation as in [3]. That is, an addition chain is a sequence a0
1, al, a2, , ak such that for each there exist p, q < with ai ap + aq. We shall
represent such an addition chain as {ai} k= and define its length as k. An addition chain
{a} is said to realise the sequence {s,..., st} if there exist i, i2,’’’, i with 1 =< i <

< i =< k such that a sj for/" 2, 3, , l. Furthermore, we denote the length of
the shortest addition chain for {s,. , s} as C{Sl,. ., s}.

We now turn to an application of these concepts to the problem of polynomial
evaluation. Suppose that/(t) is a quadratic polynomial with integer coefficients. We
then say that (p, q, r) is a hypotenuse triple for/ if/(p))(q) +)(r) and denote the set of
all such triples as H(f(t)). If we are evaluating a polynomial at a set of integer points
and (p, q, r) is a hypotenuse triple for)(q < p, r < p), then/(p) can easily be evaluated,
given that f(1),. , f(p- 1) have been found, in one step. Thus, we might expect the
complexity of a sequence to be related to its density of hypotenuse triples. Indeed, this
can be shown to be the case as follows"

DEFINITION. Let A(f(t))={p [q, r with (p, q, r)H(f(t))} be the set of hypot-
enuses for f.

We may now use this definition to describe our main results. We begin with a
lemma relating densities of hypotenuse-sets to sequence complexity. For what follows,
we shall assume that/ is to be evaluated at the points 1, 2, , n and shall denote the
complexity of this evaluation as Cr(n). For notational convenience, we also define

An(f(t)) {p A(f(t)) IP < n}.

When no confusion results, we will also use A(l:(t)) and A,(f(t)) to represent the
cardinality of these sets. We may next establish an upper bound theorem.

THEOREM. The complexity of evaluating 2 at the first n integers grows as n + o(n).
Proof. The theorem is proved by first showing that

A,,(t2)
lim 1.

This limit is derived by generating from each hypotenuse number an infinite set of

ADDITION CHAIN METHODS 123

hypotenuses. Every prime of the form 4k + 1 is a hypotenuse (see [9]) and further

A(t2)={pla prime of the form 4k + 1 such that (4k + 1) Ip}.

Next we observe that the number of nonhypotenuses less than n is at most n times

pn -p----1 rood 4
p prime

Uchiyama [10] shows that this product grows as C(log n)-1/2+ O((log n)-3/:) so that
the number of nonhypotenuse numbers less than n grows as O(n\x/g n). We may now
derive an algorithm for realizing the first n squares in n + O(n \x/log n) additions. To
begin, let p(n) be the product of the first a(n) primes of the form 4t+ 1 and let
bx, bg(n) be the nonhypotenuse numbers less than p(n). We compute eio b 2i+1 -bi2
and 6i=2p(n)(bi+l-bi) for i=0,...,g(n)-I and b0-0. This requires less than
O(p(n)) additions. Next, we observe that each nonhypotenuse number is of the form
kp(n) + bg and may be computed as kp(n) + bg-1 + elk where elk is computed as ei,k-a + ti,
resulting in p(n) O(n \x/iog n). As we were preparing this paper, we learned of results
due to Newman [8] who improved this result to n / O(n exp (-C log n/log log n)).

It is interesting to remark in passing that Fermat’s last theorem suggests that no
result of the type mentioned here will be possible for cubics or higher powers, since most
likely An(tk) -0 for all n and k > 2.

3. Lower bounds. In the last section we demonstrated that there is an addition
chain for the first n squares that uses at most n +o(n/x/log n) additions. A natural
question is just how tight is this bound. Clearly a trivial argument yields a lower bound
of n; a further reflection yields a lower bound of n + t(n) where t(n) tends to infinity.
However, we can obtain an improved lower bound.

THEOREM 1. Any addition chain for the first n squares requires at least n + n steps
where a is any constant less than 2/3 and n is large enough.

Thus at least n "extra" additions are needed by any chains for the first n squares.
Proof. Let S,..., Sm be an addition chain for the first n squares. Say S is an

auxiliary number provided it is not a square, and let be the set of such numbers. Now
each step in this addition chain that computes a square, say p2, is in one of the following
forms:

(I) p2 q2 / r2.

(II) p2 q2 / a where a
(III) p2 al + a2 where a 1, a2

By the fact that hypotenuse numbers are sufficiently sparse we can easily show that the
number of steps of the forms (II) and (III) are at least cn/x/log n for some c > 0. We will
now argue that this is possible only when I11 is large.

Let us first bound the number of steps of type (II). For each a , let II be the set
of (p, q) such that p2 q2 / a. We will then show that IIL[is O(n) and so it will follow
that the number of (II) steps is at most O(n[l) which is what we wish to show.
Consider therefore the equation p2 q2 a. This implies that p / q and p q are both
divisors of a. But, as is well known, a can have at most O(n2) divisors where 6 is any
number with > 0. Thus, p + q =dl and p q d2 where d 1 and d2 lie in a set of size at
most O(n2). Clearly, p- (dl / d2)/2 and q (dl .-d2)/2 and so there are at most
O(n4) choices for p and q; hence, it follows that

We now turn to consider steps of the form (III). The key to our argument is the
theorem of Zarankiewicz (Erdos and Spencer [2]). Suppose that there are steps of

124 DAVID DOBKIN AND RICHARD J. LIPTON

form (III). As before, f is the set of auxiliary numbers. Now consider the 0-1 matrix
M (mij) such that

Mij 1 iff ai + ai is a perfect square less than or equal to n 2.
Then M is a k by 0-1 matrix where k]fl, and further, M has at least l’s. Thus by
Zarankiewicz’s theorem there is a 2 by submatrix of all l’s with f(k, t) where

f(k, t)=ma_{ll(t/k2)2l(kl)>= 1}.
Thus

2 2
P ail + ajl p ail+ ail,

q ai2 + ail" q ai2 + ah,

say. Therefore, the difference ax-ai2 occurs at least times as a difference of two
squares. But as in Lipton [4] we can show that this implies that < n for any 8 and n
large enough. Let us therefore assume that < n a for some small 8 > 0; hence, we can
assume that f(k, t) < n. We now enter the "elementary calculation mode" i.e., we plan
to use this bound to show that if is large then so must k be. To see this, let us make the
following assumptions:

l=f(k,t)<n,
k<n a whereh<2/3,

t>n wherer/>l-o(1).

The reasons for the first assumption have already been discussed; the second can be
assumed or else the theorem is immediately true (recall the k measures the number of
extra steps in the addition chain); the last assumption follows since otherwise there will
not be enought steps of types (II) and (III). As in [2] we can show that M has a 2 by
submatrix of all l’s provided

(t/k2)2l() >= l.

Now this must be the case and so the theorem is proved.
The proof given above can actually be generalized to prove lower bounds on

addition chains for other sequences as well. Let p be a polynomial and consider the
addition chains for generating the values of p at the first n integers. We observe that
only two facts about the squares were used in the proof given above, first that there were
suitably many squares which could not be given as sums of pairs of previous squares and
second that no integer is the difference of arbitrarily many pairs of squares. We used
these facts together with Zarankiewicz’s theorem to prove the lower bound. This
method can be generalized. We define two properties that a sequence of values of a
polynomial need to have in order to give a lower bound as above. Throughout our
discussion, we assume that p is monotone.

Property P1. There exists a constant c > 0 such that for any e > 0 and n sufficiently
large more than cn 1- values of p(i),i<n, cannot be expressed as p(i)=
p(])+p(k),],k<i.

Property P2. There exists a constant such that for n sufficiently large, for each
e >0, there exists at most cn pairs (i,]) such that p(i)-p(])-n.

Based on these facts, we can then prove the following
THEOREM 2. Ij p satisfies Properties P1 and P2, then any addition chain]’or

computing values ofp at the first n integers requires at least n + n steps where c < 2/3.

ADDITION CHAIN METHODS 125

We observe that as corollaries of this theorem we have Theorem 1 as well as the
following

COROLLARY. Any addition chain]’or computing lk, 2k,..., n k requires at least
n + n steps where a is any constant less than 2/3, and k is any integer >2.

Proof. We observe that such a sequence satisfies Property P1 by a result of
Mumford [6] and Property P2 follows as above by a factoring argument.

We leave open the problem of computing addition chains for values of arbitrary
polynomials, for which we conjecture Theorem 2 holds.

Acknowledgment. We would like to thank Dr. Nicholas Pippenger for leading us
to references [6], [8], and [10].

Note added in proof. Since this manuscript was written, we have been able to
extend the results given here to addition/multiplication chains.

REFERENCES

[1] P. ERDOS, Remarks on number theory III: On addition chains, Acta Arith., 6 (1960), pp. 77-81.
[2] P. ERDOS AND J. SPENCER, Probabilistic methods in combinatorics, Academic Press, New York, 1974.
[3] D. E. KNUTH, The art of computer programming, Vol. 2; Seminumerical algorithms, Addison-Wesley,

Reading, MA, 1969.
[4] R. J. LIPTON, Specific hard O, polynomials over a monotone basis, Yale Res. Rep., Yale University,

New Haven, CT., 1977.
[5] R. J. LIPTON AND D. DOSKIN, Complexity measures and hierarchies for the evaluation of integers,

polynomials, and n-linearforms, Seventh Proceeding of ACM Symposium on Theory of Computing,
1975, pp. 1-5.

[6] D. MUMFORD, A remark on Mordell’s conjecture, Amer. J. Math., 87 (1965), pp. 1007-1016.
[7] N. PIPPENGER, On the evaluation ofpowers and related problems, Proc. IEEE 17th Annual Symposium

on Foundations of Computer Science, pp. 258-263.
[8], Private communication, April 1, 1977.
[9] T. H. SOUTHARD, Addition chain for the first Nsquares, Tech. Rep. CNA-84, Univ. of Texas at Austin,

1974.
10] S. UCHIYAMA, On some products in involving primes, Proc. Amer. Math. Soc., 28 (1971), pp. 629-630.

[11] A. C. YAO, On the evaluation ofpowers, this Journal, 5 (1976), pp. 100-103.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0012 $01.00/0

ON THE COMPLEXITY OF SEARCHING A SET OF VECTORS*

D. S. HIRSCHBERGf

Abstract. The vector searching problem is, given k-vector A (a k-vector is a vector that has k
components, over the integers) and given a set B of n distinct k-vectors, to determine whether or not A is a
member of set B. Comparisons between components yielding "greater than-equal-less than" results are
permitted. If the vectors in/ are unorderetl then nk comparisons are necessary and sufficient. In the case
when the vectors in/ are ordered, it is shown that [log nJ + k comparisons are necessary and, for n => 4k,
k [log (n/k)] + 2k- 1 comparisons are sufficient.

Key words, searching, vector, lower bounds, complexity

Searching an unordered set. We first consider the case in which the vectors in B
are not ordered. In this case, an upper bound of nk comparisons can be easily
demonstrated. A simple adversary can be constructed to show that nk comparisons are
also necessary.

A nontrivial dynamic adversary can be used to construct an oracle to demonstrate
that nk comparisons are necessary even if we allow comparisons between elements of
the vectors in B as well as comparisons between elements of A and vectors in B [3].

Recently, Stockmeyer and Wong have demonstrated upper and lower bounds that
are within a small factor from one another for the more general problem of determining
the intersection of two sets of vecfors [7].

For a review of the use of oracles to derive lower bounds, the reader is referred to
1], [4], [6].

Searching an ordered set. We now consider the case in which preprocessing of the
set B is permitted. That is, we can assume that B is in some prearranged order, such as
lexicographic order.

In the discussions that follow, all logarithms are assumed to be base 2.
A lower bound of [log n + k comparisons can be seen by observing that

[log n + 1 comparisons are required to determine if there is any vector having the
correct value of one component, and k- 1 comparisons are required to verify the
agreement of the remaining components.

The oracle for distinguishing a path (which will be of length at least [log n + k) in
each decision tree that solves this problem is as follows.

Initially, define low 1 and high n.
Let the next comparison presented to the oracle be aj’bii.

mid- (low + high)/2
If low high then:

if < low then return>
if low -< =< mid then [low - + 1; return>]
if mid < -< high then [high - 1; return<]
if high < then return<

Else (low high) return=
low will not equal high until after at least [log n comparisons. During these

comparisons, vector A could equal any of the vectors Bow" Bhigh.
When low high, until all components of Bow have been compared with A, Bow

may equal A but it is also possible that one component of Blow will be less than the

* Received by the editors January 12, 1978, and in revised form March 30, 1979. This research was
supported by The National Science Foundation under Grant MCS-76-3933.

f Department of Electrical Engineering, Rice University, Houston, Texas 77001.

126

SEARCHING A SET OF VECTORS 127

corresponding component ofA and, in that case, it is possible that none of the vectors in
B are equal to A.

Thus [log n + k comparisons are necessary to solve this problem.
In the above analysis, we assumed that all comparisons are between a component

of A and the corresponding component of a vector in B. It is straightforward to
generalize and allow comparisons between components of vectors both of which are
elements of B.

Having demonstrated a lower bound, we now consider upper bounds for this
problem.

We present and analyze two algorithms that solve the ordered set problem and
then combine them to obtain an algorithm that is faster than both.

The first algorithm is an example of binary search. Let B {B1, Bz, , Bn} and let
Bi bil"" bik. Proceed comparing the components of A with those of the central
vector, i.e. compare ah with bih for h=l,2,.., where]= [(n+ 1)/2J. If all
comparisons result in "equal" then A Bi. Otherwise, if at some point we get a "less
than" result then A Bi ond we can restrict our attention to B’={B1,..., B.-1}.
Similarly, if we get a "greater than" result, then we can restrict our attention to
B’={Bi/I,... ,Bn}. In the worst case, we will require k comparisons in each of
1 + [log n iterations for a total of k + k Llog n comparisons. This is equivalent to the
result in [2].

The second algorithm uses linear search and is as follows"

hl
while <_- n AND h _-< k
do compare ah’bih

if then h h + 1
else if > then f + 1
else [print ’NO SOLUTION’; stop]

od
if/" > n then [print ’NO SOLUTION’; stop]

final" if ai b.i for all {1, 2,. ., k- 1}
then print/’; comment A B
else print ’NO SOLUTION’
stop

The algorithm finds the first (lowest indexed) vector, B., that matches A in the hth
component. All lower indexed vectors are not considered further. All other vectors are
assumed to match in this component. The algorithm then iterates on the (h + 1)st
component. This part of the algorithm will make at most n + k- 1 comparisons (each
iteration increments either with upper limit n, or h with upper limit k). If we succeed in
matching all k components in this manner then the vector, B, that is found will be equal
to A if all assumptions made earlier apply to Bi. However, if Bi disagrees with A in any
component h’ then A does not appear in B since all/" <] have been eliminated, B. A
(assumed here) and for all]" >], Bi,, Will disagree with A among the first h’ components
since B is in lexicographic order. The final phase of the algorithm, in which the
components of B. (which were assumed to agree with A) are compared with A, requires
at most k 1 comparisons for a total of at most n + 2k- 2 comparisons.

We note that the linear search algorithm’s mirror image also works. That is, we can
start with] n and decrement], being careful to interchange the <’s and >’s. We can,
as an initial improvement, compare A with the central vector in B rather than with B1 or
B, and, at the first "less than" or "greater than" result, continue with the linear search

128 D.S. HIRSCHBERG

algorithm applied to only half of the original set B. This leads to an algorithm that
requires, in the worst case, only [n/2J + 2k- 1 comparisons. We call this improved
algorithm the modified linear search algorithm.

We can make further improvements by deciding, at the time that a "less than" or
"greater than" result is obtained, whether to continue in the style of the binary or the
modified linear search algorithm depending upon which will lead to fewer comparisons
in the worst case. If, after making h comparisons (resulting in "equal") along vector Bj
within feasible set B of cardinality n, we make a comparison resulting in "less than" or
"greater than" then continuing with the linear search algorithm requires, in the worst
case, at most [n/2J +2k-1-h additional comparisons. If, however, we decide to
proceed with the comparisons in a new vector within B and thus follow the binary
search algorithm or follow the modified linear search algorithm on a feasible set of half
the size, then we will have upper bounds of k [log n and Ln/4J + 2k- 1 additional
comparisons respectively. We should continue with linear search only if

[n/2] + 2k 1 h < min {In + 2k 1, k [log n }

which holds only if n < 4h. For particular values of k, we can solve this inequality to gain
further restrictions. For example, if k 3 then we should continue with linear search
only if n =4 and h =2 or n 5 and h =2.

Let T(n, k) be the minimum number of comparisons required for the ordered
vector search problem when B consists of n k-vectors. Then, for n <-4k, T(n, k)<-_
In/2] + 2k 1.

For n=k2, T(n,k)<=k+ T(n/2, k)<-(r-2)k+ T(4k, k)<=(r+2)k-1.
For k2-<n<k2, T(n,k)<=(r-2)k+ T(4k-1, k) <= (r + 2)k 2. Note that in

both cases, r [log (n/k)].
Algorithm VECTOR_SEARCH incorporates the modifications mentioned above.

VECTOR_SEARCH (A, B, n, k)
low 1
high n

binary" binsearch -TRUEwhile binsearch AND low <_- high
do] (low + high)/2

compare a bil
if > then high -j 1
else if < then low] + 1
else binsearch FALSE

od
it low > high then [print ’NO SOLUTION’; stop]
n high-low + 1

modlin" h - 2
while h _<- k
do compare ah’bih

if then h h + 1
else if > then i n -> 4.h

then [high j 1; goto binary]
else goto linear

else if < then if n => 4.h
then [low - j + 1; goto binary]
else goto linear2

SEARCHING A SET OF VECTORS 129

od
print ; comment A Bi
stop

linear" while] <= high AND h =< k
do compare ah:bjh

ii then h h + 1
else if > then] + 1
else [print ’NO SOLUTION’; stop]

od
if] > high then [print ’NO SOLUTION’; stop]

final" if ai bji for all {1, 2,. , k- 1}
then print/’; comment A B
else print ’NO SOLUTION’
stop

linear 2" while _-> low AND h _-< k
do compare ah:bh

ii then h h + 1
else if < then/" /"- 1
else [print ’NO SOLUTION’; stop]

od
if/" < low then [print ’NO SOLUTION’; stop]
goto final

REFERENCES

1] A. V. AHO, D. S. HIRSCHBERG AND J. D. ULLMAN, Bounds on the complexity ol the longest common
subsequence problem, J. Assoc. Computer Mach., 23 (1976), pp. 1-12.

[2] D. DOBKIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp. 181-
186.

[3] D. S. HIRSCHBERG, On the complexity o[vectorsearching, Rice Univ. Tech. Rept. 7807, Houston, TX,
June 1978.

[4] D. E. KNUTH, The Art o.f Computer Programming, vol. 3. Addison-Wesley, New York, 1973.
[5] V. V. RAGHAVAN AND C. T. Yu, A note on a multidimensional searching problem, IPL 6 (1977),

pp. 133-135.
[6] E. M. REINGOLD, On the optimality o] some set algorithms, J. Assoc. Comput. Mach., 19 (1972),

pp. 649-659.
[7] L. J. STOCKMEYER AND C. K. WONG, .On the number o1 comparisons to find the intersection of two

relations, IBM Watson Research Center Tech. Rept., 1978.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-013 $01.00/0

COMBINATORIAL GRAY CODES*

J. T. JOICHI,? DENNIS E. WHITES AND S. G. WILLIAMSON

Abstract. We consider families {C(n, k) O _-< k _-< n} where each C(n, k) is a set of combinatorial objects,
C(n,k)=lC(n,k)] satisfies a recursion C(n, k)=a,,.kC(n-l,k-1)+b,,.kC(n-1, k), and each object in
C(n, k) is represented by an n-vector. We study "loop-free" or "uniformly bounded transition" algorithms,
i.e., algorithms which yield linear orders on the sets C(n, k) so that the vectors representing consecutive
objects are "close to each other" (combinatorial Gray codes).

Key words, listing algorithms, uniformly bounded operations, uniformly bounded transition algorithms,
loop-free algorithms, binary reflected Gray codes, combinatorial Gray codes, binomial grids

Introduction. We consider families {Cx :A A} where each Cx is a set of combina-
torial objects and A is some countable index set. In all of our examples, A is either
No {0, 1, 2,. .} or T {(n, k) No No: k -<_ n}. For example, the combinatorial
objects may be permutations of a set of n objects, subsets of an n-set, partitions of a set
of n objects into k blocks, etc.

Suppose A No or T and A n or (n, k). We then specify certain basic represen-
tations of the objects in Cx as strings of symbols 1c2" c, where m- O(n). For
example, a partition of {1, 2, 5} might be written {1, 3, 5}, {2, 4} or 12121. The latter
representation, of the form celce2 5, specifies that symbol be placed in block ci. A
permutation might be written 21354, or in cycle form (12)(3)(45), or as 21121. The
latter string, of the form ace2 as, specifies that the permutation sends to pi where
Pi is the ceth symbol in the list 1, 2, 3, 4, 5 with p, p2," , pi- removed. Systematic
methods for constructing such representations of the basic combinatorial objects are
discussed in Will [5] and Williarnson [6].

In many theoretical situations in classical enumerative combinatorics one
considers linear orders on these sets Cx. In any computational problem involving the
objects in Cx, a listing algorithm for the strings representing the objects is ipso facto a
linear order on the sets. In this paper we study algorithms which yield linear orders with
the property that the strings representing consecutive objects in Cx are, roughly
speaking, close to each other. As for the representation itself, we make no further
judgments on its efficacy. However, in 5 we make some remarks concerning
representations.

An operation requiring a sequence of steps which manipulate strings of symbols
parameterized by A is said to be uniformly bounded (UB) if the number of steps required
is bounded by M, where M is a constant independent of A. For example, if A n, the
statements "p <--xn+l, vp <--0, xn+ <--yn+l" form a UB operation while the statement
"find p {1, 2,..., n} such that vp 1", in general, does not.

Suppose M is an algorithm which generates a list of strings of length O(n)
representing the combinatorial objects in Cx where A (n, k) or A n. Suppose further
that s requires certain auxiliary data. We say that M is a uniformly bounded transition

* Received by the editors February 16, 1977., and in revised from July 15, 1978.
? School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
t School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. The work of this

author was supported in part by the National Science Foundation under Contracts GP-43010 and MCS
76-04839.

Department of Mathematics, University of California, San Diego, La Jolla, California 92093. The
work of this author was supported in part by the National Science Foundation under Contract MCS
74-02714-A02.

130

COMBINATORIAL GRAY CODES 131

(UBT) algorithm if[(1) the auxiliary data uses no more than O(n2) space, (2) the hth
string in the list and its corresponding auxiliary data is obtained by from the (h 1)th
string and its auxiliary data by a UB operation, and (3) the completeness of the list is
determined by in a UB manner. Ehrlich [2] calls such algorithms "loop-free". If the
auxiliary data uses no more than O(n) space, we say that 4 is a linear UBT algorithm.

Standard binary reflected Gray codes can be thought of as linear orders on the set
of subsets of a set such that adjacent subsets in the list are "close". See [1], [2] for more
detailed discussions of Gray codes. We call a linear order on the strings of symbols
representing the combinatorial objects in CA a (linear) combinatorial Gray code if[there
is a (linear) UBT algorithm which generates the list.

In many cases where A T, the cardinalities of the sets CA satisfy simple two-term
recursions. These recursions are usually based upon some natural combinatorial
argument. In 3 and 4 we present two algorithms which yield combinatorial Gray
codes for many such sets. In I we describe the general recursion and give a number of
examples, in 2 we develop two basic algorithms which are used in the algorithms
appearing in 3 and 4. We omit the technical details of the UBT versions of all these
algorithms. Finally, we make some concluding remarks in 5.

In what follows we shall use [n] to represent {1,2,... ,n} and (n) to mean
{0, 1, 2, , n-l}.

1. Binomial reeursions anti grids. Let C(n, k) be a doubly-indexed set of combina-
torial objects with n->0 and O<-k<=n. Let C(n,k)=[C(n,k)[and suppose C(n,k)
satisfies the recursion

C(n, k) a.,kC(n 1, k- 1)+ b.,C(n 1, k)

where a.,a and b.,a are nonnegative integers. Following Will [5], we may construct an
infinite multigraph on the set of points

V {(i,/3: i,] integers, 0 =< / _-< i}

as follows: construct b,i edges between the points (i-I,/3 and (i, ’) and construct a,
edges between the points (i-1,1"-1) and (i,/3 (Fig. 1.1).

bi.j edges

(i-l,j) -- (i,j)

es

(i-l,j-1)

FIG. 1.1

Let Hc be the graph thus constructed. Let Hc(n, k) be the directed subgraph
induced by the set of points {(i,/’) V :0 _-<] _-< k,/" -< _-< n k +/’}, where the horizontal
edges are directed to the right and the diagonal edges are directed to the upper-right. A
path in Hc(n, k) will mean a directed path. Adopting terminology similar to Will [5], we
call such a directed graph a binomial grid. Further discussion of binomial grids and their

132 J. T. JOICHI, DENNIS E. WHITE AND S. G. WILLIAMSON

relationship to basic linear orders on sets of combinatorial objects may be found in
Williamson [6].

By an (n, k)-path in Hc(n, k), we shall mean a path from (0, 0) to (n, k). There isan
obvious one-to-one correspondence between the set C(n, k) and the set of all (n, k)-
paths in Hc(n, k).

Suppose the edges of Hc(n, k) are labeled. Then corresponding to each (n, k)-path
is a unique n-tuple of labels, say (vl, , vn), where Vl is the outgoing edge from (0, 0)
and the remaining edges follow in order. If the labels are carefully chosen, the n-tuple
will uniquely determine the path (and hence, the combinatorial object). Such a labeling
is described in 4.

In 3 and 4 we shall also have occasion to consider transposed graphs, that is,
graphs which are "flipped over" so that the horizontal and diagonal edges are
interchanged. More precisely, by the transpose of the infinite graph Hc, we mean the
graph Hc defined on the set of points V with ai.i-i edges between the points (i- 1,/’)
and (i,/’) and bi,i-i edges between the points (i 1,]- 1) and (i,/’). Then ntc (n, n k),
the directed subgraph of Hc induced by the set of points {(i,]) V "] _-< n k, _-< k +}
is merely Hc(n, k) "flipped over" and we call it the transpose of Hc(n, k).

Let G(n, k) denote the directed graph corresponding to the set of k-subsets of In
and the binomial recursion

n n(k) (k 1 (n 1)1) + k

If we label each diagonal edge 1 and each horizontal edge 0, then we have a one-to-one
correspondence between the set of (n, k)-paths in G(n, k) and the set of n-tuples of O’s
and l’s containing exactly k l’s. In 3, this labeling of the edges of G(n, k) in
conjunction with a labeling of the edges of Hc(n, k) will provide us with a description of
the (n, k)-paths in He(n, k).

Finally, when we speak of the ai.j and bi, in a grid Hc(n, k), we mean the ai.i for
1 -</" -< k and _-< _<- n k +, and the bi.i for 0 _-< _<- k and/" + 1 _-< _-< n k +].

We conclude this section with some examples of binomial grids.
Example 1.1 (See Fig. 1.2)

C(n, k)= set of k-subsets of In],

C(n, k) (),
C(n, k)= C(n- 1, k- 1)+ C(n- 1, k) (a.i b.. 1).

2

o

0 2 3 4 5

FIG. 1.2

Hc(5, 3) for subsets

COMBINATORIAL GRAY CODES 133

Example 1.2 (see Fig. 1.3).
C(n, k)= set of partitions ot [n] into k blocks,
C(n, k) S(n, k) (Stirling number of the second kind),
C(n, k)= C(n 1, k- 1)+ kC(n 1, k) (ai. 1, bi.i =]).

Hc(5, 3) for partitions

0 2 3 4 5

FIG. 1.3

Example 1.3.
C(n, k)= set of permutations of In with k cycles,
C(n, k) Is(n, k)l (s(n, k) Stirling number of first kind),
C(n, k) C(n 1, k 1)+(n 1)C(n 1, k) (aid 1, bid-- i- 1).

Example 1.4 (see Fig. 1.4).
C(n, k) -set of permutations of [n] with k runs (subsequences

P < Pi+l < Pi+: < <P with Pi < pi-1 and p > p+l),
C(n, k)= Eulerian number,
C(n,k)=(n-k+l)C(n-l,k-1)+kC(n-l,k) (a.i=i-]+l,b.=]).

3

2 /"

o

0 2 3 4 5

FIG. 1.4

He(5, 3) for permutations with k runs

Example 1.5.
12(n, k)= set of permutations of In], k at a time,
C(n, k) (n), n(n 1)... (n k + 1),
C(n, k) kC(n 1, k 1)+ C(n 1, k) (a.i =], bi.i 1).

Example 1.6.
12(n, k)= set of k-dimensional subspaces of an n-dimensional vector

space over a field with q elements,

In] =(qn--1)(qn---l)’"" (q"-k+l--1)
C(n, k)=

k q (qt,_ 1)(q,-l_ 1)... (q- 1)
C(n,k)=C(n-l,k-1)+q’C(n-l,k) (ai.i=l,b.i=q).

134 J. T. JOICHI, DENNIS E. WHITE AND S. G. WILLIAMSON

2. Two basic algorithms. In this section we present two algorithms which are not
only of interest in themselves, but are also basic to the construction of the general
algorithm in 3. The first is an algorithm for generating the set of k-subsets of In], and
the second is an algorithm for generating all vectors in a general Cartesian product
space. The algorithm of 4 may be thought of as a generalization of the second
algorithm.

2.1. The subset algorithm. The subset algorithm we shall use is a special case of a
general recursive algorithm based upon the ’combinatorial interpretation of Pascal’s
formula. In order to be more specific and, eventually, to construct a UBT version of this
algorithm, we introduce some terminology and notation. First we associate with a
k-subset of In] an n-vector t3 (vl,’’’ vn) with k l’s and n-k O’s as entries in the
natural way. A set of entries vi, vj constitute a block of l’s in if the indices i, ,
are consecutive, vi vj 1, vi-1 0 if 1, and Vi/l 0 if n. For a vector 7
and p 0,1, , n 1, let 7(p) (vp/l, , vn). We say that 7(p) is extreme if it has at
most one block of l’s; 7 is extreme if 7(0) is extreme. The following algorithm is that
found in Ehrlich [2]. ’It utilizes two parameters p and q and labels on the entries of t3.

ALGORITHM 2. I.
I. Initialize 5"t3 must be extreme.

Initialize labels" if there exists > such that v. v,
then label v active; otherwise, label v passive.

2. Print t3.
3. Update p:p <--max {0} t_} {i:v is active}.
4. If p -0, then stop.
5. Update q" if vp 0 then q <-- min {j" j > p and vj 1}; otherwise, q <- 1 +

min {j :/’>p and vi 1}U{n + 1}.
6. Update : switch the entries vo and vq.
7. Update labels: labels vp passive; for > p if there exists f > such that vi vi,

then label v active.
8. Go to 2.
Some properties of this algorithm and a UBT version may be found in Ehrlich [2].

An example of the list generated when n 6 and k 3 is given below. The bars indicate
which positions are active.

000111 010101 101100 100011
001011 010011 101001 110001
001101 011001 101010 110010
001110 011010 100110 110100
010110 011100 100101 111000

2.2. The Cartesian product space algorithm. Suppose t7 (u 1, , u,) is a vector
with all positive integer entries. We wish to generate all vectors (vl, , v,) in the
product space (ul) (u,). To do this, each of the sets (u) is linearly ordered in
some way. The first and last values in each set will be called extreme values. Initially we
shall give an algorithm utilizing a parameter p, labels on the entries of 7, and an auxiliary
vector ff (w, ., w,) where wi +1 or -1 is to indicate the direction of the next
change which will take place in v in the linearly ordered set (u). We note that this
algorithm is a generalization of a Gray Code.

ALGORITHM 2.2
1. Initialize 5" each vi must be extreme.

Initialize " if v is the first value in (u), then w (-+ 1;
if v is the last value in (ui), then w <--1.

COMBINATORIAL GRAY CODES 135

Initialize labels" if ui 1, label vi active;
if u 1, label vi passive.

2. Print 7.
3. Update p: p max {0} {i: vg is active}.
4. If p 0, then stop.
5. Update tT:if wp +1, then replace vp by its successor in (up);

if wp =-1, then replace vp by its predecessor in (up).
6. Update labels: if >p and ui 1, then label vi active;

if vp is extreme, then label vp passive.
7. Update :if vp is extreme, then wp -wp.
8. Go to 2.
This algorithm clearly generates all vectors in the product space as desired. Clearly,

different linear orders on the (ui) yield different lists. For example, if for each i, we
introduce the order 0, 1, , ui-1, then step 5 becomes" vp Vp + wp. We note that in
this case, with u and a natural identification between (1) x (2) x x (n) and the set
Sn of permutations of In], Algorithm 2.2 becomes the Johnson-Trotter adjacent mark
algorithm for Sn [3], [4].

In 3 and 4 we shall use the order 0, ug-1, u-2..., 1; here, 0 and 1 are
extreme values. The list generated for (2) x (3) x (2) with starting vector (1, 1, 0) follows.
The bar above v indicates v is active.

(1,1,0) (0,0,1)
(1, 1, 1) (0, O, O)
(1,2,1) (0,2,0)
(1,2,0) (0,2,1)
(1,0,0) (0,1,1)
(1,0,1) (0,1,0)

Algorithm 2.2 can be modified to give a UBT version.

3. The multi-path algorithm. Let C(n, k) be a set of combinatorial objects for
which C(n, k) satisfies a binomial recursion C(n, k) akC(n 1, k 1)+
bn,kC(n-l,k) with a,, and bn,g nonnegative integers, and let Hc(n,k) be the
corresponding binomial grid. It has already been noted in 1 that there is a natural
one-to-one correspondence between the set C(n, k) and the set of (n, k)-paths in
Hc(n, k). Thus, any algorithm which generates this set of paths will, in effect, be an
algorithm for generating the set C(n, k). We will give one such algorithm in this section
and one in the following. We will also give conditions under which the algorithms will be
UBT. Many of the standard examples of sets of combinatorial objects of the type
described above will satisfy these conditions; thus, we will have combinatorial Gray
codes for each of these sets.

Suppose the a,j edges between the points (i-1, j-1) and (i,/’) in Hc(n, k) are
labeled 0, 1,..., a,j-1 and the b,i edges between (i-1,]) and (i,/’) are labeled
0, 1, , bi,i- 1. Also suppose the edges of the binomial grid G(n, k) corresponding to
the k-subsets of In] are labeled with O’s and l’s in the way discussed in 1. Then we have
a one-to-one correspondence between n-vectors g of O’s and l’s with exactlyk l’s and
(n, k)-paths in G(n, k). In turn, if each ai,i and b.i in Hc(n, k) is nonzero, then to each
(n, k)-path in G(n, k) there corresponds a unique multi-path (a path of multi-edges)
from (0, 0) to (n, k) in Hc(n, k), and conversely. Suppose there are u edges between the
(i-1)th and ith vertices of this multi-path (u a,j or bg,j, some). Then there is a

136 J. T. JOICHI, DENNIS E. WHITE AND S. G. WILLIAMSON

one-to-one correspondence between the set of (n, k)-paths in Hc(n, k) within the
multi-path and vectors t3 in the product space (ul) (un). It follows that there is a
one-to-one correspondence between the set of (n, k)-paths in Hc(n, k) and ordered
pairs of n-vectors (L) where t7 (ul) (un) and t7 (u,..., u) is uniquely
determined by

Although we assumed in the preceding that each ai,- and bi,j in Hc(n, k) is nonzero,
in many examples we have bl.0 0; thus, there is no edge in Hc(n, k) between (0, 0) and
(1, 0) and we do not have a one-to-one correspondence between the set of (n, k)-paths
in G(n, k) and the set of multi-paths from (0, 0) to (n, k) in Hc(n, k). Where this occurs
among our examples in 1, we always have a1,1 1 and each ai,. and b, nonzero for
=> 1. It is easily seen that in this case a simple translation in the plane will reduce the

situation to the previous case. Thus, we assume henceforth that each ai,i and b,i in
Hc(n, k) is nonzero. Of course, if bl,o 0 and a 1,1 > 1, then the algorithm which we shall
present must be modified to accommodate the multi-edge between (0, 0) and (1, 1).
This can be done in a straightforward manner by considering vectors where the last
entry corresponds to the edge between (0, 0) and (1, 1); we omit any further discussion
of this case.

The preceding discussion indicates how we can construct an algorithm which will
generate the set of (n, k)-paths in Hc(n, k) by use of Algorithms 2.1 and 2.2. In this
connection, we shall henceforth use g for the code vector in the subset algorithm and
retain for the code vector in the product space algorithm. There should be no
confusion between the other overlapping symbols as we shall always refer to them as
corresponding to

ALGORITHM 3.1.
I. Initialize g and auxiliary data for Algorithm 2.1.
2. Initialize
3. Use Algorithm 2.2 to generate the product space (u)x x (u#); for each

vector 7 generated, print (g, 3). When list is complete, go to 4.
4. If g was last vector, then stop; otherwise, update g by use of Algorithm 2. I.
5. Reinitialize 7 and the auxiliary data for Algorithm 2.2 for the t2 determined by

the updated
6. Go to 3.
An appropriate modification of Algorithm 3.1 can be made UBT under certain

conditions. These conditions are given below.
Conditions 3.2.
1. If j _>- 1 and _-> j + 2, then b,/_-> 2.
2. If b.0 1 and 1 <_-h -< i, then bh,o 1.
3. If bj+l,i 1 and l<-h -<j, then bh+l,h =ah,h 1.
Conditions 3.3.
1. If _-> 2 and >_- j + 1, then a./>_- 2.
2. If ai. 1 and 1 <_- h -< i, then ah,h 1.
3. If a,l 1 and 1 _<- h <_- i- 1, then a, bh,o 1.
We note that a grid Hc(n, k) will satisfy Conditions 3.3 if and only if the transposed

grid Htc(n, n-k) satisfies Conditions 3.2. Thus, for each example in 1, either
Conditions 3.2 or 3.3 will be satisfied by the grid Hc(n, k).

We say that the coefficients a, in Hc(n, k) are monotone if ar,r 1 whenever
a,j 1,/"-<_/" and i’ < i-/+’.

Conditions 3.4.
1. The coefficients a,i are monotone.
2. b,i 1.

COMBINATORIAL GRAY CODES 137

Conditions 3.5.
1. The coefficients bi, are monotone.
2. ai, 1.
We note that among our examples of 1, Conditions 3.4 are satisfied by Examples

2, 3, and 6 and Conditions 3.5 are satisfied by Example 5.
If any grid Hc(n, k) satisfies one of these four sets of conditions, Algorithm 3.1 can

be made UBT. We conclude this section with two examples of output.
The following (Table 1) is the list of partitions of In into k blocks (Example 1.2)

when n 5 and k 3. The first vector is g, the second is . These vectors are followed by
the corresponding set partition, which is obtained from g and 7 as follows: g describes
the set of smallest elements in the blocks, i.e., s 1 if[is smallest in its block. Order the
blocks in increasing order of the smallest elements, say Bo, B1,... ,Bk-. Let
/’,""",/’n-k be the remaining indices, i.e., sh ---0. Then vh h if[nh describes the
placement of],’’’,]n_k in the blocks. (This correspondence is the same as the
correspondence between placements of nontaking rooks in a triangular Ferrers board
and set partitions.)

TABLE 1

10011 00000 123-4-5
10101 00000 124-3-5
10101 00010 12-34-5
10110 00000 125-3-4
10110 00002 12-3-45
10110 00001 12-35-4
11010 00001 13-25-4
11010 00002 13-2-45
11010 00000 135-2-4
11010 00100 15-23-4
11010 00102 1-23-45
11010 00101 1-235-4
11001 00100 14-23-5
11001 00110 1-234-5
11001 00010 13-24-5
11001 00000 134-2-5
11100 00000 145-2-3
11100 00002 14-2-35
11100 00001 14-25-3
11100 00021 1-25-34
11100 00022 1-2-345
11100 00020 15-2-34
11100 00010 15-24-3
11100 00012 1-24-35
11100 00011 1-245-3

Next (Table 2) we give the list of permutations of n objects with k runs (Example
1.4) when n 5 and k 3. The vectors g and 7 are followed by a permutation on In]
with k runs constructed from g and 7 as follows: The numbers {1, 2, , n} are inserted
into the permutation in order. The number is inserted in the vith position which creates
a new run (resp. does not create a new run) it si 1 (resp. si 0).

4. Another algorithm. In this section we shall consider an alternate method of
labeling the edges of the grid Hc(n, k) so that not only will each (n, k)-path determine a
unique n-vector 7, but, conversely, the vector 7 will uniquely determine the path, In
contrast to Algorithm 3.1, the algorithm presented in this section will not list all of the
paths corresponding to a particular multi-path together. Furthermore, Algorithm 3.1

138 J. T. JOICHI, DENNIS E. WHITE AND S. G. WILLIAMSON

TABLE 2

10011 00000 54123 10110 00111 14352 11001 00111 21534
10011 00002 41253 10110 00112 14325 11001 00112 21354
10011 00001 41523 10110 00110 14532 11001 00110 52134
10011 00021 15243 10110 00100 45132 11001 00100 52413
10011 00022 12543 10110 00102 41325 11001 00102 24153
10011 00020 51243 10110 00101 41352 11001 00101 25413
10011 00010 51423 10110 00001 43512 11001 00001 25341
10011 00012 14253 10110 00002 43125 11001 00002 23541
10011 00011 15423 10110 00000 45312 11001 00000 52341
10101 00011 31524 10110 00010 35142 11001 00010 52314
10101 00012 31254 10110 00012 31425 11001 00012 23154
10101 00010 53124 10110 00011 31452 11001 00011 25314
10101 00000 53412 11010 00011 24351 11100 00011 32451
10101 00002 34152 11010 00012 24315 11100 00012 32415
10101 00001 35412 11010 00010 24531 11100 00010 35241
10101 00101 15342 11010 00000 45231 11100 00020 35214
10101 00102 13542 11010 00002 42315 11100 00022 32145
10101 00100 51342 11010 00001 42351 11100 00021 32514
10101 00110 51324 11010 00101 42513 11100 00001 34251
10101 00112 13254 11010 00102 42135 11100 00002 34215
10101 00111 15324 11010 00100 45213 11100 00000 34521

11010 00110 25143
11010 00112 21435
11010 00111 21453

requires a pair of vectors, (g, t3), to describe the object while the algorithm in this section
uses a single vector. The algorithm which we will construct to generate this set of vectors
will in many ways be similar to Algorithm 2.2 and, loosely speaking, is a generalization
of it.

For the sake of simplicity in notation, we shall assume that for a given n and
k, if (i,]) is not a vertex of the grid Hc(n, k), then ai, bi,. 0. However, as in 3,
we assume that each a.i and bi,i in Hc(n, k) is nonzero. For any vertex V of the
grid, let deg V=out-degree of V; in particular, deg(i,])=b/l,i+a/l,i+l. Now
the b=b/,j horizontal edges directed out from (i,]) are to be labeled
0, 1,..., b- 1 and the a ai/l,i/l diagonal edges directed out from (i,]) are to be
labeled b, b + 1, , b + a 1. Thus, the d deg (i,) edges directed out from (i,) are
labeled 0, 1,. , d- 1.

Consider a multi-path Q in Hc(n, k). Let V0," ", Vn where V/= (i,]i) be the
vertices of Q; let u =deg V_x. Then for each (n, k)-path P within Q, that is, through
the vertices V0, , Vn, if 7 corresponds to P, then 5 e (u) x x (u,). Thus, to each
multi-path Q there corresponds a unique vector ti (u,. , u,) such that for each
path P within Q, the corresponding vector J belongs to the product space determined
by

However, it should be noted that not all vectors 5 belonging to this product space
correspond to a path within Q; in fact, there may be vectors 7 for which there is no
corresponding path in Hc(n, k). In what follows, if path P corresponds to vector t5, P is
within multi-path Q, and corresponds to Q, then we shall say that ti corresponds to J.

We next consider what modifications are necessary in Algorithm 2.2 if we are to
generate only those vectors which correspond to paths in Hc(n, k). Suppose we have ti
corresponding to 7 and we are proceeding as though we were generating the product
space (u)x x (u). Suppose 7 has right-most active entry Vp, the path P cor-
responding to 5 passes through the vertices V0,- , V, and vp and 7 are to be updated

and tS’, respectively. There are two cases to conside initially.to vp

COMBINATORIAL GRAY CODES 139

Case 1. The edge labeled v directed out of Vp-1 is directed into Vp (as is the edge
labeled Vp).

Case 2. The edge labeled v directed out of Vp-1 is not directed into Vp.
In Case 1, there is a path P’ within Q corresponding to 7’; no modification is

necessary here, just generate ’ and then proceed to the next vector in the product space
determined by ti. In Case 2, in updating vp to v;, we have switched from a horizontal
edge directed out of Vp-1 to a diagonal one, or the reverse. In the former case we say
that the vector 7, or the path P is to undergo an up-switch and, in the reverse case, a
down-switch in either case, we call Vp_ the active vertex of the path P. Whether 5 is to
undergo an up-switch or a down-switch, there are two subcases to consider.

Case 2a. There exists a path P’ in Hc(n, k) corresponding to ’.
Case 2b. There does not exist a path in Hc(n, k) corresponding to ’.
In Case 2a the path P’ belongs to a multi-path Q’ where Q’ Q. Thus, after

generating 5’, we must update the vector ti, say to ti’, to correspond to Q’. We then
proceed as though we were generating the product space (u)x... x (u’) where
a’= (u’, u,).

To analyze Case 2b, we first note that each set (ui) is to be ordered
0, u 1, , 2, 1. Also, if v, is the right-most active entry of , then for each > p, vi is
extreme (0 or 1). Finally, for any vertex V riot on the upper or right-hand boundaries
of the grid, we have deg V_-> 2 and there must be edges directed out of V labeled 0
and 1. Thus, in Case 2b, there must be an index q _->p and a partial path through the
vertices Vo,’", Vp-1, V;,... V determined by the q-vector (Vl,’", V,-l, v,,
V,+l, , vq) such that V is either on the upper or right-hand boundary of the grid and
Vq/l 1 while deg V 1 (hence, the only edge directed out of V is labeled 0). Here
we must modify ts’ by setting Vq/l 0 and similarly for any other such vi for > q + 1.
The vector J’ so modified satisfies the condition of Case 2a and we proceed as in that
case.

We are now in a position to give our algorithm. It is based on Algorithm 2.2 and we
utilize the same notation.

ALGORITHM 4.1.
1. Initialize " any vector with each v extreme for which there exists a cor-

responding path in the grid.
Initialize " determine corresponding to .
Initialize " as in Algorithm 2.2.
Initialize labels" as in Algorithm 2.2.

2. Print t.
3. Update p: as in Algorithm 2.2.
4. If p- 0, then stop.
5. Update : as in Algorithm 2.2.
6. Update labels: as in Algorithm 2.2.
7. Update : as in Algorithm 2.2.
8. If Case 2a above prevails, then update as indicated.
9. If Case 2b above prevails, then update and as indicated.

10.. Go to 2.
It is easily shown by induction on n + k that Algorithm 4.1 will generate the set of

(n, k)-paths in the grid as desired for any "proper" initial vector.
It is clear that Algorithm 4.1 will be UBT if steps 8 and 9 can be carried out in a

uniformly bounded manner and a UBT version of Algorithm 2.2 is used. However, in
examples where many of the coefficients a.j and b.j are equal to one, the algorithm
occasionally produces rather unpredictable changes in the multi-path Q (and hence, in

140 J. T. JOICHI, DENNIS E. WHITE AND S. G. WILLIAMSON

the vector tT) when 7 is updated. To avoid such situations we shall only consider grids
which satisfy Conditions 3.2 or 3.3. A modification of Algorithm 4.1 will be UBT for
such grids.

Remark 4.2. In Algorithm 4.1 the representations of the combinatorial objects in
the examples may seem "closer" to the objects if the edges on the right hand boundary
of the grid were labeled in a more "natural" manner. For instance, in Example 2,
a n-i,k-1 "-1 and this edge would be labeled k- i. Of course, some modifications to
Algorithm 4.1 would be necessary. The algorithm thus constructed for the example is
that found in Ehrlich [2].

We now give two examples of the output from Algorithm 4.1. First (Table 3) we list
the partitions of In] into k blocks (Example 1.2) where n 5 and k 3. The vector
given is t3 modified by Remark 4.2. This is followed by the corresponding set partition
which is obtained as follows" vi indicates that is in block vi. These vectors are called
"restricted growth functions".

TABLE 3

00012 123-4-5 01201 14-25-3
00102 124-3-5 01221 1-25-34
00120 125-3-4 01222 1-2-345
00122 12-3-45 01220 15-2-34
00121 12-35-4 01210 15-24-3
00112 12-34-5 01212 1-24-35
01012 13-24-5 01211 1-245-3
01020 135-2-4 01112 1-234-5
01022 13-2-45 01120 15-23-4
01021 13-25-4 01122 1-23-45
01002 134-2-5 01121 1-235-4
01200 145-2-3 01102 14-23-5
01202 14-2-35

TABLE 4

00012
00014
00013
00033
00034
00032
00022
00024
00023
00203
00204
00202
00230
00232
00231
00221
00222
00220
00212
00214
00213
00113

54123 00114 31254 01013
41253 00112 53124 01201
41523 00120 45312 01202
15243 00122 43125 01200
12543 00121 43512 01220
51243 00131 31452 01222
51423 00132 31425 01221
14253 00130 35142 01211
15423 00102 53412 01212
15342 00104 34152 01210
13542 00103 35412 01112
51342 01003 25341 01114
14532 01004 23541 01113
14325 01002 52341 01120
14352 01030 24531 01122
41352 01032 24315 01121
41325 01031 24351 01131
45132 01021 42351 01132
51324 01022 42315 01130
13254 01020 45231 01102
15324 01012 52314 01104
31524 01014 23154 01103

25314
34251
34215
34521
35214
32145
32514
32451
32415
35241
52134
21354
21534
45213
42135
42513
21453
21435
25143
52413
24153
25413

COMBINATORIAL GRAY CODES 141

Next (Table 4) we give the list of permutations of n objects with k runs (Example
1.4) when n 5 and k 3. The vector 7 (modified by Remark 4.2) will be followed by
the corresponding permutation constructed from 7 as follows: assume 1, 2, , i- 1
have been inserted into the permutation. Let be the number of runs in this permu-
tation. If vi >= l, insert in the (vi-/)th position which creates a new run. If vi < l, insert
at the end of the vith run.

$. Remarks.
Remark 5.1. In all of the examples described in 1, the values aid and bi.j may be

computed as needed (in a UB manner) instead of stored. Thus, in these cases,
Algorithms 3.1 and 4.1 may be made into linear UBT algorithms.

Remark 5.2. As was described in the Introduction, combinatorial objects may have
a number of "natural" representations or codings. The ones presented in 3 and 4
were chosen, of course, to obtain the UBT property. However, since they are based
upon recursions for which there are natural combinatorial proofs, they themselves turn
out to be quite natural.

For example, the representation of a partition of a set obtained in Example 1.2
from Algorithm 4.1 (as modified by Remark 4.2) yields the second representation
described in the Introduction. The representation of a partition of a set obtained from
Algorithm 3.1 may be interpreted as placements of nontaking rooks on a triangular
chessboard.

Remark 5.3. In this paper we have not addressed the question of rank/unrank
algorithms. Such algorithms are straightforward for Algorithms 2.1 and 2.3. However,
in Algorithm 3.1, because of the problem of predicting the first 7 associated with a given
s-, such an algorithm may be difficult to construct. A rank/unrank algorithm associated
with Algorithm 4.1 seems more likely.

Acknowledgment. We would like to thank the referees for their suggestions and
comments which have made this paper more readable.

REFERENCES

[1] J. R. BITNER, G. EI-IRLICH AND E. M. REINGOLD, Efficient generation ol the binary reflected Gray code
and its applications, Comm. ACM, 19 (1976), pp. 517-521

[2] G. EHRLICH, Loopless algorithms for generating permutations, combinations, and other combinatorial
configurations, J. Assoc. Comput. Mach., 20 (1973), pp. 500-513.

[3] S. M. JOHNSON, Generation o[permutations by adjacent transpositions, Math. Comput., 17 (1963),
pp. 282-285.

[4] H. F. TROTTER, Algorithm 115 Perm., Comm. ACM, 5 (1962), pp. 434-435.
[5] H. S. WILF, A unified setting]:or sequencing, ranking, and selection algorithms]’or combinatorial objects,

Advances in Math., 24 (1977), pp. 281-291.
[6] S. G. WILLIAMSON, On the ordering, ranking, and random generation o]’ basic combinatorial sets, Table

Ronde, Combinatoire et Repr6sentation du Groupe Sym6trique, D. Foata, Ed., Strasbourg, 26-30
April 1976. (Available through D. Foata, D6partement de Math6matique, Universit6 Louis-
Pasteur de Strasbourg, 7, rue Ren6-Descartes, 67084 Strasbourg, France.)

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0014 $01.00/0

A NOTE ON GRAY CODE AND ODD-EVEN MERGE*

P. FLAJOLET" AND LYLE RAMSHAW.

Abstract. Delange has demonstrated an elegant method for computing the sum of all of the digits used
when the first n nonnegative integers are expressed in base q -> 2. We show that his method can be adapted to

unusual number systems such as Gray code and balanced ternary and can also be adapted to count the
occurrences of each digit separately. As an application, we consider Sedgewick’s analysis of Batcher’s
odd-even merge, and use our results about Gray code to provide an alternative, and perhaps more direct,
derivation of the asymptotics of the average case.

Key words, analysis of algorithms, digital sums, Gray code, odd-even merge, merge exchange sort,
gamma function, zeta function

1. Introduction. The performance of interesting algorithms sometimes depends
upon the properties of a number system. The basic operations on Vuillemin’s binomial
queues [13], for example, are closely related to the arithmetic of the binary number
system. Hence, the analysis of binomial queues demands information about the
function/(n) that maps the nonnegative integer n into the number of 1-bits in its binary
expansion. A more subtle example is provided by the question of determining how
many registers are needed to evaluate an arithmetic expression optimally. Let Rn
represent the expected number of registers needed to evaluate an expression tree with n

binary operations, where the (1/(n + 1))(2n)- such trees are considered equally likely.
\ /n

Here, the relation to the binary number system is not nearly so direct. Yet Rn can be
expressed in terms of a convolution of fl (n) with binomial coefficients [4]; it turns out
that

2n)(2n)(2n) (2n

R,,=l+(n+l) E /3(i)
n+i+2

-3 +3
n+i+l n+i n+i-1

i>0

The determination of the asymptotic behavior of such a convolution can present
something of a challenge. One method of attack uses integral transforms in the complex
plane, often beginning with a Mellin transform of e of the form

1 fc
c+i

F(z)x dz.e
2i -i

Knuth calls this approach the gamma function method [8], and attributes it to N. G. de
Bruijn. R. Kemp uses complex integral transforms to handle R, [6], and there are
several other examples of this method in the literature [2], [11].

Flajolet, Raoult, and Vuillemin established the asymptotic behavior of R,
independently, using a different technique [4]. After applying summation by parts to
replace fl(i) with its sum, they invoked the following result of Delange [3]. (We will
write "lg" for "log2" and "ln" for "lOge" throughout.)

* Received by the editors December 7, 1977, and in revised form March 23, 1979.
5" IRIA LABORIA, Rocquencourt, Le Chesnay, France.
t Computer Science Department, Stanford University, Stanford, California 94305. The work of this

author was supported in part by the National Science Foundation under Grant MCS-77-23738 and by the
Office of Naval Research under Contract N00014-76-C-0330.

142

GRAY CODE AND ODD-EVEN MERGE 143

THEOREM B (H. Delange) (The number of 1-bits in binary). Let 3(n) denote the
number of 1-bits in the binary representation of n. There exists a continuous, nowhere
differentiable function B:R--> R, periodic with period 1, such that

n lgn
/3(i) --nB(lg n)]:or n >= 1.

Oi<n 2

Furthermore, the Fourier series B(x)=Yk bke2=ix of B converges absolutely, and its

coecients b are given by

b0
lg zr 1 1 _0.145599+
2 21n2 4

-((X) 2kTri
b (In 2)Xk(1 +X)

[orx In 2’
k # 0.

The example of R, thus justifies an interest in digital sums like the one in Theorem
B. Our purpose in this note is to show that the method behind Delange’s proof of
Theorem B can be used to handle other digital sums in standard and exotic number
systems. For example, let y(n) for n >= 0 denote the number of 1-bits in the Gray code
representation of n. Section 2 derives a formula for Ei ’]/(i) that constitutes the Gray
code analogue of Theorem B. The proof is a straightforward modification of Delange’s
method, but it is presented here for completeness. In 3, we define a fairly broad class
of positional number systems in which Delange’s method can be used to count the
number of occurrences of each nonzero digit.

In 4, we consider an application to the analysis of odd-even merging. Sedgewick
has expressed the average case exchange performance of Batcher’s odd-even merge in
terms of a convolution of the function 3,(n) with binomial coefficients 11]. He went on
to determine the asymptotic behavior of this average case by means of the gamma
function method mentioned above. By invoking the Gray code analogue of Theorem B,
we will be able to provide an alternative derivation of the asymptotic behavior.. The Gray code ease. A Gray code [10, pp. 173-179, 198] is an encoding of the
integers as sequences of O’s and l’s with the property that the representations of
adjacent integers differ in exactly one position. We will restrict our consideration to the
standard Gray (or binary reflected) code, which encodes n as the binary representation
of g(n) where g: N--> N is defined by

g(O) O, g(2v +]) 2v + g(2v 1 -]) for 0 -<_/" < 2.
The Gray code representations of the first sixteen integers are presented in Table 1.

Let y(n) denote the kth bit in the Gray code representation of n, and let
y(n) Y yk(n) denote the total number of 1-bits in that sequence. In the notation of
Theorem B, we have y(n)= [3(g(n)). We wish to count the 1-bits in the first n rows of
Table 1, that is, to evaluate the sum

F(n)= E y(i).

Again, our argument closely parallels Delange’s proof [3] of Theorem B.
We begin by considering the columns of the table. Note that the kth column

consists of an infinite repetition of the block of bits 0
9

1z 1u0z. Eventually, therefore,
each column contains about half O’s and half l’s. Let t(n) denote the difference
between the number of 1-bits actually present in the first n positions of column k and
the number of 1-bits that we would expect to find there, namely n/2; in symbols, we

144 P. FLAJOLET AND LYLE RAMSHAW

TABLE
The standard Gray code

representation.

0

0

0
1 0

1
0
0 0
0 0
0

0
0 ,0

0
0 0
0 0 0

0

2
3
4
5
6
7
8
9
10
11
12
13
14
15

have

Whenever n is a multiple of 2, the relevant portion of the kth column will consist
of an integral number of blocks of 2 bits, each entirely 0’s or entirely l’s, occurring in
the order mentioned above. This data allows us to compute special values of t(n); in
particular, we deduce that

0 if p ---0 (rood 4)-- if p 1 (mod 4)t(p2)
if p 2 (mod 4)

[2- ifp---3(mod4).

Furthermore, between these special values of n, the graph of t (n) will consist of linear
segments. Hence, we can express all of the t’s as rescalings ot a single periodic function
t" li II, shown in Figure 1 and formally defined by

-x if0-<x =<1/4
(2.1) t(x)= x/2-1/4 if1/4-<x-<43- and t(x+l)=t(x) forallx.

1/2- /2

t(x)

FIG. 1. The graph of t(x).

GRAY CODE AND ODD-EVEN MERGE 145

In particular, for all k and n, we have

tk(n) 2k+2t(n/2k+Z).
Let [lg n J, and note that all of the columns in Table 1 of index greater than

begin with at least n zeros. Therefore, we have

F(n)= Y. () (/+l)n 2k k+2)+ tk(n) =+ Z +2t(n/2
O_k<_l 2 O_kl

The lower bound on the index of the remaining summation can be dropped, since t(x)
equals zero whenever x is integral or half-integral; replacing that index of summation k
by (l- k) then gives

(2.2)
F(n)

(l + l)n t_k+2t(n/2t_k+2)=+ Y. 2
2

The latter term suggests that we consider the superposition function

t(2kx)
(2.3) h(x)= 2kk0

This function is of some mathematical interest in its own right; it is a close analogue of
Van der Waerden’s example of a function that is continuous but nowhere differentiable
[12, pp. 351-354]. In fact, we can show the following.

LEMMA H. The function h: RR defined by (2.3) is periodic with period 1,
continuous, and nowhere differentiable.

Proofi The periodicity of h follows immediately from the periodicity of t. Also,
since is bounded, we can apply the Weierstrass M-test to deduce that the series
defining h converges uniformly, and hence that h is continuous. It only remains to verify
nondifferentiability.

Given a real number y, let//= [aj, bj] for/" _-> 1 denote the closed interval of the form
[p/2, (p+ 1)/2i] that contains y. The/. form a nested sequence of intervals whose
intersection contains only y. If 2ky is an integer, there will be two possibilities for/.
when] _-> k, and we can choose either one as long as we choose consistently.

If h (x) were differentiable at x y, the difference quotient

(2.4) h(bi)-h(ai)
bj a

would have to converge to h’(y) as/" went to infinity. From (2.3), we have

h(bi)- h(ai) t((p + 1)2k-i) t(p2k-j)
2k-b a k_O

Since t(x) 0 for integral or half-integral x, the kth term of this sum is zero for k _->] 1.
On the other hand, the kth term for 0 _-< k <]- 1 will contribute +/-1/2, since t(x) is linear
over the interval [p2k-i, (p + 1)2k-J]. Thus, twice the difference quotient (2.4) will be an
even or odd integer depending as] is odd or even; in particular, the difference quotient
cannot converge, and thus h is n6t differentiable at y.

In terms of this new function h, our formula (2.2) for F(n) takes the form

F(n)
(1+ 1)n l+2h +2).=+2 (n/2

2

146 P. FLAJOLET AND LYLE RAMSHAW

Recalling that [lg n J, we can rewrite this

nlgn n([lgnJ-lgn+l)
F(n

2 2
+

Using {x} x Ix to denote the fractional part of x, define the function G" R-+ R by

1-{x}
(2.5) G(x)=+22-Xh (2tx-2),"

2

then, we have

nlgn
F(n)=+nG(lgn).

2

Now, the definition of G(x) in Equation (2.5) immediately implies that G is
periodic with period 1; it also shows that the identity

(2.6) G(x)
1-x 2z_Xh+ (2-)
2

holds for x in the range 0 _-< x < 1. In fact, this identity holds over the entire range x _-< 1;
to see this, it is enough to note that, for x _-< 0, we have

1-X 22_Xh -2) 1-x
+ (2
2 2

Xh -x)+ 22- (t(2-) + 2 (2

+2z-x ((- 1/2)2-2 + 1/2h (2-x))

1-(x+l)
+ 2Z-(x+a)h(2(x+l)-2).

In particular, we may conclude that the behavior of G(x) over the interval (-1, 1) is a
smoothly distorted version of the behavior of h (x) over the interval (,). This means
that G(x) must be continuous and nowhere differentiable on (-1, 1), and hence on the
whole real line by periodicity.

We now turn to the task of computing the Fourier series of G. We want to express
G in the form

G(x) E gkea’’ix,
k

where the coefficients gk are determined by Fourier inversion,

gk Io G(u)e-2"i’ du.

But is behooves us to be a trifle cautious, since we are dealing with fairly ill-behaved
functions. Since G is continuous, we know from Fej6r’s Theorem [12, p. 414] that the
Fourier series of G will be summable (C, 1) everywhere. But, since G is also nowhere
differentiable, it cannot possibly be of bounded variation, and hence there is no
particular reason to assume that the Fourier series of G will converge. Therefore, after
we compute the coefficients gk, we will have to explicitly explore the convergence
question.

GRAY CODE AND ODD-EVEN MERGE 147

First, we must compute the coefficients. Substituting for G(u) its definition from
(2.5), we have gk Ck + dk where

Iol (1- U) e-2kiuc du,

dk J0 22-Uh (2u-2)e-2k=iu du.

We can calculate the Ck at once, getting Co 1/4 and Ck 1 ! (4kTri) for k 0. Turning to dk,
recall that (2.3) defined h(x) as the sum of a uniformly convergent series: therefore,
after substituting for h(2U-2), we may interchange summation and integration to get

dk , I 22-u-it(2u+i-2)e-2kiudu"
i>-o Jo

Performing the change of variables u 2-] + lg v then gives us

1 f2,-1 t(v) dv

Adopting the abbreviation Xk 2kri/ln 2, we have

1 f t(v)dv_ 1
(2.7) dk "-’- /4 V2+’vk -In 2

H(1 -t"/’k)

where H(z) represents the integral

t(v)
H z v--F dv.

Now, although this integral is absolutely convergent for (z) > 0, it is easy to evaluate
only when (z)> 2. Taking advantage of the fact that H(z) is analytic for R(z) > 0, we
will first evaluate it under the more restrictive assumption that R(z) > 2, and then use
analytic continuation to extend our result.

Equation (2.1) is the original definition of the function t(x); working from this, it is
easy to verify the alternative form

t(v) (Ix +43-J Ix +1/4J -)dx.

Integrating H(z) by parts then yields

-4z-1 1 f(2.8) H(z)=
2z

+ ([v+1/4]- [v+1/4J 1/2) d
Z /4 V

Now, using our assumption that 9(z) > 2, we can split this integral into three parts; the
third is straightforward, since

dv 4z-

/4’Y= Z_ 1"

The first two parts turn out to involve the generalized Riemann zeta function defined for
R(z) > 1 by

1
(2.9) ’(z, a)= E)z,-o (] + a

148 P. FLAJOLET AND LYLE RAMSHAW

the standard Riemann zeta function ((z) corresponds to the case a 1. We calculate as
follows, for 0 < a -< 1:

(z 1) lv + 1-aJ v l<-]<--J .,a+/-1

0=< (j + a (j +)z-"
Recalling that R(z) > 2, we let J go to infinity and conclude that

(z 1) Iv + 1 -c] ---d ’(z 1, c).

Plugging into our formula for H(z) in (2.8), we deduce that, at least for (z)> 2, we
have

-4- ((z ,-((z , }
H(z) +

(z -) z(z-)

By analytic continuation, this formula also holds for (z)> 0 if z 1.
Some simplification is now possible. For any integer 2, we can group the terms

of the series in (2.9) according to the residue class of] modulo l, and verify that

((z, /l+((z,/l+...+((z, 1 (zl.

Invoking this relation for 2 and for 4, we see that

((z, (4 l(z-(z, ;
hence, we have

-4z-a 2r(z 1, 1/4) 2(4z-’- 2z-)r(z 1)
H(z) --2(z- 1) z(z- 1) z(z- 1)

We can now compute the dk for k 0 as specified in (2.7) by substituting (1 +
for z; the third term conveniently drops out, and we have

(-1&" 4krri + (ln 2)x(1 +x) for k 0.

To compute do, we need the value H(1), which we can find using the expansions

4z-1 1 + 2 In 2(z 1) + O((z 1)z)
2z-1 1 + In 2(z 1) + O((z 1)2)
1
-=l-(z-1)+O((z-1)2)
Z

((2 1, 1/4) -](z-1)+O((z-1)2);
the first three are trivial, and the last is classical [14, p. 271]. Plugging in and grinding
away, we arrive at

H(z) 2 In F(1/4)-------31n2
In 7r-+ O(z- 1)

GRAY CODE AND ODD-EVEN MERGE 149

which implies that

1 3
do 2 lg F(1/4)- lg r-

21n2 2"

Recalling that gk Ck + dk, we have found that the Fourier coefficients of G are

go 2 lg r(1/4)- lg r 1 5
21n2 4’

2((Xk. 1/4) 2kcri
gk

(ln 2)Xk(1 +Xk) fOrXk In 2’
k0.

As mentioned earlier, we have no reasonyet for thinking that the Fourier series of
G will converge; but we can now check convergence explicitly. Since (it, a)=
O(Itl 1/2 log Itl) [14, p. 276], the coefficients satisfy

gk O(Ik1-3/z log Ikl),
and hence the Fourier series of G converges absolutely on the entire real line. This
completes the proof of the 1-bit counting theorem for Gray code, which we now state
formally.

THEOREM G. (The number of 1-bits in Gray code). Let y(n) denote the number of
1-bits in the standard Gray code representation of n. There exists a continuous, nowhere
differentiable function G: R- R, periodic with period 1, such that

nlgnE v(i)
O<_i<n 2 - nG(lg n) for n >-_ 1.

gke
2k’rrixFurthermore, the Fourier series G(x)=k of G converges absolutely, and its

coefficients gk are given by

go 2 lg F(1/4)- lg zr
21n2

45- 0.093604+,

2st(X, 1/4) 2kri
(ln2)x(l+x,) fOrXk= ln2

’k#O"

3. Balanced ternary and other systems. The same technology that handled
Theorems B and G can be used to count the occurrences of each nonzero digit d in a
fairly broad class of positional number systems. We will begin this subject by consider-
ing the case of balanced ternary.

Balanced ternary [7] is the base 3 positional number system obtained by using the
ternary digits or trits -1, 0, and 1 instead of 0, 1, and 2. Every integer can be written
uniquely in balanced ternary without the use of an explicit sign. Table 2 depicts the
balanced ternary representations of the first sixteen nonnegative integers, where we use
1 to stand for -1.

Paralleling our Gray code development, let d represent either 1 or -1, and let
’/’k (n) be i if d is the trit in the kth position when n is expressed in balanced ternary, and
0 otherwise. Also, let r(n) denote the total number of d-trits in the balanced ternary
representation of n, so that r(n)= Ek Tk(/’/). We want to study the function Y. r(i).

Now, the zeroth column in Table 2 consists of an infinite repetition of the block of
trits 011. In order for the exact analogue of our Gray code argument to work, it would
be essential that the kth column consist of repetitions of the block of trits 0 13’.
Unfortunately, this is not the case. But, there is a solution to this difficulty. Imagine

150 P. FLAJOLET AND LYLE RAMSHAW

1

TABLE 2
The balanced ternary system.

o kn
0 0

1 i 2
0 3

4

i 0 6
1 7

0 i 8
0 0 9
0 10

11
1 0 12

13
14

removing half of the zeroth row from Table 2, leaving only half of a 0-trit in each
column. After this truncation, the zeroth column of the table consists of repetitions of
the block 010; and, in general, the kth column consists of repetitions of the block
03k/213k3k 03k/2. This insight suggests that, instead of the obvious sum

E r(i),

we should instead study F(n) where

r(0) z(n)
F(n)=--+r(1)+z(2)+...+r(n-1)+ 2

Of course, since r(0) is actually zero, the first term here could be omitted, but this would
obscure the structure of the truncation insight.

Happily enough, the function F(n) succumbs straightforwardly to Delange’s
techniques. Each position in Table 2 has, in some sense, a one in three chance of
containing the trit d. We define the function tk(n) to be the difference between the
number of d-trits actually present in the first n positions of column k and the number of
d-trits that we would expect to find there, namely n/3. Of course, by "the first n
positions of column k," we are now referring to the entire entries in rows I through n 1
along with half of the entry in each of rows 0 and n. In symbols, we have

(t(n) r(0) +,(1)+,(2)+... + r(n- 1) +.
\ 2 2 -"

By our insight above into the structure of the truncated version of Table 2, we can
express all of the functions t(n) as rescalings of a single function t(x), and we are in
good shape.

In fact, this truncation technique works in a more general environment. Among all
possible positional number systems with base q for q ->_ 2, the simplest are those whose
digits form a sequence of q consecutive integers including 0. We will call such a system
the (q, r} number system, where q denotes the base and r, in the range 0_-< r N q- 1,

GRAY CODE AND ODD-EVEN MERGE 151

denotes the number of negative digits; that is, the digits in the (q, r) system are precisely
the integers -r, 1 r, 2 r, q 1 r. Note that standard base q representation is the
(q, 0) system, and that balanced ternary is the (3, 1) system.

These number systems come in symmetric pairs. The legal digits in the (q, r) system
are exactly the negatives of the legal digits in the (q, q 1 r) system, and so represent-
ing n in one of these systems is equivalent to representing -n in the other. This
symmetry shows that we lose no essential generality by only considering the represen-
tations of nonnegative integers. Now, all of the digits of the (q, q- 1) system are
nonpositive, and hence, without the use of an explicit sign, this system can only
represent the nonpositive integers. Therefore, we will exclude the case r q 1 in what
follows. On the other hand, every nonnegative integer has a unique representation in
the (q, r) system for 0 -< r _-< q 2.

The truncation trick that we discussed in the balanced ternary case works in any
(q, r) number system, and leads to the following Theorem. Since the proof of this
Theorem is so similar to the proof of Theorem G, we hereby relegate any consideration
of the details to Appendix P.

THEOREM P (The number of d-digits in the (q, r) positional number system). Let q
and r be integers satisfying q >-2 and 0 <-r <-q- 2. Let the (q, r) number system be the
positional number system with base q and digits -r, 1- r, q- 1-r, and let d be a
nonzero digit in this system. Let p(n) denote the number of times that the digit d is used
when n is expressed in the (q, r) number system, and let F(d, n) denote the appropriately
truncated summation of p, in particular,

F(d,n)=(X- r) (r)q-1
o(0)+o()+o(2)+’"+o(n-1)+ q-i o(n).

Then, there exists a continuous, nowhere differentiable function P: R R, periodic with
period 1, such that

n logq n
F(d, n) +nP(logq n) for n >-_ 1.

q

The Fourier series P(x) pe ofPconverges absolutely. Finally, if we determine m
by the relations 1 <-_ m <- q 1 and m =- d (mod q), and define the and by the formulas

tn= q q(q-1)’

rn+l r

q q(q- 1)’

the coefficients pk are given by

1 1
p0 og F(f)-og,

q In q 2q

(Xk,)-(X, rl) 2kTri
forX , k # O.P (In q)g (1 + Xk) In q

This theorem has several corollaries. First, note that any linear combination

E AaF(d, n)
-r<=d<q-r
dO

of the digit counts F(d, n) can be evaluated by taking the corresponding linear

152 P. FLAJOLET AND LYLE RAMSHAW

combination of the results above, in particular, we can compute the sum of all of the
digits used when the first n nonnegative integers are expressed in the standard base q
system by computing the linear combination

dF(d,n)
0<d<q

in the (q, 0) number system. The rather complex expressions that result for the relevant
Fourier coefficients simplify pleasantly, and we arrive at the result that Delange actually
demonstrated [3], of which our Theorem B was a special case, However, note that linear
combinations of nowhere differentiable functions are not necessarily nowhere
differentiable; hence the claim of nowhere differentiability in the following Corollary
demands a separate proof, which Delange supplied.

COROLLARY S (H. Delange) (The sum of the digits in base q). Let q >= 2 be an
integer, and let s(n denote the sum of the digits used when n is expressed in the standard
base q number system. Then, there exists a continuous, nowhere differentiable function
S: R R, periodic with period 1, such that

, s(i)
q 1

n log, n + nS(log, n) for n >= 1.
O_i<n 2

Furthermore, the Fourier series S(X)=kSke2kzrix of S converges absolutely, and its

coefficients Sk are given by

(q 1)(ln 27r- 1) q+l
$0

21nq 4

(1 --q)(Xk)
forxkSk (In q)Xk(1 +Xk)

2kzri
,kO.

In q

It is fun to use Theorem P to compute the sum of the digits in balanced ternary, as well as
in the standard base q systems discussed by Corollary S. Because of the symmetry of
balanced ternary, the (n log n) term drops out completely, and the k 0 coefficient of
the Fourier series simplifies to log3(2).

Theorem P can also be applied in some less obvious ways. The negabinary number
system is the positional system with base -2 and digits 0 and 1; it is known that every
integer has a unique representation in this system [7]. Theorem P does not apply
immediately. But, if one groups adjacent pairs of digits in the negabinary system, and
views the pairs as "super-digits," it is not hard to show that the resulting scheme is
isomorphic to the (4, -2) number system. The results of Theorem P can be carried over
via this isomorphism.

In fact, Theorem G can almost be viewed as a corollary of Theorem P. Gray code
corresponds in some sense to a (2, 21-) number system, which a slight generalization of
Theorem P can handle. We omit the details of this reduction, however.

4. The analysis of odd-even merging. The odd-even merge is the basic step of a
sorting procedure due to Batcher 1]. The difficult part of the analysis of this algorithm is
the study of the number of exchanges. Let B, denote the average number of exchanges
needed when two random files of size n are combined with Batcher’s odd-even merge.
As mentioned in the Introduction, Sedgewick managed to express B, as a convolution
of y(n) with binomial coefficients [11]. Although he did not explicitly mention Gray

GRAY CODE AND ODD-EVEN MERGE 153

code, he showed that

B,=+2 Z F(k) where F(k)= y(i).

n

Sedgewick then used the gamma function method to determine the asymptotic behavior
of B,,. In this section, we will sketch an alternative derivation that uses Theorem G.

We begin our attack on B,, as does Sedgewick, by limiting k to the range
I/I <,/ In n. In that range, Stirling’s formula leads to the Gaussian approximation

(n22k)
_k2/,,(1 o(lOgn’n)).

Futhermore, when k exceeds In n, the left hand side will be exponentially small, in
particular O(exp(-log2 n)), so that we have

n
B, =+2 y F(k)e-k2/"(1 +O(n-’ log4 n)).

INk In

We now take advantage of Theorem G’s information on the structure of F(k), getting

n
<,/.g, (klgk)e_k2/nB, =+2 l_k Inn 2

+ kG(lg k) (1 + O(n log4 n)),

where G is periodic with a known Fourier series. Splitting this sum into two parts, we
have

n
B,, + (C. + 2D.)(1 + O(n-a log4 n)),

(4,1) C, k lg k e-k-In,
l"k<x/n In

D, Y,/7, kG(lg k)e -k2/".
lk In

For Cn, we can use the Euler-McLaurin summation formula in the form

Ix" f’(m)-f(1) (II" dx)Y.]’(k)= f(x) dx
f(m)-f(1) + + o

lNk<m 2 12

Putting rn x/-n In n and f(x) x lg x e -x2/", we can verify that f"(x) O(1) and thus
that

"nln
Cn 1 X lg X e -’2/" dx + O(n log n).

Readjusting the limits of integration to 0 and o only introduces an additional O(1)
error; performing the change of variables y x/4n and integrating, we have

C,, nlnnI _y2 n I2 ln-’-- ye dy +1- y In y e dy + O(n log n)
(4.2)

n,n_..__._n (21_) n ()2 In 2 +1-- + O(n log n).

154 P. FLAJOLET AND LYLE RAMSHAW

We now turn to Dn. Unfortunately, the function G(x) is not differentiable, so the
Euler-McLaurin formula does not apply; we must resort to another method for
determining the error incurred when replacing the sum by an integral. At least we can
say on a term by term basis that

k+l

where the oscillation of the function on the interval I is defined by

osc (, I) sup [(x)-inf (x).
xI xI

In the case of D,, we have f(x)= xG(lg x)e -x/E where we recall from 2 that

G(x)
1-{x} 2_h(2_)

2

h (x) 2-t(2x).
i0

Beginning at the bottom and working up, note that t(x) has maximum slope , and hence
satisfies the Lipschitz inequality

(4.3) It(b)- t(a) lb a I.
Now consider the oscillation of h (x) on an interval of length 1 /k. If we split up the sum
at the [lg kJ term, we find that

h(x)= E 2-t(2X)+2-Llgkh(2tkx);
0i< Jig kJ

the summation here involves [lg k terms, each of which satisfies the Lipschitz
condition (4.3), while the final term is itself O(1/k).. Hence, we deduce that

(log k) if IIIosc (h(x),)= O k "Going from h(x) to G(x) only changes the constant factors involved; since the interval
[lg k, lg(k + 1)] has length essentially 1/k, we may then conclude that

osc (G(x), [lg k, lg(k + 1)]) 0 O(! k).
Finally, returning to f(x), we see that

and hence that

osc (f(x), [k, k + 1])= O(log k),

xO(lg x)e-’/" dx[-<- l<-k<vn In
O(log k)= O(xn log n).

Again, we can change the limits of integration to 0 and with only a O(1) error,
and we deduce that

D Io xG(lg x)e -x2/" dx + O(x/n log2 n).

To evaluate the integral, we substitute for G its Fourier series G(x) ,k gke2kix" Since
this series converges absolutely, we may interchange summation and integration,

GRAY CODE AND ODD-EVEN MERGE 155

getting

D, ’k gk IO xl+2kri/ln2e-X2/n dx + O(x/- log2 n).

Changing variables to y xE/n, we find that

D, -n k gke
krilgn

)2 kri/ln2e-Y dy + O(n/n log2 n)

(4.4)

--n gkek=ig"F(l + kcri/ln 2)+O(vn logZ n).

Putting together (4.1), (4.2), and (4.4), we find that B, satisfies

(4,5) B, =+nlgn4 (i 41n2Y) n + n k gkF (I +Inkie2ki(l’4">+O(lg2n)’2]
If we define Ml(X) to be the sum of the Fourier series

M(x) gkF(1 + ki/ln 2)e2kix,
k

then the third term in (4.5) is just Ml(lOg4 n). Furthermore, since the expression
F(I+ ki/ln 2) is exponentially small in k, this Fourier series converges extremely
rapidly; the sum of such a series is analytic in a neighborhood of the real axis [14, pp.
161-162]. This gives us the following result, where M(x) is MI(X) with its zeroth
Fourier coefficient altered to absorb the linear second term in (4.5).

THEROEMM 11] (The average case.exchange performance of Batcher’s odd-even
merge). LetB, denote the average number ofexchanges that occur when two random files
ofsize n are combined with Batcher’s odd-even merge. There exists a function M: R R,
analytic in a neighborhood of the real axis and periodic with period 1, such that

B
n lg n+nM(log4 n) +O(logz n).

Furthermore, the coefficients mk ofthe Fourier seriesM(x) k mkeEkix ofMare given by

y+2 3
m0 2 lg F() lg 0.385417+,

41n2 4

r(Xk/2)((Xk, k) 2ki
mk (ln 2)(1 + Xk) for Xk In 2’

k 0.

Sedgewick’s proof of this theorem shows that the error term can be reduced to
O((log n); our rather heavy-handed oscillation argument accounts for the extra
factor of log n in our result. On the other hand, the method that we have just employed
seems somewhat more straightforward and direct than the gamma function method.
Indeed, before turning to the gamma function method, Sedgewick first sketches out
exactly our line of attack; he abandons it only for lack of information about the structure
of the linear term in the expansion of y(i).

Our method of proof also helps to give an insight into the source of the periodic
term in the asymptotic expansion of B," it arises in the inherently periodic structure of
the number of 1-bits in Gray code. Be warned however that this is just an insight, not a
complete and intuitively satisfying explanation. In particular, the coefficient of the
linear term has period 1 as a function of log4 n, not as a function of log2 n as one might

156 P. FLAJOLET AND LYLE RAMSHAW

expect from this Gray code insight. This doubling of the period also occurs in the
problem of the average number of registers Rn, discussed in the Introduction.

Recent results indicate that there is a fairly general correspondence between
derivations like Sedgewick’s, which use the gamma function method to compute a
periodic term, and derivations like those in this note, which compute the same term by
Fourier series techniques [5]. When viewed in an appropriate framework, these two
kinds of derivations are revealed as more nearly equivalent than they appear at first
glance.

Appendix. In this Appendix, we will skim over the highlights of the proof of
Theorem P. The proof is very similar to the proof of Theorem G in 2; the intent here is
to concentrate on the differences. Thus, the reader should refer to 2 for a fuller
description of most of the following arguments. We will use the same notations for
analogous concepts.

Recall the hypotheses of Theorem P. We begin the proof by considering the
behavior of p(n) and F(d, n) on each digit position separately. Let pk(n) be 1 if the digit
d appears in the kth position when n is written in the (q, r) number system, and 0
otherwise; also, define Fk(d, n) by the truncated summation

F(d, n)= (1- r) (r)’.’i o(O)+o(1)+p(2)+’’’+o(n-1)+ i p(n).

Since each position will contain the digit d with probability 1/q in some sense, we then
define tk (n) by

n
tk(n) Fk(d, n)----.

q

The functions tk(n) can all be expressed as rescalings of a single function t: R--> R
defined by

(A.1) t(x)

x
if O<-x _-<:

q

(q-!.)x- if :<-x -< r
q

1 x
ifr<-x<-i

q q

and t(x + 1) t(x) for all x,

where : and r/are as defined in the statement of the Theorem. In particular, we have

tk(n) q+lt(n/q+X).
We now let [log n + 1, and deduce that

(1+ 1)n qt-+t(n/qt-+x).

Dropping the lower bound and replacing k by (l- 1 k), we get

(A.2) F(d, n)
(l+ 1)n l+lh /+1),=+q (n/q

where h is the superposition function defined by

(A.3) h(x)= Y’. t(qkx)
k

k-O q

GRAY CODE AND ODD-EVEN MERGE 157

The function h is clearly periodic with period 1, and is continuous by the
Weierstrass M-test. Furthermore, we can show that h is not differentiable at a point y by
considering the behavior of its difference quotient over the intervals/i for => 1, where
is the interval of the form

Ii= qi(q_ l), qi qi(q_ l)

which contains y. Since

p r pq r r

qi qi(q_ l) qi+ qi+(q_ l),

the intervals I will be nested. The kth term in (A.3) will contribute nothing to the
difference quotient if k =>/’, since t(qkx) is periodic with period q-k. For 0 -< k < j, each
term will contribute either -1/q or (q 1)/q, since t(qkx) is linear over every interval/i
for f> k. Therefore, the ,difference quotient cannot converge, and h is nowhere
differentiable.

Next, we define the function P: 11 R by specifying that P is periodic with period 1
and satisfies the following identity for 0 <-x < 1:

P(x
2 x :Z-xh x-:Z).=+q (q
q

Using the fact that > q-Z, we can then check that this identity holds for all x _-< 1. This
means that P must also be continuous and nowhere differentiable.

The Fourier coefficients of P(x) are then pk c, + d,, where

ck e du
q 1/2qkrri

for k 0,
for k0

d Io 2)-Uh (2u-2)e-2k’i du.

Letting ,, 2kcri/ln q, we then have d H(1 +X)/ln q where

t(v)
H(z) v"z_(_ dv.

Noting that t(v) can be written

t(v)= lx + l-l [x + l-n] -I dx,

we can integrate H by parts, and we have

H(z)
_q2(Z-1)

qz
"v +- -" "v +’-’O"

1 dv--.
When 9(z) > 2, we can split the integral into three terms, and we find that

_q2(Z-) ((z- 1, :)-’(z- 1, n)
H(z)=+

q(z- 1) z(z- 1)

By analytic continuation, this formula also holds for 9(z)> 0 if z 1.

158 P. FLAJOLET AND LYLE RAMSHAW

For k 0, this is enough to compute dk’, in particular, we have

-1 ’(X, :)- ’(X, r)dk= + (lnq)Xk(li] fork0.

With the aid of the classical expansion [14, p. 271]

’(z 1, c)= (1/2-a)+ (In F(c)_In(2r)] z 1)+ O((z 1)2),
\ 2]

we can calculate H(1), and we deduce that

1 2
do logq F(c)- logqF(r/)

qlnq q"

Combining the Ck with the dk, we arrive at the values of Pk stated in the Theorem.
Finally, we observe that the Pk satisfy

Pk O(Ik1-3/2 log I/I),
and hence the Fourier series of P converges absolutely. This completes the proof. [3

Acknowledgment. The authors would like to thank Jean Vuillemin for assistance
with an early version of this paper.

REFERENCES

[1] K. E. BATCHER, Sorting networks and their applications, Proc. AFIPS Spring Joint Comp. Conf.
(Montvale, NJ), 1968, pp. 307-314.

[2] N. G. DE BRUIJN, D. E. KNUTH AND S. O. RICE, The average height of planted plane trees, Graph
Theory and Computing, R. C. Reed; ed., Academic Press, New York, 1972, pp. 15-22.

[3] H. DELANGE, Sur la [onction sommatoire de la]’onction somme des chiffres, Enseignement Math., 21
(1975), pp. 31-47.

[4] P. FLAJOLET, J. C. RAOULT AND J. VUILLEMIN, On the average number of registers required]:or
evaluating arithmetic expressions, Proc. 18th Symp. on Foundations of Computer Science (Provi-
dence, RI), 1977, pp. 196-205.

[5] L. GUIBAS, L. RAMSHAW AND R. SEDGEWICK, Transform methods]’or evaluating certain combina-
torial sums, in preparation.

[6] R. KEMP, The average number of registers needed to evaluate a binary tree optimally, Saarbriicken
University Report A 77104, Saarbriicken, 1977.

[7] D. E. KNUTH, The Art of ComputerProgramming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 1969.

[8] ., The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

[9] M. D. MCILROY, The number of l’s in binary integers: bounds and extremal properties, this Journal, 3
(1974), pp. 255-261.

[10] E. M. REINGOLD, J. NIEVERGELT AND N. DEO, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englewood Cliffs, NJ, 1977.

[11] R. SEDGEWICK, Data movement in odd-even merging, this Journal, 7 (1978), pp. 239-272.
[12] E. C. TITCHMARSH, The Theory ofFunctions, second edition, Oxford University Press, London, 1939.
13 J. VUILLEMIN, A data structure for manipulating priority queues, Comm. ACM, 21 (1978), pp. 309-315.
[14] E. T. WHITTAKER AND G. N. WATSON, A Course of Modern Analysis, fourth edition, Cambridge

University Press, London, 1927.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0015 $01.00/0

MONOIDS FOR RAPID DATA FLOW ANALYSIS*

BARRY K. ROSEN"

Abstract. Ambitious optimizing compilers have alertness and selectivity properties that lead to a serious
discrepancy between the total cost of data flow analysis and the partial cost covered by the usual kind of
theoretical estimate. This discrepancy motivates a new high-level analysis method for data flow problems
expressible in terms of a semilattice L and monoidM of isotone maps from L to L, under algebraic constraints
somewhat weaker than those imposed by Graham and Wegman in solving data flow problems on reducible
graphs. The cost of the new method is roughly similar to that of the method of Graham and Wegman when
estimates are made in the usual way, while the cost of updating in alert and selective compilers tends to be
lower. The new method copes with arbitrary escapes and jumps, can find sharper information than fixpoint
methods when M is not distributive, and can be tuned to trade time for sharpness of information.

Key words, data flow analysis, optimizing compilers, high-level languages, monoid, semilattice, struc-
tured programming

0. Introduction. In speaking of ambitous compilers we mean to include interactive
program manipulation systems as well as noninteractive compilers that try to produce
very efficient code. See [AS78], [Ca77], [CK76], [GRW77], [Har77a], [Har77b],
[Kn74], [Lo77] for examples. This paper is primarily motivated by the serious dis-
crepancy between the total cost of data flow analysis in ambitious compilers and the
partial cost that is usually estimated in the theoretical literature. The issue has already
been raised informally [Ro77b, pp. 713, 723]. A more precise discussion will be
possible after relating syntactic structure to control flow in a precise and transparent
way (despite possible deviations from "structured" programming), so we postpone this
application to 8. For introductory purposes we consider an important secondary
motivation that can be understood with reference to the theoretical literature alone.

The earliest data flow analysis research dealt with concrete problems (such as
detection of available expressions) and with low-level representations of control flow
(with one large graph, each of whose nodes represents a basic block). Several recent
papers have introduced an abstract approach, dealing with any problem expressible in
terms of a semilattice L and a monoid M of isotone maps from L to L, under various
algebraic constraints. Examples include [CC77], [GW76], [KU76], [Ki73], [Ta75],
[Ta76], [We75]. Several other recent papers have introduced a high-level represen-
tation with many small graphs, each of which represents a small portion of the control
flow information in a program. The hierarchy of small graphs is explicit in [Ro77a],
[Ro77b] and implicit in papers that deal with syntax-directed analysis of programs
written within the confines of classical structured programming [DDH, 1.7]. Examples
include [TK76], [ZB74]. The abstract papers have retained the low-level represen-
tations while the high-level papers have retained the concrete problems of the earliest
work. This paper studies abstract conditions on L and M that lead to rapid data flow
analysis, with emphasis on high-level representations.

The "rapid" monoids introduced here are intuitively similar to the "fast" monoids
introduced by Graham and Wegman [GW76]. Some important data flow monoids are
rapid but not fast. Problems with rapid monoids can be solved by high-level methods.
Under easily detected conditions that occur frequently in structured programming,

* Received by the editors March 15, 1978, and in revised form February 22, 1979. A condensation of an

earlier version of this paper was presented at the 5th Annual ACM Symposium on Principles of Programming
Languages, Tucson, January 1978.

t Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, New
York 10598.

159

160 BARRY K. ROSEN

high-level analysis can avoid computing with graphs altogether. Unlike some analysis
methods oriented toward structured programming [TK76], [Wu75], [ZB74], our
method retains the ability to cope with arbitrary escape and jump statements while it
exploits the control flow information implicit in the parse tree. Another method with
this ability is that of [BJ78a], [BJ78b], which is formulated for essentially the same
concrete problems considered in [Ro77b].

The general algebraic framework for data flow analysis with semilattices is
presented in 1. Apart from the new concept of rapidity, this framework is more or less
standard. The intuition is much as in cited parts of [GW76], but the formulation is
significantly more general. We also introduce briefer and more mnemonic wording than
in [GW76]. Section 2 introduces flow covers, which associate a family of formal
expressions with a graph. Given a flow cover for a graph, we can solve many different
flow problems by simply evaluating the expressions. (The values of the variables in the
e)/pressions are read off from the local and entry information specified by the problem.)
Section 3 relates data flow problems to the hierarchies of small graphs introduced in
[Ro77a], [Ro77b]. High-level analysis begins with local information expressed by
mapping the arcs of a large graph into the monoid M, much as in low-level analysis. But
each arc in our small graphs represents a set (often an infinite set) of paths in the
underlying large graph. Appropriate members ofM are associated with these arcs. This
"globalized" local information is used to solve global flow problems in 4. The
fundamental theorem of 4 is applied to programs with the control structures of
classical structured programming in 5. For a given rapid monoid M, the time required
to solve any global data flow problem is linear in the number of statements in the
program. (For varying M, the time is linear in the product of this number by to, where t
is a parameter ofM introduced in the definition of rapidity.) For reasons sketched as the
beginning of 6, we feel obliged to cope with source level escape and jump statements
as well as with classical structured programming. Section 6 shows how to apply the
fundamental theorem of 4 to programs with arbitrary escapes and jumps. The explicit
time bound for programs with escapes but without jumps is roughly similar to the bound
from [GW76, Thms. 4.2 and 5.4]. Examples of rapid monoids and a comparison
between the results obtained by our method and those obtained by [GW76] are in 7.
Finally, 8 lists conclusions and open problems, with emphasis on data flow analysis in
ambitious compilers. The order of presentation here is based on the logical structure of
the mathematical machinery. We proceed from the general to the particular, except in
some places where bending the rule a little makes a significant improvement in the
expository flow. Lemmas tend to appear as soon as their presuppositions have been
established. One advantage of this organization is that it helps us avoid some unnatural
and occasionally inadmissible assumptions that are common in the literature for
historical reasons. One disadvantage is that a concept or a lemma without obvious
motivation sometimes appears well before there is any useful work for it to do. We use
appropriate literature citations or forward pointers in the text to mitigate this motiva-
tional disadvantage.

Apart from motivation, this paper is largely self-contained. Being self-contained
often entails being long. (For various technical reasons, heavier reliance on the
literature would have a high cost in readability for a slight decrease in length.) This work
can be read as one long paper, but it can also be read as a paper of medium length
sharing a bibliography with several short notes. In particular, 1 is a note on the
algebraic presuppositions of data flow analysis. It is not biased toward any one
algorithm or family of algorithms. One could read 1 and then pause to formulate one’s
favorite algorithm at l’s level of generality before proceeding. Other sections whose

MONOIDS FOR RAPID DATA FLOW ANALYSIS 161

ends are good places to pause are 2, 4, and 6. The following glossary of symbols and
concepts may be helpful in coping with the necessarily large amount of notation. Each
long line in the glossary shows an important symbol, followed by the corresponding
word or phrase and an indication of where to find a detailed explanation. Each long line
is followed by a short line with a brief hint.

(L, M) algebraic context Sec. 1

L is a semilattice and M is a set of isotone maps U" L L.

G graph Sec. 1

G has node set I1, arc set ,a,, source and target maps s, t:
(G, f, E, E) global flow problem Def. 1.2

has local information f: Aa M, entry nodes E I1, and entry information
E:EL.

I: I1 --> L good solution to Defs. 1.2, 1.3

Among the solutions to , I is good enough to dominate each fixpoint.

@: M xM -->M rapidity Def. 1.6

"Spiral" is a good way to pronounce @, which is written as an infix operator.

X, Y, Z flow expressions Def. 2.1

Operators ^, o, @ are formally applied to paths in graphs.

X, Y flow covers Def. 2.3

Flow expressions X(m, n) are associated with certain pairs (m, n) of nodes.

r ,V., maximum r in poset Y_, Secs. 3, 5

Especially, r may be a program and E may be partially ordered by nesting of
statements.

No< and Ao< nodes and arcs contributed to G by o< in ,E (3.1)

Each program statement contributes a set of nodes and a set of arcs to the control
flow.

II(a, n, p) path bit for statement o< and nodes n, p (3.3)

II(o<, n, p) tells whether there is a path from’n to p within

Noo< new nodes in No< (3.5.2)

These nodes in No< are not in Nfl for any fl < a.

Go< induced graph for o< (3.5)

The node set NGO< has Noo<
_
NGO<

_
No< and includes entrances and exits for parts

of a.

RAGO< real arcs in Go< (3.5.3)

Arcs in a with sources and targets in NGO< are also in RAGO<.

IAGO<[] imaginary arcs in Go< due to (3.5.4)

162 BARRY K. ROSEN

Arcs (n, p) with II(fl, n, p)= 1 are in IAGce[fl].

(Ga, ENTRa) induced flow scheme Def. 3.6

High-level analysis uses a flow cover Xa for each induced flow scheme.

o, [/3] auxiliary problems (3.8)

A problem can be solved by solving problems with smaller graphs.

EGa expected induced graph Sec. 5

The syntactic production that generates a statement a determines EGa.

H effective height of L in (L, M) Def. 7.3

In the context (L, M), the only relevant strictly descending chains in L are at most
H long.

@1,@2 loop products Lemma 7.4

These are possible choices for @ in Definition 1.6 when L has finite effective height.

1. Algebraic tramework. Common mathematical notation is used, as when "is a
subset of" is abbreviated by

_
and "is in" is abbreviated by . The empty set is denoted. To avoid excessive parentheses, the value of a function f at an argument x is fx

rather than f(x). If fx is itself a function then (fx)y is the result of applying fx to y. The
usual _-< and _-> symbols are used for arbitrary partial orders as well as for the usual order
among integers. A function from a partially ordered set (poset) to a poset is isotone iff
x _-< y implies fx <-fy. (Isotone maps are sometimes called "monotonic" in the lit-
erature.) A meet semilattice is a poset with a binary operation ^ such that x ^ y is the
greatest lower bound of the set {x, y}. A meet semilattice wherein every subset has a
greatest lower bound is complete. (Such a semilattice is also a complete lattice, a fact that
is interesting but does not happen to be used in this paper.) The greatest lower bound of
a set X will be denoted/X. In particular, the empty subset has/ -l-t in L, and -I-L is
then the maximum element in L. When L is clear from context we will write just -r- here.
Note the distinction between our meet semilattices and the loin semilattices of [Ro77b],
[Ta75], [We75], where least upper bounds are considered instead of greatest lower
bounds. To speak of meets is more natural in applications that are intuitively stated in
terms of "what must happen on all paths" in some class of paths in a program, while to
speak of joins is more natural in applications that are intuitively stated in terms of "what
can happen on some paths." By checking whether there are any paths in the relevant
class and by using the logical rule and ::1 is equivalent to --q’--q, join-oriented appli-
cations can be reduced to meet-oriented ones (and vice versa). A general theory should
speak in one way or the other, and we have chosen meets. For us, strong assertions
about a program’s data flow are high in the semilattice. This is somewhat more common
that the use of join semilattices in the literature.

A monoid is a set together with an associative binary operation that has a unit
element 1 with 1 rn m 1 rn for all m. In all our examples the monoid M will be a
monoid of functions: every member of M is a function (from a set into itself), the
operation is the usual composition (U V)x U(Vx), and the unit 1 is the identity
function with Ix x for all x. In addition to a complete semilattice L there may be given
a monoid M of isotone maps U" L L, such that M is closed under pointwise meets"
U ^ V is the map such that (U ^ V)x Ux ^ Vx for all x in L. This framework is a

MONOIDS FOR RAPID DATA FLOW ANALYSIS 163

natural generalization of the "information propagation space" [GW76, p. 175],
wherein L is the set of all subsets of a given finite set and -<_ is set inclusion. With U -<_ V
iff Ux <= Vx for all x in L, M is a meet semilattice with the pointwise meet operation. We
will further assume that M has a maximum q-M which agrees with the maximum in the
complete semilattice of all isotone maps on L: 7-Mx q-L for all x in L. We say thatM is
a closed monoid of isotone maps on L, and that the pair (L, M) is a closed algebraic
context for data flow analysis. If we are given a complete meet semilattice L and a setM
of isotone maps on L, with no guarantee of any other properties, then we say that (L, M)
is an algebraic context for data flow analysis. The smallest monoid of functions
containing M will be denoted M*, with M* M when the context is closed. Certain
algebraic contexts that have M*=M but are not necessarily closed (because U ^ V
need not be in M when U, V are in M) have been called "monotone data flow analysis
frameworks" [KU77, 3]. As will emerge shortly, the known data flow analysis
algorithms fall into two classes. The algorithms that work in any monotone data flow
analysis framework do not use the assumption M*= M. The algorithms that use the
assumption M* M require a closed context as well but do not need some of the other
assumptions imposed in [KU77, 3].

Data flow problems arise when members of M are associated with the arcs of a
directed graph. Only finite graphs will be considered here. Our view of graphs is more
general than is usual in data flow research. A graph G consists of finite sets N (the
nodes) and ,a, (the arcs) together with maps s and t from ,a, to I1. These are the
source and target maps. In pictures, arcs are drawn as arrows from sources to targets. Of
course the G subscripts are sometimes omitted if there is no doubt as to which graph is
intended. A path is a finite sequence e (Cl,’’ ", c:) of arcs such that tCk =SCk/I

whenever 1 <_--k <K. The null sequence with K 0 is allowed and is denoted h. A
nonnull path is from the node scl to the node tc:. We borrow map notation with
c: scl tcK and speak of sources and targets for nonull paths as well as for arcs.

DEFINITIOr 1.1. Given a graph G, an algebraic context (L, M), and a map
f:/ M, the extension off to map paths into M* is also denoted f and is defined by

[c=lifc=h and f(cl,....,cr) =fc:’’’fcl ifch.

When a program is represented by a graph G, we have a map ’:/a M with

fc" LL for each arc c. This local information tells how an "assertion" x in L
associated with sc is propagated to tc as a transformed "assertion" y (fc)x when
control flows along c. There is also a set E

_
I1 of designated entry nodes and an initial

assignment E" E L of "entry assertions," with En being "true" whenever control
enters the program at n. Note that En need not be true whenever control reaches n from
within the program itself. Knowing what is true at entry nodes at the time of entrance,
we want to determine what is true at all nodes at all times.

DEFINITION 1.2. A global flow problem is a quadruple (G, f, E, E), where G is a
graph, f: ,a, M, E

_
Ibis, and E: E - L. A solution for is any I: ii L such that,

whenever m is in E and e: m n is a path in G, In <- (fe)Em.
Thus In asserts no more at n than can be propagated from m along e. Because there

may be other paths from entries to n, In may well assert much less than can be
propagated along this one path. Definition 1.2 generalizes the definition of a "safe
assignment" [GW76, p. 177] in several ways. We do not assume that E consists of a
single node m and that all nodes in G are reachable from m. We do not assume that
Em= _1_ for m in E, where .L =/kL is the minimum element of L. These assumptions are
only minor technical conveniences in [GW76], [KU76], [U173] and other places where
they occur. Here they would be quite inconvenient. Of course any problem can be

164 BARRY K. ROSEN

solved by letting In _1_ for all n. This solution is uninteresting. A maximum solution
would be ideal, but for some choices ofM there can be no algorithm to find one [KU77,
Thm. 7]. As in "acceptable assignments" [GW76, p. 177], we therefore consider
solutions that are large enough to be interesting but that may be computable with a
reasonable amount of effort.

DEFINITION 1.3. A fixpoint for a global flow problem (G, f, E, E) is any
J: Il-L such that, for all m in E and c in A,

(1) Jm <- Em and Jtc <- (fc)Jsc.

A good solution for is any solution ! such that, for each fixpoint J and each n in
N, In >- Jn.

Comparing Definition 1.3(1) with Definition 1.2, it is clear that any fixpoint is a
solution. In many examples L is well-founded: there are no infinite descending chains.
In this case, the maximum fixpoint can be found by beginning with the guess In (if n is
in E then En else 7-) and correcting I repeatedly, in light of Definition 1.3(1), until it
stabilizes. Certain optimizations of this basic idea are pratical as data flow algorithms
[KU76], [Ke75], [Ki73], [TAT6], [We75]. The only operation on M used by these
iterative algorithms is eval: M L L defined by evai(U, x) Ux. Iterative algorithms
always find a good solution when L is well-founded. Except in unusual cases where
some nodes are not reachable from entry nodes, the good solution liter found by any
iterative algorithm is the smallest one: the maximum fixpoint. It is well-known [Ki73,
Thm. 2] that Iit is the maximum solution whenever L is well-founded and the context is
distributive [KU76, p. 160]:

(1.4) (VU M)(Vx, y L)[U(x ^ y)= Ux ^ Uy].

Good solutions that are larger than Iiter can sometimes be found in nondistributive
contexts. The algorithms that accomplish this have other advantages to justify their
being more complicated than iteration.

Instead of assuming that L is well-founded, elimination algorithms [AC76],
[GW76], [Ta75], [U173] assume that M is a closed monoid and use the composition
and pointwise meet operations on M as well as eval" M L L. Our algorithm is in this
family. These algorithms summarize the net effects on data flow information of certain
sets of paths between certain pairs of nodes. The pairs of nodes and the set of paths
considered for each pair are not the same for all elimination algorithms, but they all do
presuppose a closed algebraic context. Composition of maps reveals the net effect of
going from m to p by going from m to n and then from n to p. A meet of maps reveals
the net effect of going from m to p in either of two ways, both of which have already
been summarized. To deal with loops we do need to assume more than just a closed
context. Somehow the effects of infinitely many paths must be summarized in finitely
many steps by operations in M. To see how elimination algorithms accomplish this, it is
helpful to consider a very simple example. Suppose an arc c runs from a node m to itself
while an arc d runs from m to another node p. There is an infinite set H=
{(d), (c, d), (c, c, d),. .} of paths from m to p. Let f maps arcs into M with fc U and
fd V. Then f(II)= {fclc l-I}- { V, V U, V U=,...} will in general be infinite. The
following paragraph reviews the algebraic conditions that previous elimination
algorithms have imposed upon M. By studying the consequences of successively weaker
conditions, as they affect the task of summarizingf(H), we will be led to the new concept
of rapidity.

The algebraic context (L, M) is indempotent iff each U in M is idempotent in the

MONOIDS FOR RAPID DATA FLOW ANALYSIS 165

usual sense:

(1.5.1) UoU=U.

For the illustrative set l-I, if U is idempotent then f(II)= {V, V U} and can be
summarized by V ^ (V U). Interval analysis [AC76], [U173] exploits idempotence.
Because some important problems do not have idempotent contexts, weaker conditions
must also be considered. The algebraic context (L, M) is fast iff each U in M is fast in
the sense of [GW76, p. 175]:

(1.5.2) U U _-> U ^ 1.

For the illustrative set l-I, f(l-I) does have a greatest lower bound/(FI) in the complete
semilattice [L L] of all isotone maps from L to L. Computing in [L L] under the
assumption that U is fast, we find that Vo(U ^ 1) -</f(II) because (U ^ 1) _-< U for all r.
Sometimes the inequality is strict (as will be seen in 7), but V (U ^ 1) is still adequate
as a summary. Why? Consider any fixpoint J for a global data flow problem. Because
Jp <- VJm and Jm <- UJm, it follows that Jp <-_ (V (U ^ 1))Jm. Therefore J is also a
fixpoint for a simpler problem with c and d replaced by an arc from m to p that has the
local information V (U ^ 1) in M. Using V (U ^ 1) as a summary amounts to solving
this simpler problem instead of the original one. If we can somehow find a good solution
I for the simpler problem, then I will be above any fixpoint for the simpler problem and
therefore will be above J. Even though V (U ^ 1) may be strictly less informative than
the ideal/kf(II), it is good enough for getting above any fixpoint J. At least for the
illustrative infinite set II of paths, any W in M with V (U ^ 1) _-< W -</(1-I) will be an
adequate summary. Logically, fastness is a weaker condition than idempotence. On the
other hand, every fast context that arises in [GW76] is actually idempotent as well.
There are important algebraic contexts that are not idempotent, and they are also not
fast. For example, neither form of the algebraic context CP for constant propagation in
[KU76, p. 167] is fast. To deal with such contexts we begin by recalling the trick used to
deal with them in [GW76]. The fastness closure U* of any U in M is the map

(1.5.3) U* =/{(U ^ 1)’lr N},

where N is the set of all natural numbers and /k is taken in [L-L]. (The original
definition [GW76, p. 182] is equivalent to (1.5.3) for the contexts considered in
[GW76].) The assumption that U* is actually in M and can be found in finitely many
steps, independent of the choice of u, is all that [GW76] really needs in order to cope
with contexts that are not fast. For the illustrative set H, we can reason just as above but
with U* instead of (U ^ 1). We find that V U* -<_/kf(H), and sometimes the inequal-
ity is strict, but V U* is still adequate as a summary. At least for the illustrative infinite
set II of paths, any W in M with V U* _-< W _-</’kf(II) will be an adequate summary.
More generally, the following definition considers contexts wherein certain expressions
involving greatest lower bounds like (1.5.3) can be approximated within M.

DEFINITION 1.6. The algebraic context (L, M) is rapid iff there is given a binary
operation @ on M and a positive integer t such that, for all U, V in M,

V U*<= V @ U<-/{V U’[r N},

and V @ U can be computed from V and U within at most t steps, where any ^ or
operation is counted as a single step. (When L is understood, M alone may also be
called "rapid.")

In particular, we can define V @ U to be V U* whenever U* is in M and we
know how to find it in t- 1 steps. Thus the contexts considered in [GW76] are all rapid.

166 BARRY K. ROSEN

(The converse fails, but the method of [GW76] is easily extended so as to work with
arbitrary rapid closed contexts.) In rapid contexts where V U*< V @ U we will
sometimes be able to get sharper data flow information than in [GW76], as will be seen
in 7. A simple but important example of rapidity is provided by any indempotent
context: let V @ U V ^ (V U) with t 2. The contexts for traditional global flow
problems like available expressions [U173] are rapid for this reason. The definition of
rapidity can be simplified in the important special case where L is well-founded and
(1.4) holds. In this case (L, M) is also strongly distributive:

(1.7) (VU e M)(VXnonempty subset of L)[U(AX)= A{Uxlx x}].

Under (1.7) it follows that V U* is the only possible choice for V @ U in Definition
1.6 because V U* =/{Vo Ulr N}. Therefore, a strongly distributive closed context
is rapid iff each U* is in M and can be found in a number of steps independent of the
choice of U in M. Like [GW76], [Ta75], this paper does not assume (strong) dis-
tributivity. For us, the -< signs in Definition 1.6 may be strict. Our algorithm is like other
elimination algorithms in that it can only be applied to problems with rapid closed
contexts. (For correctness alone, without concern for time bounds, elimination
algorithms do not need t in Definition 1.6.)

2. Flow schemes and flow covers. Instead of attacking a global flow problem
directly, high-level analysis considers a hierarchy of problems posed with smaller
graphs. The results in the rest of this section may seem wildly impractical to those used
to thinking about graphs for entire programs, but we will only apply these results to the
small auxiliary graphs in the hierarchy. Because G and E will vary in much smaller
ranges than f and E as we move through the heirarchy of auxiliary problems, we will
find it helpful to consider globalflow schemes: pairs (G, E) such that G is a graph and E
is a set of nodes in G. Thus a scheme can be fleshed out to a problem by choosing an
algebraic context (L, M) and then adding f:/l M and E: E L. We can simul-
taneously solve all the problems derived from a given scheme by working with formal
expressions. Intuitively, an expression X(m, n) represents all possible effects of pro-
pagating data flow information from m to n. The @ operation in rapid contexts lets us
use finite expressions even when there are infinitely many paths from m to n.

DEFINITION 2.1. A flow expression for a given scheme (G, E) is any formal
expression X built with the set of operators { ^, o, @}, using paths in G as variables and a
symbol -r as a constant. Given a rapid closed algebraic context (L, M) and f: A M,
the value IX:f] in M has

(1)

(2)

IX: f] fc if X is a path c and [X: f] -r-M if X is -I-

[X:f]=[Y:f]ra [Z:f]ifX is Y ra Z with ra in {^,o, @}.

Now we want to assign a family of flow expressions to each scheme, so that any
problem derived by fleshing out the scheme (in a rapid closed context) can be solved by
evaluating expressions.

DEFINITION 2.2. A solution for a scheme (G, E) is any map X, assigning a flow
expression X(m, n) to each (m, n) in E I1, such that, whenever m is in E and c: m n
is a path in G, each rapid closed context (L, M) has IX(m, n):f]-<fc for all f:/ M.

If only the members of some special class S of rapid closed contexts are of interest,
we can consider the analogue of Definition 2.2 with (L, M) restricted to members of S.

MONOIDS FOR RAPID DATA FLOW ANALYSIS 167

With such a restriction, Definition 2.2 defines solutions relative to the special class $.

The next definition and everything else in this paper can be similarly relativized, if
desired.

DEFINITION 2.3. A flow cover for a scheme (G, E) is any solution X such that,
whenever is a global flow problem (G, f, E, E) derived from (G, E) in a rapid closed
context and J is a fixpoint for ,Jn <-[X(m, n):f]Jm for all (m, n) in E Il.

In the terminology of [Ta75, p. 9], the value IX(m, n):/] is a "tag" for the triple
(m, n, P), where P is the set of all paths from m to n in G. The net effect of using tags and
"propagation sequences" [Ta75, p. 9] is like the net effect of using flow covers and the
hierarchy of auxiliary problems. The technical realization of the similar intuitions
behind [Ta75] is quite unlike what happens here.

LEMMA 2.4. Let G, f, E, E) be a globalflow problem and suppose G, E) has a
flow cover X. Then a good solution Ifor is obtained by setting,]:or each node n in G,

In =/{[X(m, n): f]Em Im is in E}.

Proof. Since In <-(fe)Em whenever m is in E and e: m n, I is a solution. Now
consider any fixpoint J. Then Jn <- IX(m, n) f]Jm <= IX(m, n) f]Em for all m in E, so
Jn <- In. [3

To apply the above lemma efficiently in data flow analysis it will be helpful to know
that good solutions to slightly perturbed problems are also good solutions to the original
problems. The following lemma will be used in 4.

LEMMA 2.5. Let G, f, E, 17,) be a globalflow problem with a good solution L Let
S be a set of nodes in G and let s be a problem exactly like , except that Es: E L has
Esm =Im for all m in E fq S. Any good solution for s is also a good solution for

Proof. Let Is be a good solution for s. In Definition 1.2 we find that ls solves
because Es <-E. In Definition 1.3(1) we find that any fixpoint J for is also a fixpoint
fors because I = J in Definition 1.3 for I and . By Definition 1.3 for Is and s, Is >= J
and Is is a good solution for s.

Before considering sufficient conditions for the existence and effective compu-
tability of flow covers, we must review some facts about cycles in graphs. A path
(cl, , cK) is simple iff $Ci $Cj whenever j. A nonnull path is a cycle iff SCl
There are only finitely many simple cycles, and these can be enumerated. Most of the
algorithms surveyed in [MD76] assume that arcs are pairs of nodes, but this assumption
is easily avoided. Given a simple cycle (cl, , cK) and a node n that appears in b,
we consider a simple cycle b (:n) that is like 4 but begins at n. Specifically, there is a
unique with sci n and we have c (ci, Ci+l," ", c:, Cl,"., ci-1). The graph G is
monocyclic iff it has a simple cycle such that every other simple cycle is merely (: n)
for some node n in .

LEMMA 2.6. lfG is a monocyclic or acyclic, then any scheme (G, E) has a flow cover.
Proof. We deal with the monocyclic case first. Let t# be as above, and let n have

: n n. Given m in E and p in I1, there are finitely many ways to choose a simple path
/x: rn n and a simple path r: n p. Let Y(m, p) be the result of formally /x-ing
together all the corresponding expressions (zr @ 4’)o/z. Let Z(m, p) be the result of
formally ^ -ing together all simple paths from rn to p. Let X(m, p)be Y(m, p) ^ Z(m, p).
(If there are no paths in the first place from m to p then X(m, p) is taken to be 7-. If there
are paths but none that meet , then X(m, p) is taken to be Z(m, p).) We must show that
X is a flow cover. To show that X is a solution in Definition 2.2 we need IX(m, p) :f] =<
[e for any e: m p and [:/ M. This is trivial for simple paths, so we may assume e
has the form /x 0to 7r (where is concatenation of sequences of arcs) for some

168 BARRY K. ROSEN

expression (r @) tx in Y(m, p). In Definition 1.6 we get

IX(m, p)" f] <-_ ([Tr" f] @ [tp" f])o [ix.f]

__< ([./]o [./]) [./]

[(IX /r. q’/’) "/] -"ft.

To show that X is a flow cover in Definition 2.3 it will suffice to show that Jp <=
Y(m, p): f]Jm for .any fixpoin J, since Jp <= [Z(m, p): f]Jm follows from Jp <= (fc)Jm

[e:f]Jm for each simple path e: m p. Consider any expression W (Tr @ if)o Ix in
Y(m, p). By Definition 1.6, we can show Jp <=[W:f]Jm by showing

(1)]p <_ ([:/]o [:/], [:/])]m.

By (1.5.3) and Jn <-_[:f]Jn ^Jn, Jn <-_[p:f]*Jn. Therefore

Jp <-_ [Tr: f]Jn <= [zr:/][: f]*Jn <= [r: f][: f]*[ix: f]Jm

and (1) holds. Of course a scheme with an acyclic graph has a flow cover by the obvious
specialization of the above proof.

A graph that is not monocyclic or acyclic is polycyclic. Auxiliary schemes with
polycyclic graphs will occasionally arise in high-level analysis, so we need to cope with
them. But to cope with them efficiently is not very urgent. Polycyclic auxiliary schemes
do not arise at all in analyzing the very broad class of programs considered in 5. The
following lemma formally implies Lemma 2.6, but the proof uses a more complex
algorithm that yields different flow covers, less convenient for 5. The problem of
optimizing this algorithm or replacing it altogether, so as to find flow covers efficiently
for polycyclic flow schemes, can be left open here. To save space we forego some easy
optimizations.

LEMMA 2.7. Any scheme (G, E) has a flow cover.

Proof. A flow cover for (G, E) can be derived by restricting one for (G, Ihla), so we
may assume E Ihl. We use induction on the number of arcs in G. If G has no arcs then
let

X(m, n) (if m n then h else T).

Now suppose that G has r + 1 arcs and choose an arc c. By the induction hypothesis (for
graphs with r arcs) there is a flow cover Y for the scheme (H, E), whereH is the result of
removing the arc c from G. The definition of X(m, n) in terms of Y(m, n) uses
auxiliary expressions

Rl(m, n)= Y(tc, n)o (c) Y(m, sc);

R2(m, n) (Y(tc, n) @ [(c) Y(tc, sc)]) (c) Y(m, sc);

R3(m, n)= (Y(sc, n) @ [Y(tc, sc) (c)]) Y(m, sc).

Let pH*q iff there is a path from p to q in H. Then

X(m, n if mH*sc

then if tcH*sc

then Y(m, n) ^ R(m, n) ^ R3(m, n)

else Y(m, n) ^ Rl(m, n)

else Y(m, n).

MONOIDS FOR RAPID DATA FLOW ANALYSIS 169

The verification that X is a flow cover is very much like the corresponding verification
for Lemma 2.6, although the notation is a little more complex. In the case where sc is
reachable from both rn and tc, Y(m, n) represents the paths from m to n without c.
Paths with c of the form

(m - sc) (c) [(tc -* sc) (c) .’’. (tc - sc) (c)] (tc - n)

are represented by R.(m, n), while paths of the form

(m -sc) [(c) (tc -sc) (c) (tc sc)] (sc - n)

are represented by R3(m, n). [-]

The proof of the above lemma adjusts a given flow cover to allow for added arcs.
Allowing for deleted arcs is much easier and will be useful in 6. Before stating the
lemma for deleted arcs, it will be helpful to note some rules for simplifying flow
expressions. A rule (R) - f is valid in a rapid closed context (L, M) iff, whenever X is a
flow expression for a flow scheme (G, E) and Y is the result of replacing a subexpression
of the form by the corresponding subexpression of the form l, then [X: f] Y: f] for
any f:/o - M. There are three rules for expressions containing the null path A. These
rules are valid in all rapid closed contexts because [A:f] 1 in Definition 2.1(1) and
Definition 1.1.

(2.8) h oZ-->Z and ZoA-->Z and Z @hoZ.

With one exception, the six rules (2.9) for simplifying expressions containing T are valid
in all rapid closed contexts.

(2.9.1) T^Z-Z and Z^TZ;

(2.9.2) Y Z --> T and [Z T --> T];

(2.9.3) T@Z-->T and Z@T-->Z.

The bracketed rule in (2.9.2) is only valid in contexts with UTL TL for all U in M. To
use the bracketed rule is to consider flow covers relative to the special class S of rapid
closed contexts with this property. Any rapid closed context (L, M) can be transformed
to one in S. First we add a new maximum Tnew to L, forming L’ L U {Tnew}. Then we
extend each U in M to U’: L’-->L’ with U’Tnew Tnew. The rapid closed context
(L’, M’) with M’= { U’I U M} is in S.

LEMMA 2.10. Let X be a flow cover for (G, E) and let H be the result of deleting
some arcs from G. For all (m, n) in E xNn, let Y(m, n) be derived from X(m, n)
in two stages. First, replace each path e with K >0 occurrences of deleted arcs by
the corresponding expression e: T e:-i el T eo, where e has the form
e0 (d) ex eK-1 (d:) eg: for deleted arcs dx,..., d. Second, simplify
according to the rules (2.8) and (2.9). Then Y is a flow cover for (H, E).

Proof. Given any f: An -->M we can specify f’: Ao -->M by letting f’c T if c is in
/,o-An. It now follows by induction on subexpressions that [X(m,n):f’]=
[Y(m, n):f] for all m in E and all n in No =Nn. This implies that Y is a solution
because X is a solution. Moreover, any fixpoint for a problem (H, f, E, E) derived from
(H, E) is a fixpoint for the corresponding problem (G, f’, E, E), so Y is a flow cover
because X is a flow cover. []

3. Hierarchies of graphs. In [Ro77a] the control flow in a program is represented
by a hierarchy of small graphs rather than by one large graph alone. The relevant
abstract definitions from [Ro77a, 2] will be restated here for ease of reference. The

170 BARRY K. ROSEN

definitions list those properties of the particular hierarchy considered in [Ro77b] that
are exploited there. By stating the properties abstractly we can deal with other
important hierarchies. For example, the definitions and lemmas of this section let us
generalize interval analysis as formulated in [AC76] to work with arbitrary rapid closed
contexts. Doing this work abstractly lets us generalize [AC76] and [Ro77b] simul-
taneously, a fact that helps justify the tedium of this section. The reader may wish to
skim this material causally, then return to it as necessary when later sections refer to
details.

As in [Ro77a], [Ro77b], it is convenient to assume that no two arcs have the same
sources and targets, so that the arc c may be identified with the pair (sc, tc) of nodes. A
nesting structure for a graph G is a finite partially ordered set E with a maximum
together with a set Na of nodes and a set Aa of arcs for each a in E. The following
properties are required:

(3.1.1) Nr=No and Azr=

(3.1.2) fl<_-a inE implies (N_NaandA_Aa);

(3.1.3) (c in , has sc, tc in Na) implies (c is in Aa).

The use of "implies" rather than "iff" in (3.1.3) is deliberate. Escapes and jumps in
programs will introduce arcs with c in Aa but with tc not in Na. Also deliberate is the
weakness of (3.1.2). For the moment there is no need to require all the properties
connoted by "nesting." A nesting structure with entrances and exits consists of G and Y_,
as in (3.1) together with, for each a in E, sets of designated entrances and designated
exits.

(3.2.1) DENTRa_Na and DEXITa_Na

such that, whenever fl < a in E,

(3.2.2) DENTRa 7) Nfl
_
DENTRfl and DEXITa Nfl

_
DEXITfl.

Entrance and exit sets are defined by

(3.2.3) ENTRa DENTRa {tc Nalc &sc Na};

(3.2.4) EXITa DEXITa Ll{sc Nalc 1o &tc Na}.

Given a nesting structure with entrances and exists, consider any a in .E, n in
ENTRa, and p in EXITa. Let I-I(a, n, p)= 1 if

(3.3) there is a path from n to p in G touching only nodes of Na

and 1-I(a, n, p)= 0 otherwise. These path bits can be computed bottom-up, beginning
with choices of a that are minimal in E. Path bits for a can be determined from
previously computed path bits for parts fl of a, where

(3.4) PARTa {/3 < a[No 3’ in has/3 < y < a}.

As in [Ro77b, 4], we construct the induced graph Ga for each a in Y_,. The set of
nodes is

(3.5.1)

where

(3.5.2)

NGa Noa (.J /3PARTa (ENTR/3 EXIT/3),

Noa Na k3 /3PARTa

MONOiDS FOR RAPID DATA FLOW ANALYSIS 171

The set of real arcs of Ga is

(3.5.3) RAGa {c Aalsc, tc NGa}.

For each/3 in PARTa there is a set of imaginary arcs

(3.5.4) IAGa[[3] {(n, p)[n ENTR/3 & p EXIT/3 & II(/3, n, p) 1}.

The total sets of arcs is

(3.5.5) AGa RAGa w PAR IAGa[fl]

with the obvious definitions of sources and targets. (Some arcs are both real and
imaginary.)

Examples of these definitions can be constructed by letting E by any family of
subsets of Il that includes Ihl itself, with set inclusion for _-<. In particular, the regions
[U173, p. 200] defined by interval analysis of control flow may be used. The induced
graphs are then quite similar to the intervals that occur in various places in the reduction
sequence leading from G to a single node graph. See [AC76] and the works cited there
for details on interval analysis. In the example of most interest here, E is the set of all
(statement) nodes in the parse tree of a high-level program with an ALGOL-like
syntax. Details are in 5 and 6. Here the hierarchy of induced graphs can be
constructed directly from the parse tree and symbol table. Under the circumstances
considered below, data flow analysis can deal only with induced graphs.

DEFINITION 3.6. A nesting structure with entrances and exits is locally covered by
assigning a flow cover to each induced flow scheme (Ga, ENTRa).

One can solve any global flow problem (G, f, E, E) without computing on G,
provided that G has a locally covered nesting structure and E=DENTRzr. The
algorithm does compute with and the induced graphs, and it uses a given flow cover
Xa for each induced scheme (Ga, ENTRa). In 5 we will exploit structured pro-
gramming to optimize away most of the work with induced graphs. The algorithm
requires some preprocessing that globalizes the local information in f:/k - M. Instead
of asking only what must happen when control flows along an arc of G, we ask what must
happen when control flows along any of the paths summarized by an arc in an induced
graph Ga. For each a in E there are maps

(3.7.1) f: AGa-M and F: ENTRa NGa-M
such that, for all c in AGa and all (m, p) in ENTRa NGa,

(3.7.2) fc (i[c RAGa then fc else Yt) ^ A{Foc[[3 PARTa & c IAGa[]};

(3.7.3) F,(m, p)= [Xa(m, p)

If a is minimal in Z then IAGa and (3.7.2) defines f to agree with f. If a is
nonminimal then f still agrees with f on real arcs that are not imaginary, but on
imaginary arcs f is determined by the various Ft maps for/3 in PARTa. These will be
available when we try to compute f, provided we begin at the bottom in a linearization
of the partial order on Z.

Now consider the maximum r in . Because E DENTRr_ NGzr, there is a
global flow problem

(3.8.1) o= (G,rr, f., E, E),

and Lemma 2.4 yields

(3.8.2) Io: NGzr L, a good solution to o.

172 BARRY K. ROSEN

For each part fl of zr we can now specify a global flow problem

(3.8.3) [B] (G[/3], f[B], E[B], E[B])

where G[B] is the graph whose set of nodes is N/3 and whose set of arcs is
A/3 (N/3 x N/3), with sources and targets as in G. (This is not the induced graph G/3
and will generally be much larger.) The map f[/3 is the restriction of f to arcs in G[/3].
For entry information we use

(3.8.4) E[fl] ENTR/3 and E[/3] (I0 restricted to E[/3]),

so that [/3] depends on the choice of Io in (3.8.2). As will be seen in detail shortly,
G[/3 has a nesting structure with Y_,[/3 {c in EIc =</3}, so that induction on the size of
Y_, should lead to good solutions 1[/3] of [/3] for each/3 in PARTr. Combining these
with lo should yield a good solution to the original problem . Several technical points
must be checked. BecauseM may not be distributive, we do not have anything as simple
as the induced graph theorem [Ro77b, 4] to establish the relevance of the auxiliary
problems 0 and [/3 to the original problem . The first step is to note that [/3 does
indeed inherit a nesting structure, with induced maps (3.7) as well as entrances and
exits, from .

LEMMA 3.9. For any part of 7r, the graph G’= G[/3] in (3.8.3) has a nesting
structure with

(1) E’ {a in Ela <-} with I’1
Moreover, for all a <-,
(2) N’a Na and A’a Aa f-) NB Nil).

This becomes a nesting structure with entrances and exits after designating
(3) DENTR’a ENTRc and DEXIT’a EXITa,

such that the induced graph G’a for each a in E’ is the same as the induced graph Gafor
considered in E. Moreover, the construction (3.7) applied to ’= [/3] yields the same
induced maps as (3.7) applied to :
(4) f’ f and F’ F for all

Proof. The proof is direct from the definitions.
The above lemma justifies induction on]El in proving the following three lemmas

on the relevance of the auxiliary problems.
LEMMA 3.10. ffJ is a fixpoint for then the restriction Jo ofJ to nodes in NGTr is a

fixpoint for o.
Proof. We may assume the assertion holds for problems ’ with posets E’ such that

IE’I < IEI. For any/ in PARTzr, the restriction J’ of J to N/ is a fixpoint of ’ [/]. By
Lemma 3.9 and the induction hypothesis, the restrictionJ of J’ to NG’ is a fixpoint of
the problem defined by (3.8.1) applied to ’. Now consider any path : m - p in G/,
where m is in ENTR/ and p is in EXIT/. We get

Jp <=[X(m, p): fo]Jm Ft3(m, p)Jm.

Therefore any imaginary arc (m, p) in Gr has

Jp <-/{Ft(m, p)Jml(m, p) in IAGzr[fl]}

andJp <-If(m, p)]Jm if (m, p) is also real, so that Jp <-[f,(m, p)]Jm. Any real arc (m, p)

MONOIDS FOR RAPID DATA FLOW ANALYSIS 173

in GTr that is not imaginary has Jp <- If(m, p)]Jm [f=(m, p)]Jm also, so J0 is fixpoint of
0.

LEMMA 3.11. Suppose is in PARTzr and e: m - p in Gift], where m is in ENTR/3
and p is in EXIT/3. Then Fo (m, p) <-re.

Proof. The proof is by induction on
LEMMA 3.12. Extend lo from (3.8.2) to have domain I! by setting 1on =-r-L

whenever n is not in NGcr. Suppose that 1[] is a good solution to [for each 13 in
PARTzr. Then I: I1 L defined by

(1) In Ion ^ A{I[/3]n [/3 PARTr & n Nil}

is a good solution to .
Proof. To show that I is a solution to , consider any path e: m n where m is in E.

We must show that In <= (fe)Em. The path e can be parsed as a concatenation of
(possibly null) sequences of arcs"

C Co dl el dK IK,

where each Ck is a sequence of arcs in Gzr and each dk is a sequence of arcs in G that are
not in Gzr. For each dk there is/3 in PARTTr such that dk is a nonnull path in/3 with a
source in ENTR/3. If the target of dk is not in EXIT/3 then we have k K and cK A
and n is the target. Each arc in Ck is real but may also be imaginary.

Case 1 [cK A]. For each k with 1 <- k =< K there is an imaginary arc in Gr from
the source of dk to the target of dk. Let ik be the path in Gr consisting of just this arc, so
that Co il i cr is path from m to n in Gzr. By (3.8.2) and (1),

(2) In <=Ion -< [(f,ctc) (fi:) (fil)o (f,co)]Em.

Let (s, t) be the arc in i. Then (3.7.2) and Lemma 3.11 imply

(3) fi ?x{Fo(s, t)ll3 PARTzr & (s, t) IAGzr[]} <- fak.

But fc<-_fc for all c in RAGzr, so fCk <----fCk. Applying this and (3) to (2) yields
In <= (fc)Em.

Case 2 [eK A]. If K 0 then m n and In <= Iom <= Em (fc)Em because e is
null. We may assume K > 0 and c:_ A. Let p be the source of d: and the target of
c_. Then the Case 1 reasoning applies to the prefix of e leading from m to p, so (2)
implies

(4) lop -< [(/c:-1) (/d:-l)o...o (/dl) (fco)]Em.

Now p is in ENTR/3 for some part/3 of zr, and lop Eap in the subproblem [/3]. The
path dc from p to n is a path in G[/3], so

In <= I[fl In <-- (lift Ida:)Ep (fdc)Iop

because I[/] solves [/]. By (4) and isotonicity of ffl:, this yields what is wanted:

In __< [(fd) (fcc_l) (fd_) (fd) (/Co)]Era.

To show that I is a good solution we must show I -> J for any fixpoint J. If n is in Gr
then 1on >-Jn because Io is a good solution for 0 and Lemma 3.10 says J on NGr is a
fixpoint for o. If n is in N/3 for/3 in PARTr then 1[/3]-> Jn because J on the nodes of
G[/3 is a fixpoint for [/3]. Therefore (1) implies In >-Jn because In is a greatest lower
bound.

174 BARRY K. ROSEN

4. High-level data flow analysis. Throughout this section we suppose that a rapid
closed context (L, M) is given. Flow covers could be relative to any class of contexts that
includes (L, M). Given a global flow problem (G, f, E, E) with E DENTRr such
that G is locally covered by a flow cover Xa for each induced scheme (Ga, ENTRa) we
can use the results of the previous section to find a good solution for . We begin by
computing the globalized local information of (3.7). Descending through 2‘ recursively,
we solve the auxiliary problems of (3.8) and combine the results as in Lemma 3.12(1).
Lemmas 3.9 and 3.12 lead to a correctness proof by induction on [El. But how much
does all this cost? Can the method be optimized to exploit regularities in well-structured
programs? To address such questions we program the algorithm more formally, but still
at a very high level. We also impose an additional condition on the nesting structure: for
all a, fl in E,

(4.1) -n(a _-< fl or fl _-< a) implies Na (3 Nfl .
This is true in all the examples of interest here, and it greatly simplifies the analysis of
computational complexity. A global flow problem satisfying all the conditions imposed
so far is said to be well-nested. (These conditions are reviewed in stating Theorem 4.4
below.)

The following procedure RECURSOLVE takes as argument some 3’ in 2‘. The
well-nested problem is accessed by RECURSOLVE as a global variable. The
purpose of calling RECURSOLVE is to have. a side effect on I, a global variable whose
values are maps from the nodes of G into L. The effect of call RECURSOLVE(y) is to
change In for each n in Ny, so that I on this set of nodes becomes a solution to the
problem ’ [y] defined as in (3.8.3) but with arbitrary y in E in place of fl restricted
to be a part of r. To achieve this effect, RECURSOLVE begins by calling LOCAL-
SOLVE to find a good solution for defined as in (3.8.1) but with y in place of r. (The
procedures do not construct ’ and , but we do in the correctness proof.)

RECURSOLVE: proc (y: member of the poset 2,)
call LOCALSOLVE(y);
f/On nodes in Gy, I is now a good solution to ; for ’= [y]. #
for all/3 in PARTy do call RECURSOLVE(fl)

1

Note that RECURSOLVE does not explicitly combine the solutions to the sub-
problems ’[/3] as might be expected from Lemma 3.12(1). We have already begun to
optimize the method in light of (4.1). Using OOO as a placeholder for implicit
procedure bodies (such as the body of RECURSOLVE above), we write the program
SOLVE that gets as input and puts out a good solution I.

SOLVE:
dci well-nested global flow problem;
dcl I map from Ii into L;
dcl f, map from AGa into M for all a in 2‘;
dcl F map from ENTRa NGo into M for all c in 2‘;
dcl LOCALMAPS proc OOO;
#This procedure sets up f and F for each a in E as in (3.7). CA
dcl LOCALSOLVE proc(y: member of E) OOO;
#This procedure finds a good solution as in Lemma 2.4. CA
dcl RECURSOLVE proc(y: member of E) 0(30;
get ; call LOCALMAPS;

MONOIDS FOR RAPID DATA FLOW ANALYSIS 175

for all n in II do
if n E then In <-- En else In <- TL;

call RECURSOLVE(Tr); put I

For LOCALMAPS we assume an arbitrary listing (8 a i, c2, , cizl 7r) of Z,
such that ai =< ; implies -<__/’. Thus a variable ranging over can be stepped from to 7r

like an integer variable.

LOCALMAPS: proc
[dcl c member of Z;

for ce from to 7r do
for allcinAGa do

if c RAGee then fc <- fc else f,c <-- TM
if c IAGa then f,c -fc ^ Fc

where c IAGa[fl for unique/
#Uniqueness follows from (4.1).#

1;
for all (m, p) in ENTRa NGa do

Fo,(m, p) [Xa (m, p) f,]

Finally, LOCALSOLVE is as suggested by Lemma 2.4.

LOCALSOLVE: proe (3": member of Z)
for all n in NG3"do

In <--/{[F(m, n)]lm[m ENTR3"}

The very high-level iterator for all n in NG3" do... can be defined in several ways,
especially if multiprocessors are available to execute In <--. and In’ <-. for n n’ in
parallel. To show that LOCALSOLVE does find a good solution to for ’ [3"],
we prove the following lemmas without needing to choose among the various reason-
able definitions of iterators.

LZMMA 4.2. Let EITHERSOLVE standfor RECURSOLVE or LOCALSOLVE.
For each a in Z, EITHERSOLVE is called with actual parameter a exactly once in the
course of SOLVE’s computation. When control passes through call EITHERSOLVE(c)
in SOLVE, any node n such that In changes must be in Na.

Proof. The first assertion follows from (4.1). The second assertion is verified by
induction on =< in Y. If a is such that everything below a in ,v_, has the desired property,
then a has the desired property. 71

LZMMA 4.3. Whenever control reaches call LOCALSOLVE(3") in SOLVE, each m
in ENTRy has Im =E[y]m. Whenever control leaves call LOCALSOLVE(3") in
SOLVE, I restricted to NG3" is a good solution to [3"].

Proof. Suppose for the moment that any a which satisfies the first assertion must
satisfy the second one. Then both assertions can be proved inductively as follows. First,
note that when 7r is 3’ we have E=DENTRTr=ENTRr and each m in E has
Im =E[zr]m =Em by the initialization. Therefore zr satisfies the first assertion.
Second, consider any a in E that satisfies the first assertion. To continue the induction
we show that each part/3 of a satisfies the first assertion. By our supposition and (3.8),
each part fl does have Im E[]m for each m in ENTR/ when control leaves call

176 BARRY K. ROSEN

LOCALSOLVE(y) with a as 3’. By Lemma 4.2 and (4.1), this equation remains true
when control reaches call LOCALSOLVE(y) with/3 as 3’.

To prove our supposition, let a satisfy the first assertion. The second assertion will
follow immediately from Lemma 2.4 if the very high-level iterator is defined by
independent evaluations of all the / expressions followed by simultaneous
assignments to In for all n. We must show that a good solution is also obtained even
when the iterator is defined by stepping through NGy in some arbitrary order, assigning
values as soon as they are found, so that Im might have changed by the time
[Fv(m, n)]Im is evaluated for the sake of assigning to In. This is easily done by an
inductive argument with the aid of Lemma 2.5.

To study the correctness and computational complexity of SOLVE it will be
appropriate to assume that ^ and always require "one" step while application of a
member ofM to a member of L also takes "one" step. See [GW76, p. 178] for more on
the reasonableness of this assumption. For the time bound (but not for the correctness
assertion) in the following theorem we assume that each iterator for all VAR in SET is
defined by stepping VAR through SET in some fixed order.

THEOREM 4.4. Let G, f, E, E) be a well-nested global flow problem: there is
given a nesting structure]or G with entrances and exits such that E DENTRTr and (4.1)
holds, and there is a given flow cover Xa for each induced global flow scheme (Ga,
ENTRa). Then SOLVE with input finishes with output I such that I is a good solution
for . Moreover, let all iterators be defined by stepping through their index sets. Then the
time required (apart from input/output) is

(1) O Ta + Tee2 +." + Tcell-F
where (c, , alzl) is a listing of and each a in has

(2) Tee =IAGaI+(Sa)+’." + (Sa)pir)+pairs(a),

where pairs (a) is [ENTRc NGal and each (Sa) is the time required to evaluate
[Xa(m, p):f] by LOCALMAPS for the]-th pair (m, p) in ENTRa NGa.

Proof. Correctness follows from Lemmas 3.9, 3.12, 4.2, and 4.3 by induction on the
depth of recursion in RECURSOLVE. The time required by LOCALMAPS for each
is O(IAGaI+ (Sa)l +" + (Sa)pairs(a)), while the time required by the call on LOCAL-
SOLVE with 3/= cr is O(pairs(a)). By Lemma 4.2, the calls on LOCALMAPS and
RECURSOLVE in SOLVE require time O(Tal +... + Tcll). Finally, the [lll term
comes from initializing/.

In practice the above time bound is not so elaborate as it looks. Global flow
problems do not appear spontaneously. They arise when compilers attempt to optimize
programs, and programs are written in programming languages. By studying the control
structures in a language, we can derive sharp estimates on the parameters in the time
bound. Detailed analysis must wait for more definitions in the next section.

5. Control structures: an important special case. The input to a compiler is a
program, not a global flow problem. While constructing a problem from a program for
the sake of optimization, a compiler can also construct a nesting structure with
entrances and exits. When the graph and nesting structure are chosen in the way
described in [Ro77a], [Ro77b], the relation between the parse tree and the hierarchy of
small graphs is so transparent that most calculations with graphs can be optimized away.
(Here we are optimizing the compiler itself, before using it to optimize programs.) For
purposes of this section, a program is always a single statement: we use ALGOL-like
syntax. Most types of statement are complex: built up from smaller statements by

MONOIDS FOR RAPID DATA FLOW ANALYSIS 177

control operators like if... then.., else.., or while.., do.... The simple state-
ments contain no smaller statements. This section explains how G is constructed, but it
is quite terse. See any one of [Ro76], [Ro77a], [Ro77b] for a more leisurely discussion
with examples. We deliberately confuse a statement node in the parse tree with the
corresponding fragment of program text. The set E of all statements in a program is
partially ordered by/3 _-< a iff/3 is a descendant of a in the parse tree. The maximum r in
E is the whole program, while the minimal elements are the simple statements. The
graph G and the hierarchy of induced graphs can both be constructed in a bottom-up
pass through the parse tree. The induced graphs are as in (3.5). For G itself, each
statement contributes nodes and arcs given by

(5.1.1) No Noa I.J <, Nfl and Aa Aoa w I.J <o, Aft,

where the new nodes Noa and arcs Aoa are determined by the control operator used to
form a when ce is complex. We will allow control operators like ease that take a varying
number of arguments, and then a phrase like "the control operator used to form"
should be interpreted as "the control operator and number of arguments used to form."
For all statements considered here, N0a has two distinguished nodes entering a and
leaving a, and the designated entrances and exits of (3.2) are given by

(5.1.2) DENTRa ={enteringa} and DEXITa ={leavinga}.

The three operators emphasized in [Ro77b] contribute no new nodes beyond entering
and leaving a to G. They are

if" then fll else f12
while.. do fl

(conditional statements)
(while statements)
(sequential compound statements)

Figure 5.1 is a more concise version of Figs. 1-3 in [Ro77b], giving names to the arcs in
Aoa and indicating their sources and targets, for each of these three control operators.
The arcs named q or qk for integers k are not in A0c. They are used to display how we
expect the induced graph Ga to look when a is a conditional or a while or a sequential
compound statement. Conditions under which these expectations are fulfilled will be
studied shortly, but first we consider four more control operators. They are

a:if. then/ (one-part conditional statements)
a:case of ill;... ;ilk esac (case statements)
a: do/ until. (until statements)
a: for. from. to. by. do/ (stepped iteration statements)

With varying punctuation and choices of keywords, the until and stepped iteration
statements are very widespread. The concrete syntax above reflects the author’s liking
for short mnemonic keywords and clean ALGOL-like punctuation. These two state-
ments add new nodes testing a as well as entering a and leaving to G. (The while-until
statement from [WFSW75] would require two new nodes testing 1 a and testing2 a.)
The new arcs are as indicated in Figs. 5.2. As in Fig. 5.1, the arcs named q or qk are not
in Ao but are expected to be in the induced graph Ga. In contrast to the pictures
commonly drawn in discussions of structured programming or graph grammars for
generating classes of flowcharts [DDH72, 1.7], [FKZ76], [LM75], [WFSW75], Figs.
5.1 and 5.2 have no sourceless or targetless arcs and no unstated conventions for joining
graphs along such dangling arcs. The advantages of our greater explicitness become
apparent when control structures other than those of classical structured programming
are diagrammed, as in [Ro77a]. The seven control operators considered so far will be

178 BARRY K. ROSEN

ql q2
b2

FIG. 5.1. The node entering a appears as an upper half circle marked a. The node leaving a appears as a
lower half circle marked a. Conditional, while, and sequential compound statements are illustrated.

FIG. 5.2. The node testing a appears as a diamond marked a. One-part conditional, ease, until, and
stepped iteration statements are illustrated.

collectively called CSP operators (for classical structured programming). In addition to
(5.1), the important properties of CSP operators are as follows. Associated with each
statement ct built from a CSP operator is a graph EGa, the expected induced graph for
c, that is determined (apart from the names of the nodes and arcs) by the operator used
to form a. Thus EGa and EGa2 for any two while statements a and a. are as in Fig.

MONOIDS FOR RAPID DATA FLOW ANALYSIS 179

5.1, but with ce and O2 in place of a and with names of the loop bodies of O and O2 in
place of /. Apart from renaming and variations in the number K of statement
arguments taken by each control operator like ease or sequential composition, there are
only finitely many expected induced graphs, one for each CSP operator in our language,
and each such graph EG has

(5.e.)

(5.2.e)

(5.2.3)

(5.2.4)

EG is monocyclic or acyclic;

and IAol are O(K);

there is a path from entering a to leaving a in EG;

no arc has source leaving a in EG.

The linear functions of K in (5.2.2) will change if the family of CSP operators is
changed. We have omitted the more elaborate loop building operators like while-until
because the escape statements in the next section are simpler and more powerful means
to the same ends. The importance of (5.2.4) will emerge in Lemma 6.6.

To compose structured programs in the classical sense of [DDH72, 1.7], one
builds all complex statements with CSP operators. Each simple statement has no effect
on the flow of control: control enters the statement, something happens, and control
leaves the statement. This motivates the following definition.

DEFINITION 5.3. The expected induced graph EG8 for a simple statement 8 has
two nodes entering 8 and leaving 8 and one arc (entering 8, leaving 8). A simple
statement 8 is classical iff the nodes and arcs contributed by 8 to G are given by

(1)

(2)

N8 {entering 8, leaving 8};

A8 {(entering 8, leaving 8)}.

A program is classical iff every simple statement in it is classical and every complex
statement is built by a CSP operator.

LEMMA 5.4. Let G be the graph for a classical program. Then each statement a has

ENTRa {entering a} and EXITa {leaving a} and Ga EGa.

Proof. The assertion holds if a is simple by Definition 5.3. Otherwise a is complex
and the assertion may be assumed to hold for its parts. By (5.1) and (5.2.3), the assertion
holds for a. l-I

We can now do much of the work of data flow analysis for classical programs at the
time of language definition, long before any specific programs are compiled. With each
expected flow scheme (EGa, {entering a }) we can associate an expected flow cover EXa
as soon as pictures like those in Fig. 5.1 and Fig. 5.2 are available. By Lemma 5.4, EXa
will indeed be a flow cover for the actual induced scheme (Ga, ENTRa) when we
encounter a specific statement a in a specific program. By Theorem 4.4, SOLVE can
find a good solution to a global flow problem by moving through the parse tree and
evaluating formal expressions tabulated by the expected flow covers. Having fixed the
set of CSP operators, we can estimate the costs of evaluating the expressions rather
sharply. The elaborate time bound in Theorem 4.4 will reduce to the assertion that the
cost of data flow analysis is O(IEI t). The expected flow covers are derived from those
constructed in Lemma 2.6 by elementary calculations. Since m is always entering a in
EXa(m, p), it will be convenient to write : rather than entering a.

LEMMA 5.5. Let a be a simple statement. Then EXa is a flow coverfor the expected
flow scheme, where EXa(r, r) A and EXa(r, leaving a) (c) for c (, leaving a).

180 BARRY K. ROSEN

LEMMA 5.6. Let be a one-part conditional statement if. then/. Then EXa is a
flow coverfor the expectedflow scheme, where EXa(, r) h and (for b, q, d, e as in Fig.
5.2)

EXa(, entering fl) (b) and EXa(r, leaving fl) (b, q);

EXa(, leaving a) [(e) (b, q)] ^ (d).

In most kinds of data flow analysis we know that f: ,a,o-M will have fe- 1"
nothing happens when control flows from leaving [3 to leaving a. Indeed, the usual
low-level control flow graphs do not even distinguish these two nodes. For such kinds of
analysis the above flow cover can be optimized by using (b, q) instead of (e) (b, q). For
available expressions it is also known that fb =fd 1, so EXa(, leaving
would suffice. As above, we will only display the most general form for each flow cover.
For each specific kind of problem, such as available expressions, the implementor can
optimize the expected flow cover in light of whatever is known about the maps from arcs
into M that can actually arise from programs.

LEMMA 5.7. Let ct be a two-part conditional or case statement with parts 1, , fir,.
Then EXa is a flow cover for the expected flow scheme, where EXa(Cr, r) h and

EXa(r, entering k) (bk) and EXa(Cr, leaving k) (bk, qk)]:or k 1,. , K;

EXa(, leaving a) [(el) (bl, ql)] ^"" ^ [(er,) (br,, qr,)].

LEMMA 5.8. Let a be a sequential compound statement [/1; ;/r,]. Then EXa is
a flow cover for the expected flow scheme, where

EXa(r,) h and EXa(, entering 1) (bl);

EXa(r, leaving k) (qk) EXa(r, entering k) for k 1, , K;

EXa(Cr, entering Bk) (bk) EXa(, leaving k-1) fork 2,.. K;

EXa(Cr, leaving a) (e) EXa(, leaving

LEMMA 5.9. Let ct be a while statement and let d/ be (b, q, a) in Fig. 5.1]:or a. Then
EXa is a flow cover for the expected flow scheme, where

EXa(, r) X @ and EXa(Cr, entering 13)= (b) @ ;
EXct(, leaving) (b, q) @ and EXa(, leaving a) (e) @ .

Proof. We derive h @ for EXa(,) by optimizing the flow coverX provided by
Lemma 2.6, which has

X(,)= Y(,)AZ(, a);

z(,)=x .
One of the six expressions A -ed together here is equivalent to A @ , so we want to show
that the other five can be omitted. By Definition 2.3 it will suce to show thatX is still a
solution when the five subexpressions are omitted. Any path e: does have the
form A A for r in N, so [A @ :[] [e just as in the proof of Lemma 2.6. For the
other nodes p the reasoning is similar, with fewer subexpressions in X(, p) to be
omitted. U

LEMMA 5.10. Let be an until statement and &t be (q, a, b) in Fig. 5.2 for. Then

MONOIDS FOR RAPID DATA FLOW ANALYSIS 181

EXa is a flow cover]:or the expected flow scheme, where

EXa(r, r) h and EXa(, entering/) IX @ 4’] (i);

EXa(r, leaving/3) [(q) @] (i) and EXa(r, testing c) [(q, a) @] (i);

EXa(, leaving a) [(q, a, e) @] (i).

LEMMA 5.11. Let be a stepped iteration statement and let be (b, q, a) in Fig. 5.2
[or . Then EXa is a]tow cover for the expected]tow scheme, where

EXa(r, r) h and EXa(r, testing a) [h @] (i);

EXa(, entering/3) [(b) @] (i) and EXa(r, leaving/3) [(b, q) @ 4’] (i);

EXa(r, leaving a) [(e) @] (i).

THEOREM 5.12. Let be a globalflow problem (with a rapid closed context) derived
from a classical program. Then is well-nested. Using the given flow coverEXa for each
statement a, SOLVE finds a good solution. The time required (apartfrom input/output) is
0 (IE.,I" t).

Proof. That is well-nested follows from Lemmas 5.4-5.11, with (4.1) holding
because the parse tree is indeed a tree. By Theorem 4.4, SOLVE finds a good solution.
All that remains is to specialize the time bound in the theorem. When the pairs (m, p) in
ENTRa NGa are ordered in the obvious ways suggested by the displays of EXa in
the lemmas, the th EXa(m, p) evaluation in LOCALMAPS requires (Sa). steps with

(Sa)j _-< 1 except (Sa)2K+2 2K 1

(Sa). <- t + 3 in the other lemmas.

in Lemma 5.7;

Therefore Ta in Theorem 4.4 is O(]AGaI+ INGa]. t + INGa]). By t -> 1 and (5.2.2),
Ta is O(Kt) for K IPARTal. Therefore Tal +... + Talxl is o(1;I t). But I1 is
o(1,1) by (5.2.2) and (5.1.1) and INol--< INGal, so the total time is O(]X[t). 71

For example, consider the syntax-directed available expressions analysis in [TK76,
p. 362]. The stated system of equations is inadequate because Case 4 uses OUT(S1, x)
for x # IN(S1) but the four cases only define OUT(S, x) for x IN(S). After the obvious
corrections it is clear that the method of [TK76] is a special case of SOLVE with
V @ U V ^ (V U) for idempotent contexts.

Theorem 5.12 above and Theorem 6.7 in the next section show that SOLVE is
reasonably fast for a large class of graphs. This class is not universal in programming, but
SOLVE is robust, it works, perhaps slowly, for any graph. As increasingly complicated
graphs are considered, the running time deteriorates gradually. There is no sudden need
for a difficult new global analysis in order to somehow apply a method to graphs for
which it was not originally designed. In this respect SOLVE is like [BJ78a], [CC77],
[KU76], [Ke75], [Ki73], [Ta75], [Ta76], [We75] and unlike [AC76], [FKZ76],
[FKU75], [GW76], [TK76], [U173], [Wu75], [ZB74]. Among robust algorithms,
SOLVE has an unusual combination of simplicity, algebraic generality, and ability to
exploit common regularities in the graphs of well-written programs.

6. Control structures: escapes and jumps. Complex statements in programs
commonly have goals, as when one writes a statement that searches a file for the record
with a given key. For a large file with a complicated indexing structure, the search
statement could be quite complicated. For example, ce: (find the record) might be

182 BARRY K. ROSEN

elaborated in a top-down manner as

(6.1.1) a: [1 :(look in fast memory); 2 :(look in slow memory if necessary)]

if part of the file is in fast memory and part is in slow. If fll does find the record, then
there is no need to proceed to f12. The goal of a has been accomplished and the
programmer wants to ensure that control will leave a without anything else happening.
In a language like Bliss/11 [Wu75] this intention can be expressed directly by writing a
simple statement

(6.1.2) 8: leave LABEL(a)

anywhere within a, perhaps as the then part of a conditional statement. Of course
LABEL(a) is the identifier used to label a in the program: any statement important
enough to be left is important enough to be labelled. As an operator, leave takes the
name of a statement as an argument rather than the statement itself. With (6.1.2) we
have N8 {entering 8, leaving 8} as in Definition 5.3(1), but A8 {(entering 8, leaving
a)} instead of Definition 5.3(2). The expected induced graph from Definition 5.3 will
not be relevant for leave. Designated entrances and exits are still as in (5.1.2), but now
entering 8 is also in EXITfl for any fl with 8 -</ < a by (3.2.4). Of course one can avoid
(6.1) and stay within classical structured programming by writing something like

a: NOTYET := true;
/31" (look in fast memory);

(6.2.1)
i NOTYET then

/2 (look in slow memory)

and being careful to put enough assignments

(6.2.2) NOTYET := alse

into the elaboration of fl 1. (Tests of NOTYET will also be needed.)What useful purpose
is served by this exercise? One can agree with Ledgard and Marcotty’s criticisms of
some of the literature recommending escapes or jumps [LM75, p. 638] while contend-
ing that escapes (and perhaps jumps) should nevertheless be provided.

Note that clarity and reliability are the main reasons for preferring (6.1) to (6.2).
The greater efficiency of (6.1), before the optimizations contemplated on page 638 of
[LM75], is just a pleasant byproduct of expressing programmer intentions as directly as
possible. No good is done when the programmer cleverly codes (6.1) as (6.2) and then
the compiler cleverly optimizes (6.2) back to (6.1). Finally, note that leave is quite
uniike the escape statements emphasized in [LM75] and its main references. Unlike
escaping from the r-th enclosing loop or escaping to the next iteration of the r-th
enclosing loop’s body, leave escapes from whatever the programmer wants to escape
from, referring to it by whatever name the programmer wants to use. There is no
extraneous counting and no entangling of escapes with loops. If nonclassical simple
statements are to be allowed at all, there is no point in having them be simultaneously
less powerful, less readable, and more bothersome to implement than leave.

One sometimes wants more power than leave provides. In our file searching
example, suppose now that there may or may not be a record matching the given key.
One would like to follow the search with the appropriate action, depending on whether
it was terminated by success or by exhaustion of the file. This can be accomplished by
setting a variable EVENT within the search and then testing EVENT after it, but a great

MONOIDS FOR RAPID DATA FLOW ANALYSIS 183

many spurious control flow paths will be introduced by this maneuver. As in (6.1) and
(6.2), one would like a more direct means of expressing intended control flow. The
"event-driven case statement" [Kn74], [Za74] addresses this need, but the name and
syntax are burdened with confusing puns on other control structures. It is confused with
the CSP ease statement in Fig. 9(a) of [LM75] and with the CSP until statement in 5 of
[Han77]. These problems are avoided in the more general but simpler "followed
statement" introduced in [Ro77b, 8]. To save space, we will only deal explicitly with
the simpler escape statement leave in applying Theorem 4.4. Those who wish to handle
more powerful escapes will find it easy to generalize this section in light of [Ro77b, 8].

DEFINITION 6.3. A complex statement a is semiclassical iff it is built by a CSP
operator and satisfies

(1) ENTRa {entering a };

(2) RAGa-IAG=Aow .JtPARX{eAIseN& te=leavinga}.

A simple statement 8 is semiclassical iff it is either classical or a leave statement. A
program is semiclassical iff every simple statement in it is semiclassical and every
complex statement is built by a CSP operator.

As will be proved shortly, every complex statement in a semiclassical program is
semiclassical. Equations (1) and (2) above are as in [Ro77b, (4.5) and (4.7)], where
"semiclassical" is only applied to complex statements. The other applications have been
added to bring out the parallels between semiclassical programs and the classical
programs of Definition 5.3. The next lemma is like Lemma 5.4.

LEMMA 6.4. Let G be the graph]’or a semiclassical program. Then each complex
statement a is semiclassical and Ga can be obtained from EG by

(1) deleting all imaginary arcs (entering , leaving with
in PARTa and II (, entering , leaving/3) 0;

(2) adding all nodes in EXIT/3- DEXIT/3 with in PARTa

(3)

(4)

addingallrealarcs (n, leavinga)forn entering8 with [8: leaveLABEL(a)]

adding all imaginary arcs (entering fl, n) for n in EXITfl- DEXIT/3 with
in PARTa and II (, entering , n)= 1.

Proof. We claim that any complex statement a satisfies Definition 6.3(1) and
Definition 6.3(2). For Definition 6.3(1), suppose there is an arc (p, m) in G with p not in
Na and m in Na. We must show that m entering a. Let 3’ be the statement with (p, m)
in A03,. Suppose first that 3, is complex, so that (p, m) is as in Fig. 5.1 or Fig. 5.2. Thus
a -< 3,, with ruled out because p is not in Na, so a is a part of 3’ and m can only be
entering a. Now we show that 3, must indeed be complex by showing that it cannot be a
classical simple statement or a leave statement. In either case we would have p-
entering 3, and rn leaving for a statement/3 _-> 3,. Because p is not in Na, this implies
-(3, <_-a). Because m is in Na, it also implies/3 <= a. But 3, <_-/3 _<-a implies 3,-< a, a
contradiction.

For Definition 6.3(2), the right side of the equation is already a subset of the left
side in the induced graph construction (3.5). Now consider any arc e in RAGa-
IAGa-Aoa, so that e is in Aft for some part fl of a and in A03, for some 3, _-< ft. No
matter which type of statement 3, is, se is in N3, and so se is in Nil. We need te leaving
a. It will suffice to show that 3, has the form leave LABEL(a).

184 BARRY K. ROSEN

Case 1 [/3 has the form leave LABEL(a’)]. Then/3 < a’ but a’ -< a because te is in
NGa. Therefore a’ a. But 3’ =/3 because 3’ <-/3 and/3 is simple, so 3" has the desired
form.

Case 2 [/ is a complex statement or a classical simple statement]. Each arc in Ga
with source in ENTRfl is imaginary. Because se is in NGa f-) NI3

_
ENTR/3 EXIT/

and e is not imaginary, se is in EXIT/3. Because e is not in Aoa, se is in EXIT/3-
DEXIT/. Therefore/ is complex and 3’ has the form leave LABEL(a’) with/3 < a’. As
in Case 1, a’ a.

Now consider the problem of obtaining Ga from EGa. All nodes of EGa are in
Ga, but some imaginary arcs may not be. The missing arcs are exactly the ones deleted
by (1). Because any part fl of a has ENTRfl {entering/}, the additional nodes in Ga
are exactly those added by (2). By Definition 6.3(2), the additional real arcs in Ga are
exactly those arcs e not in Aoa with se in N[3 and te leaving a. The statements 6 that
could have such arcs e in A06 are exactly those considered in (3). By ENTRfl
{entering/}, the additional imaginary arcs in Ga are exactly those (entering , n) such
that n is in EXIT-DEXIT/ and is reachable from entering [3, and these are exactly the
arcs added by (4).

LEMMA 6.5. Leta be a semiclassical simple statement. ThenXa is a flow coverfor the
induced flow scheme (Ga, ENTRa), where

Xa EXot ifa is classical;

Xa(,) h and Xa(, leaving a) Y ira is a leave statement.

Proof. If a is classical then Ga EGa and Lemma 5.5 applies. Otherwise, Got has
nodes {,, leaving a} and no arcs while ENTRa {}.

LEMMA 6.6. Let a be a complex statement in a semiclassical program. Let Ya be the
result of adfusting the expected flow coverEXa to avoid using any imaginary arc ofEGa
that is not in Got, as in Lemma 2.10. LetEAot be the set ofall e in RAGot IAGot Aoot
such that H(fl, entering fl, se) 1, where fl is the part ofa with e A. Then Xot is a flow
cover for the induced flow scheme (Got, {}), where each node p in NGot has Xot(r, p)
determined by one of the following cases:

(i) Xot(, p) Yot (’, p) ifp is in EGot butp leaving

(2) Xa(r, p)= T ifp EXIT/ DEXIT/ and II(/3, entering fl, p) 0;

(3)
Xot(r, p) (i) Xot(r, entering B)

ifp EXIT/ DEXITB and
(entering , p) is in IAGot;

(4) Xot(Cr, p) Yot(:, p) ^ AeV.A, [(e) Xot (, se)] //p leaving

Proof. By Lemmas 5.6-5.11, EXot is a flow cover for (EGot, {r}). By Lemma 2.10,
Yot is a flow cover for (H, {-}), where H is the result of deleting all imaginary arcs in
EGot that are not in Got. The actual induced flow scheme is formed from (H, {}) by
adding nodes and arcs as in Lemma 6.4, and Xot is derived from Yot by taking into
account the additional paths in Got. For p in (1) the paths from to p in Got are exactly
the paths from . to p in H, as follows from (5.2.4) and Lemma 6.4: no arc in Got has
source leaving a and the only arcs with sources in EXIT/3-DEXIT/3 have target
leaving ot. For p in(2) there are no paths from r to p. For p in (3) the paths from - to p
are exactly those of the form e (i) where e is a path from to entering for the unique
13 in PARTOt with p in EXIT/3 DEXIT/3. For p in (4) the paths from - to p are exactly
those from to p in H together with those of the form e. (e) for e in EAot and

MONOIDS FOR RAPID DATA FLOW ANALYSIS 185

: r se. Therefore Xc is a flow cover because Ya is a flow cover. I-!
We can now generalize Theorem 5.12 to allow escape statements. The new time

bound in the following theorem is roughly similar to the bound for the method of
Graham and Wegman as applied to semiclassical programs [GW76, Thms. 4.2 and 5.4].

THEOREM 6.7. Let be a global flow problem (with a rapid closed context) derived
]rom a semiclassicalprogram. Then is well-nested. Using theflow coverXc]rom Lemma
6.5 orLemma 6.6 for each statement c, SOLVE finds a good solution. The time required
(apart[rom input/output) is O(IE] t + (newexits)), where (newexits) is the sum over all
a in , o the numbers IEXITal- 1.

Proo[. We proceed much as in the proof of Theorem 5.12, using Lemmas 5.4-5.11
and 6.4-6.6. The Xa (m, p) evaluations for p in EGa with p leaving a are ordered as
suggested by the displays of EXot in the lemmas from 5. Then Xc (m, p) is evaluated
for each p in Ga not in EGa (and hence in EXIT/3 DEXIT/3 for/3 a part of c). Finally,
we evaluate Xa(m, leaving a). As in Theorem 5.12, the time (Sa)i for the jthXct(m, p)
evaluation with p in EGa has (Sa)i =< t + 3 except perhaps for the last one, with
p leaving or. In this one case Lemma 6.6(4) yields

(Sa)i --< 1 + (old) + (leavenum 1) + (leavenum),

where (old) is the old bound from the proof of Theorem 5.12 on the time required to
evaluate EXc and hence Ya for (m, leaving a) and (leavenum) is the number of leave
LABEL(a) statements within a. There are also (leavenum)+ IEXITal-1 choices of]
with p not in EGa and (Sa)i <- 1 in Lemma 6.6(2) and Lemma 6.6(3). The term Ta from
Theorem 4.4(2) is therefore

O(IAGal+ (]NEGa]- 1). (t + 3) + IEXITa 1 + (old) + (leavenum) + pairs(c)),

where EGa has node set NEGa and arc set AEGa such that

IAGa <-- IAEGa + 2. (leavenum);

pairs(a) =< INEGaI+ (leavenum) + IEXITc l- 1.

Now (leavenum) is at most the sum of all the numbers [EXIT/3 1 for/3 in PARTed. For
K IPARTc I, IAEGa and INF-,Gal are O(K) by (5.2.2) and (old) is linear in K t, so
Ta is

O(K. t + (IEXITtxI- 1)+... / (IEXITt,, 1)/ (IEXIT I- 1)).

But I1 is still O(]Zl), so the total time from Theorem 4.4(1) is O(TI+" + Tall),
which is the desired bound. 71

Vague assertions about the importance of "single-entry/single-exit control struc-
tures" are ubiquitous in the literature and folklore of structured programming. One
precise meaning for such assertions might be that syntax and semantics are so simply
related as to permit syntax-directed data flow analysis at a cost linear in some
reasonable measure of program size. When the size of a program is the number of
statements in it, multiplied by t, Theorem 5.12 shows that classical structured
programming is sufficient for such analyzability. Theorem 6.7 shows that the escapes
needed for practical structured programming do not destroy this analyzability, provided
they are used in moderation" the number (newexits) should be fairly small compared to
the size of the program.

Because LOCALMAPS in SOLVE uses a given flow cover for each statement’s
induced flow scheme, the time bound in Theorem 6.7 would be of little interest if finding
flow covers required more time than using them did. Happily, Lemma 6.6 shows that we

186 BARRY K. ROSEN

can pass from the expected flow cover to the actual one very quickly, provided we know
the various path bits II(fl, m, n). Finding all these bits can be done in time O([E[+
(newexits)) by the obvious adaptation of the rules for computing whether a variable can
be preserved along some path through a statement [Ro77b], and the use of Xa(m, p) in
LOCALMAPS can be reinterpreted as including discovery of Xa(m,p) without
changing the time bound. This suggests a strategy for dealing with programs that are not
known to be semiclassical. For definiteness, let us assume that the only kind of
statement besides those already considered is the simple jump"

(6.8) : goto LABEL(a).

With (6.8) we have N8 ={entering , leaving 8} as in Definition 5.3(1), but A8
{(entering , entering a)} instead of Definition 5.3(2). As with (6.1.2), the expected
induced graph EG8 is irrelevant, designated entrances and exits are still as in (5.1.2),
and entering is also in EXIT/3 for any/3 with t ,-< fl < a except in the special case where
a happens to be 8. But now we may have nondesignated entrances as well. In (3.2.3) we
find that entering a is also in ENTR/ for any/3 with(_<-/) and a </. There is a new
real arc in G3" for the smallest 3’ that includes both 8 and a. Unlike the arcs added by
escape statements, these new arcs may add many new paths to G3", including cycles.
There is no neat formula like Definition 6.3(2).

Our strategy for coping with jumps is based on a cautiously optimistic version of
Murphy’s Law: WHATEVER CAN GO WRONG WILL, BUT NOT OFTEN. A
compiler’s lexical analysis phase can easily detect the presence of jumps in a program.
Well-written programs in well-designed languages will often be free of jumps and hence
semiclassical. Most of the statements in a program that does have jumps will still be
semiclassical, though they may have exits due to goto as well as to leave. The lemma
after this paragraph implies that Lemma 6.6 actually holds for any semiclassical
complex statement, even when the program, as a whole is not semiclassical. The flow
cover discovery in LOCALMAPS can be written as an easy test for whether a is
semiclassical, followed by use of Lemma 6.5 or Lemma 6.6 in the common case where
this is true. When a is complex and not semiclassical, the flow cover discovery routine
will need to construct the induced graph Ga, using the path bits that will be available for
the parts of a and a list of the arcs contributed by jumps. When this graph is monocyclic
or acyclic (as can quickly be tested [MD76]), a flow cover can be obtained from Lemma
2.6. (In this context it may be worthwhile to optimize the proof of the lemma to avoid
enumerating so many sets of simple paths.) Lemma 2.7 covers the polycyclic case. Let Q
be a set of arcs in Ga such that every cycle includes at least one arc from Q. The methods
of [SMR75] can be adapted so as to choose Q in time linear in the size of Ga, with
]Q] << [AGa] in many examples but with no minimality assured. If Lemma 2.6 takes time

To to find a flow cover for (H, NGa), where h is the result of removing all arcs in Q from
Ga, then an easy optimization of Lemma 2.7 will find a flow cover for the actual induced
flow scheme in time O(To + loinS+ t), where n [NGal and is the time required to
find the transitive closure of H if this does not fall out from the Lemma 2.6 implemen-
tation. If the flow cover for (H, NGa) can be evaluated for all (m, n) in T1 steps, then the
flow cover for the actual induced flow scheme can be evaluated in at most TI+
]Qln2(2t / 7) steps. By compressing the induced graph in various ways (e.g. [Ro77a,
(2.6) and (2.7)]), we can use n < INGal and then add a term O([NGa]). It is not clear
how bad the above bounds really are. Even with Q AGa, so that the crude algorithm
is cubic in the size of Ga, it is only the size of Ga which occurs. No practical estimates of
the size ratio between this graph and the graph of the entire program are available./f
jumps are used in such a way that few statements fail to be semiclassical and those that

MONOIDS FOR RAPID DATA FLOW ANALYSIS 187

do have small induced graphs, then even crude handling of these statements by
LOCALMAPS need not drastrically change the running time of SOLVE on large
programs. As with escape statements, moderation is the key.

LEMMA 6.9. Let G be the graph o]a program wherein every complex statement is built
by a CSP operator and every simple statement is either semiclassical or a goto. Let ce be a
complex statement. Then

(1) ENTRa DENTRa
_

(.J/3PARTa ENTR/3.
Moreover, a is semiclassical iff each part of a satisfies
(2) ENTRfl {entering fl } and entering fl ENTRa

and, for all [6: goto LABEL(a’)] _-</3,

(3) c’ <= a implies a’ <= .
In that case Ga can be obtained from EGa by the operations from Lemma 6.4(1-4).

Proof. The only way that m with m # entering a can be an entrance to a is for m to
be entering a’, where 8 :goto LABEL(ce’) has ce’< ce but -qS-<a. (Recall the first
paragraph in the proof of Lemma 6.4.) Then a’=<fl for some fl in PARTa and
m 6 ENTR/3. This proves (1).

Suppose (2) and (3). We show that a is semiclassical. Definition 6.3(1) follows from
(1) and (2):

ENTRa DENTRc
__

(_J/3PARTa ENTRfl (q ENTRa .
For Definition 6.3(2) the reasoning from the proof of Lemma 6.4 is valid as far as it goes,
but the case analysis is no longer obviously exhaustive. In Case 2 there seems to be a
new subcase: perhaps the statement y with e in A0y has the form goto LABEL(a’) with
a’ -<_/. But then -a’ <_- a by (3), so e cannot be inGa after all. Similarly, the apparent
Case 3, with fl a goto statement, cannot arise.

Conversely, suppose a is semiclassical. Let/3 be a part of a, so that entering is not
an entrance to a by Definition 6.3(1). To complete the proof of (2) we suppose
m entering fl is in ENTRfl and derive a contradiction. Some 6: goto LABEL(a’) has
m entering a’ and c’< fl and -q6 _-< fl, but 8 _-< a because m is not an entrance to c.

Therefore 6 <-), for some part), #/3 and 6 contributes an arc to Ga not allowed by
Definition 6.3(2), a contradiction. To prove (3), suppose [6: goto LABEL(c’)] =< fl and
a’<= a. But a’-a lest Ga have an arc not allowed by Definition 6.3(2). Therefore
a’=< 3’ for a part y with 3’ fl lest Gc have an arc not allowed by Definition 6.3(2).
Finally, the proof that Ga is obtained from EGa by the indicated operations is as
before.

COROLLARY 6.10. Let be a global flow problem (with a rapid closed context)
derived from a program wherein each complex statement is built by a CSP operator and
each simple statement is either semiclassical or a goto. Using the flow cover Xa from
Lemma 6.5 orLemma 6.6 for each semiclassical statement a, and using a flow coverXa
constructed during the call on LOCALMAPS for each complex statement a that is not
semiclassical, SOLVE finds a good solution.

In an ambitious optimizing compiler along the lines of [Kn74], [Lo77] we must also
cope with introduced jumps. The original input to the compiler has few if any jumps, but
subsequent processing can add them in two ways. Some optimizations introduce jumps
so as to avoid tests when their results are predictable at compile time or so as to make
procedure linkages more efficient [Kn74, esp. pp. 281,282]. Some high-level language
features need to be paraphrased by less concise but equivalent uses of several lower-

188 BARRY K. ROSEN

level features to reveal opportunities for optimization, and such paraphrases may add
jumps. For example, a while loop governed by a Boolean expression that may have side
effects can be paraphrased by a block that declares a temporary variable, explicitly
evaluates the expression and assigns the result to the temporary, and then enters a loop
governed by the temporary. The need to reevaluate the expression after each iteration
leads to a jump [Ro77b, (9.2.2)]. Fortunately, there is no need to treat added jumps like
original jumps. At the time when a compliler adds a jump like the one in [Ro77b,
(9.2.2)], it is easy to determine which statements may have their entrance and exit sets
or induced graphs changed. Precisely because jumps are added according to "well-
understood... [and] well-documented "mechanical" operations" [Kn74, p. 282],
there is no need to apply Lemma 2.6 or Lemma 2.7 to the new induced graphs. Part of
understanding and documenting the operations is drawing figures like [Ro77b, Fig. 5]
for while loops governed by Boolean expressions with side effects. As with the loops of
classical structured programming, we can find the flow cover long before the compiler
encounters a specific while statement in a specific program. In writing the compiler we
need only write the tlse of this known flow cover into the handling of while statements by
LOCALMAPS.

Definition 2.1 can be extended to define data expressions with values in L in
addition to flow expressions with values in M. Then LOCALMAPS and LOCAL-
SOLVE can be rewritten so as to use IENTRa x EXITa +]NGa EXITc expressions
for each statement c instead of the present IENTRa x NGal expressions. This change
complicates SOLVE but may improve its running time if IENTRcI> 1. Because
multiple exits are more common than multiple entrances in structured programming,
the use of data expressions is more likely to be worthwhile as a prelude to reversing the
roles of entrances and exits. Reversing is needed to solve problems like the detection of
dead variables, wherein information flows backwards along arcs and is given initially for
exit nodes at the time of exit.

7. Semilattiees oI finite height. Most of the semilattices that arise in data flow
analysis are of finite height: not only are they well-founded, but there is a uniform
bound on the lengths of strictly descending chains.

DEFINITION 7.1. Let H be a positive integer. The semilattice L has height H iff
there is a strictly descending chain x0>xl>’" >xn such that all other strictly
descending chains are at most this long.

If L has height H then any context (L, M) is rapid, but a tighter bound on t@ in
Definition 1.6 can be obtained if we consider the "effective height" instead of the actual
height. To define effective heights we recall the general cartesian product construction.
The general construction begins with an arbitrary family of sets: for each q in some set
Q, we are given a set So. Given such a family, a Q-tuple is any map x with domain Q, such
that the value x of x at q is a member of S. We wrote x rather than our usual xq to
stress the similarity between general Q-tuples and the more familiar n-tuples
(x, ., x,), which correspond to the special case Q {1, ., n }. The cartesian product
of the family {Sqlq Q} is the set of all Q-tuples. It is denoted qoS. If each S
happens to be a (complete) semilattice, then the product is also a (complete) semilattice,
with the obvious ordering x _-< y in qoSq iff x _-< y in Sq for all q.

DEFINITION 7.2. A factorization of the algebraic context (L, M) is any family
{(La, Ma)lq Q} of algebraiccontexts such that there are semilattice isomorphisms

L- XqoL, and M-- XqoMq

that make the following diagram diagram commute:

MONOIDS FOR RAPID DATA FLOW ANALYSIS 189

apply a map
to an argument

ML

apply the q-th map
to the q-th argument

For example, let O be the set of all expressions in a program. For each expression q,
we can indicate whether the expression is available or not by using the semillatice

L {0, 1} with the usual ordering and the monoidM generated by the maps describing
how a block of text "kills" or "generates" the expression [GW76, p. 178], [U173, p.
193]. The height of L is 1. Instead of solving a separate global flow problem for each
expression q, it is usual to use a "bit vector" with one position for each expression: the
parallelism in AND and OR operations on arrays IOI long of bits is exploited to get the
net effect of solving jOl problems in {0, 1} by solving one problem in XqoL. The above
definition says why this works. In the bit vector example XooL has height Iol, but it
acts as if it has height 1 for all purposes of data flow analysis.

DEFINITION 7.3. The semilattice L has effective heightH in the context (L, M) iff
there is a factorization {(L, M)lq O} of (L, M) such that some Lq has heightH and all

L have height at most H.
LZMMA 7.4. Suppose L has effective heightHin the context (L, M). Given Vand U

in M, the loop products @1 and @2 defined by

V@2U=VoU* and V@2U=/{VoU[rN}

can be computed in at most

(1) t [log2 H] + 2 steps for @ @1;

(2) t 2H + 1 steps for @ @2.

Proof. Suppose first that L has height H. For (1), it takes one step to find U ^ 1 and
then [log2 H] steps to find U* by repeated squaring, as in [GW76, p. 182]. One more
step finds V oU*. For (2), it takes H+I steps to find the sequence
(Vo U, Vo U2, Vo UH+I) and then H steps to find the sequence (&0,’", &H)
with &0 V U and &h &h-1 ^ V Uh/l. For any x in L we have &0x >-- &ix =>" >_-

&x, so &u is V @2 U.
In the general case Definition 7.2 implies that V @k U corresponds to a O-tuple

with (V @k U) V @ U,, the @ on the right, being in Mq. Because L has height H
or less, Vq @ U can be found in the asserted number of steps within Mq. By Definition
7.2 again, V @ U can be found in the asserted number of steps within M.

COROLLARY 7.5. If L has effective height H in the context (L, M) then (L, M) is
rapid with t <- 2H + 1. If (L, M) is also distributive then @1 @2 and t <- [log2 HI + 2.

For any of the traditional bit vector problems the effective height is 1. Effective
heights can be unpleasantly high in constant propagation [KU76, p. 167] or in analyzing
the ranges of values of variables [Har77b]. In these more ambitious forms of data flow
analysis the contexts are also not distributive, so @1 is cheaper to compute but @2 yields
sharper information. The programmer could be asked to specify which loop product is
to be used when invoking an ambitious optimizing compiler. After run time measure-
ments prior to optimization have revealed which areas of the program are critical,, the
compiler could even be told to use @2 in a few critical places and @1 elsewhere. With
high-level analysis the programmer and the compiler both visualize control flow in

190 BARRY K. ROSEN

relation to the syntactic structure, so detailed communication is possible without an
elaborate interface.

For a simple first example of heights greater than 1 and of the difference between
the two loop products, let L012 be as in Fig. 7.1(left), so that L012 has height 2.
Intuitively, this semilattice can be used to count the number of times a loop body is
executed, with 2 standing for "2 or more." Consider the following isotone maps on
Lo12:

b’x (if x 0 then 1 else if x 1 then 2 else x);

i’x 0 and e’x (if x +/- then +/- else 7).

FIG. 7.1. A semilattice]:or counting iterations and an elementary semilattice]:or subscript range analysis.

These maps together with the constant map 7-vtx- 7- generate a closed monoid of
isotone maps Mo12. (It is not distributive.) Consider the program statement

a: do/ get(VAR) until VAR

where VAR is a boolean variable. In Ga EGa from Fig. 5.2 we map arcs to members
of Mo12 with fi=i’; fq=l; fa=l; fb=b’; fe=e’. The maximum solution to
(Ga, f, {r}, E) with E() +/- has

I(r) I(entering) I(leaving) I(testing a) +/- but I(leaving a) 7-.

The maximum fixpoint has Jn +/- for all n. The method of [GW76] finds J, as does our
method with @1. But with @2 we find L This example is contrived, but the same behavior
could appear in a practical (but much more complicated) situation, where we want to
optimize the code following the loop a. Even when the justification for the optimization
depends on how many times the loop body was executed, a programmer polishing the
code can reason as follows. After 0 iterations the optimization is permissible because of
Ro; after 1 iterations it is permissible because of R1; after 2 or more iterations it is
permissible because of R2; therefore it is permissible. By using a map e’ that extracts an
appropriate justification from each distinguishable number of iterations, an ambitious
optimizing compiler with @2 can mimic this kind of human reasoning in its data flow
analysis. (For an until loop the case of 0 iterations is trivial, but this kind of loop is most
convenient for a simple comparison with [GW76].)

For a more complicated second example that displays the subtleties of the effective
height concept, let P be a set of integer valued variables and let Li be as in Fig. 7.1(right)
for each in P. As in [We75, p. 276], these variables can be used as array indices so as to
simulate pointer variables. An array A[1], , A[n] is given, and the assertions to be
made about are that is in the range {1, , n} (the r in the figure), that represents a

MONOIDS FOR RAPID DATA FLOW ANALYSIS 1.91

null pointer by being zero (the z in the figure), and that represents a pointer by being
either in range or zero (the rz in the figure). Then 3_ says nothing about the value of
while q- is added for technical convenience. (Strong assertions are high in the semilat-
tice.) Let L Lptr be vL and let M Mptr be generated by the constant 7"MX -r- L
and by assignment and input statements, as follows. Consider any i,/" in P and any
arithmetic expression AE not in P. Each statement 6 in the set {i := L := AE, get(i)}
defines (6) inM with (6)x y in Lptr having y x for all k in P-{i}. But y depends on
6 and on x as follows.

Yi x. for :=/’;

yi=z for i:=0;

Yi r for := AE witt{ AE constant in {1, , n};

yi 3_ for := AE otherwise;

Yi-- 3_ for get(i).

The context (Lptr, Mptr) is rapid because Lptr has height 3IPI. If [PI => 3 then this context is
not idempotent and not fast, as can be seen by considering U2 and U ^ 1 for

U=(j := k)o(i := j)

whenever i, j, k are distinct members of P. Unlike Molz and more elaborate monoids for
ar/alyzing ranges of array indexing variables, Mptr is distributive. Therefore t varies as
log2 IPI. For large P this could be toublesome, but here effective heights will often be
useful. Let O be a partition of P: O is a family of disjoint nonempty subsets of P whose
union is P. Suppose each assignment := j that actually occurs in a program has and j
in the same subset q O. This can be accomplished trivially by letting O be {P}, but for
any one program we can probably use a nontrivial partition. Then Mptr can be replaced
by the smaller monoid Mptr[O] generated by allowing only assignments := j that do
occur. There is a factorization of (Lptr, Mptr[O]) such that Zptr has effective height 3v,
where v is the largest Iq] for q in O. LettingM vary with the program to be analyzed is a
notational complication not considered in the preceding sections, but it is only a
notational complication. A formally correct treatment would add L and M to the
4-tuple that specifies a global data flow problem. We prefer to minimize notation by
letting the slow variation of L andM be tacit. Let e be the larger of IP[and the number
of pairs (i, j) such that i:= j occurs in a given program. The equivalence relation
corresponding to the best partition O for this program can then be found in time
O(IPle) by the method of [HSU77].

Because of technical complexities in comparing SOLVE with any low-level
method, we will only present one simple but instructive general comparison theorem.
Assume L has effective height H. Obvious generalizations of the method of Graham
and Wegman as presented in [GW76] allow it to be applied to any global flow problem
for a classical (as in Definition 5.3) program. (There is one nonobvious point, concern-
ing the entry node no. The assumption Eno 3_ is only needed in [GW76] when no has
inarcs. To avoid this assumption we assume instead that no lacks inarcs. A new entry
node can always be added to the graph if necessary.) For a classical program [GW76]
finds the same solution that SOLVE does when @ is defined in a way that is a little better
than @1. The same comparison holds for any semiclassical program, but a proof would
be much too tedious to appear here. For each U in M let

(7.6.1) U*) (if U is fast then U ^ 1 else U*),

192 BARRY K. ROSEN

so that U(*) can be found in flog2 H] + 3 steps when testing for _-> between U U and
U ^ 1 is also counted as "one" step. The (L, M) is rapid with

(7.6.2) V @Gw U V U(*),

which may have V @ GwU > V @1 U when U is fast.
THEOREM 7.7. Let (G, f, {entering r}, E) be a globalflow problem derivedfrom

a classical program r. Let IGw be the good solution found by the method of Graham and
Wegman and let/so be the good solution found by the method of Graham and Wegman
and let/so be the good solution found by SOLVE with @ow. Then Iow =/so.

Proof. To each node v in G, the method of [GW76] assigns a mapv inM such that
oEno I6wv, where Eno E (entering r) and no is either entering r or a new entry

node such that f(no, entering r) 1. A variable graph G’ and a variable assignment f’ of
members of M to arcs in G’ are initialized to G and f. In the statement of "Algorithm
A" [GW76, p. 184], G’ is denoted G and the computations on f’ are implicit. Details are
in the lemmas from [GW76, 4]. Algorithm A eventually reduces G’ to a graph with no
as the only node and Xvith no arcs. For v no, v 1.

For v #n0, v is determined when v is removed from G’ by the T or T
transformation. In both cases v has a unique inarc (u, v) just before its removal from
G’, and v =f’(u, v)o u. Of course u is not known at this time, but associating the
pair (u, f’(u, v)) with v will allow to be computed later in a pass over the nodes of G
that reverses the order in which they were removed from G’. The algorithm is such that
(u, v) can only appear in this way in G’ if u dominates v in G, and then f’(u, v) at the
time v is removed from G’ will summarize what is known about paths from u to v that
do not return to u before reaching v. Thus the intution behind f’(u, v) is much like that
behind fc in (3.7.2), but the pairs (u, v) that arise in [GW76] are governed by
properties of the entire control flow graph. Only in classical structured programming do
these properties relate to source level syntax in a simple way, as described below.

If a is one of the three kinds of loop statement, let head a be entering a if a is a
while statement and testing a if a is a stepped iteration statement. Otherwise a has the
form until. do/3 and head a is entering 3. The set T initially computed by Algorithm
/k is precisely the set of all head s for s a loop statement in r. The initial choice of h
from T is the head of an innermost loop, and subsequent computations of T just remove
the previous h value and choose the next one to be innermost among the remaining
members of T. For h head s and {/3} PARTs the corresponding set S in Algorithm
A includes h, testing s if s is an until or stepped iteration statement, and all nodes of
that are still in G’. There are no other nodes in S. The call on Reduceset(S, h) removes
all nodes in S-{h} except those with outarcs whose targets are not in S. If a is an until
statement then testing s persists after Reduceset(S, h), but otherwise all nodes in $ -{h}
have been removed. At this point the next loop to be processed is chosen. When all
loops have been processed in this way, G’ will be acyclic except for arcs from nodes to
themselves.

The above relation between Algorithm A and the syntax of r underlies the proof
that for all nodes v, where is defined by moving top-down through Y_,. If v is
in N0cr then F,(no, v). Otherwise v is in NoB for unique/3 in PARTs for unique
c, and for u =entering s is already available. Let q=Fo(entering, v) F,, (u, entering) ,. That v can be proved by annotating Algorithm A
with appropriate inductive assertions. This is tedious but not difficult. Each call on
LOCALSOLVE in SOLVE has ENTRy {entering y}, so Isov Eno follows from
the programming in 4. Finally, Iwv vEno Eno Isov. 71

COROLLARY 7.8. As in Theorem 7.7, the good solution I2 found by SOLVE with @2

MONOIDS FOR RAPID DATA FLOW ANALYSIS 193

has I6w <= I2.
Proof. If U1 <- U2 then V @6w U1 <- V @2 U2 and Ua @6w V-< U2 @z V. This

implies that interpreting a flow expression with @6w for @ yields a value that is _-< the
value obtained with @2 for @. Therefore/so--< Iz and so Iaw_-< Iz. l-q

8. Conclusions and open problems. The algebraic contexts of data flow problems
can be classified by the presence or absence of three properties: idempotence, dis-
tributivity, and rapidity. The last is a new concept that generalizes the fastness concept
from [GW76]. When conjoined with distributivity, a special case [KU76, Obs. 7] of
fastness implies quick convergence of an iterative data flow algorithm [KU76, Thm. 2].
The more complicated elimination algorithm of [GW76, 5] finds a good solution
quickly whenever the context is fast and the graph is reducible. (The algorithm is easily
extended to work for arbitrary rapid contexts.) See [Ta75] for a generalization of
[GW76] that handles nonreducible graphs and [Ta76] for additional results on the
complexity of iterative algorithms in distributive contexts.

Some contexts are not distributive, as when constant propagation uses compile
time arithmetic [KU76, p. 167] or when elaborate analyses of the ranges of values of
variables are exploited [Har77b]. One wants solutions better than fixpoints but cannot
hope for optimal solutions [KU77, Thm. 7]. Like [GW76], [Ta75], our algorithm
SOLVE finds a good solution: one at least as large as any fixpoint. In analyzing
"structured" programs that avoid escapes and jumps, SOLVE does as well as [GW76]
and sometimes better. By choosing the loop product @ in various ways, the implemen-
tor can trade time for sharpness of information. Roughly speaking, [GW76] cor-
responds to choices that emphasize speed. (Similarly for [Ta75].) For programs that fall
within classical structured programming or that use escapes but not jumps, the time
bounds for SOLVE and [GW76] are roughly similar. Because we did not assume [E[1
in I and because the basic heirarchy in 3 is symmetric regarding entrances and exits,
it is easy to adapt SOLVE to problems like the detection of dead variables, wherein
information flows backwards along arcs and is given initially for exit nodes at the time of
exit. Like most methods, that of [GW76] can be so adapted. The lack of entrance/exit
symmetry makes the task more difficult [GW76, pp. 199, 200] than with SOLVE.

Contrary to what might be expected from the trend in programming complexity
observed in going from [KU76] to [GW76] to [Ta75], SOLVE is a remarkably simple
algorithm. This combination of power and simplicity is obtained by using a hierarchical
representation of control flow instead of the usual large graph representing the entire
program after translation to a relatively low-level intermediate text. Low-level methods
solve a problem regardless of where it came from. High-level methods like SOLVE
remember and exploit the structure of the program that gives rise to a problem. We have
used structure expressed by the parse tree, but the general formulation of SOLVE and
its correctness/cost theorem in 4 are applicable to other hierarchies as well. High-
level analysis also leads directly to concise but informative data flow diagnostics at
source level [Ro77a, 6]. In addition to the compiling applications we have
emphasized, high-level representations of control flow are useful in denotational
semantics [Ro77a, 3] and program proving [La77, p. 140], [Ro76], [Ro77a, 7].

The problem of efficiently finding a flow cover for any global flow scheme with a
polycyclic graph has been left open here. Such schemes will be extremely rare in
structured programming, even with the escapes and occasional jumps of practical
structured programming. The problem is still worthwhile, and it could become urgent in
an application where the hierarchy does not come from the parse tree. The techniques
in [Ta75] may be useful here. Another open problem lacks a crisp mathematical
formulation but is quite important. Many small examples are known where [GW76] or

194 BARRY K. ROSEN

SOLVE finds a good solution better than any fixpoint. But real compilers deal with
programs, often very large ones, that are written to compute something rather than to
illustrate the pros and cons of data flow analysis methods. In ambitious compilers with
nondistributive data flow contexts, are these nonfixpoint solutions significantly better,
in that they permit more extensive optimization? The traditional data flow contexts are
idempotent as well as distributive. Data flow problems can be solved very quickly, but
the answers are less informative than with ambitious contexts. But are they significantly
less informative for optimization in the real world? Finally, we have assumed that U V
or U ^ V can be found from U and V in "one" step: members ofM can be represented
so as to make the actual time required to find the representation of U V or U ^ V
from representations of U and V be roughly constant. For some choices of M this
idealization is reasonable [GW76, p. 178], but for others the sizes of the representations
and hence the actual time will vary as U and V range over M. See [FKU75, II] for an
example where the time does vary. We conjecture that the actual members of M
encountered for each real world program will have representations of roughly constant
size, or at least that the variations will not invalidate comparisons between this paper
and others that share the same idealization, such as [GW76], [Ta75]. Such open
questions will not be answered simply YES/NO and will require a combination of
theoretical and experimental investigation.

Ambitious compilers are alert to the new opportunities that one optimization
creates for another, and they reserve their most elaborate and expensive optimizations
for selected areas of a program that are critical to its run time behavior. Such areas could
be determined by measuring the run time behavior after an unoptimized compilation
[KS73], [Si78]. (The alertness and selectivity properties are abstracted from scattered
hints in [AS78], [Ca77], [Har77a], [Har77b], [Kn74], [Lo77].) The theoretical literature
on data flow analysis was inspired by an earlier compiler organization [A169], [LM69],
in which analysis is followed by optimization in a fixed order that detects some new
opportunities but misses others. A uniform degree of optimization is applied
throughout. There is a fairly close relation between the total cost of data flow analysis in
earlier optimizing compilers and the partial cost that is usually estimated: given one
large global flow problem, how much does it cost to find a good solution to the problem?
In order to be fully alert, however, ambitious compilers need to update the results of
data flow analysis to reflect program changes. The updated information is only needed
for the relatively critical areas of the program that are still being optimized. For
noncritical areas (i.e. for most of the program, at least after the easiest initial optimiza-
tions) the compiler could save time by treating them as black boxes with known effects
on data flow information. Noncritical areas could be treated like simple statements
linking the selected critical areas. Specifically, consider a sequential compound state-
ment of the form [a;/3; y], possibly within a loop. Suppose a and y are critical, but not. Suppose a costly computation C appears in 3’ and has results that are unaffected by/.
(For example, C might use very high-level operators like sort (file) on (key) while/
might never update or rearrange the file to be sorted.) Finally, suppose that a is
optimized to a’ with the byproduct that C becomes available on exit from a’. Then C is
available on entrance to y, as is obvious to us because we think hierarchically, with/
considered as a single "statement" no matter how large it is. But a compiler using any of
the usual data flow analysis methods will require at least O(lfl [) time to propagate the
good news from the end of a’ to the beginning of y. (A partial exception is interval
analysis [AC76], where a hierarchy specially constructed from a low-level represen-
tation may happen to resemble the parse tree. See the proof of Theorem 7.7 or [Ro77a,
esp. p. 43] for more on the complicated relation between the usual low-level

MONOIDS FOR RAPID DATA FLOW ANALYSIS 195

representations and the source text.) With high-level analysis such intuitive phrases as
"the end of a"’ or "the beginning of 3," have precise meanings, even when the program
falls outside of classical structured programming. We can carry the good news from
leaving a’ to entering 3’ in one step by applying F(entering , leaving) to the
information that C is available. The advantages of high-level analysis for updating are
also sketched in [Ro77b, 12].

We have tried to minimize the total cost of data flow analysis in ambitious
compilers. Left open is the problem of estimating the cost of selective updating. The
explicit time bounds in this paper deal only with the usual partial cost of data flow
analysis: we solve flow problems singly without concern for selective updating. To study
total cost thoroughly one would have to study the uses of data flow information and the
sequencing of optimizations with the same mathematical thoroughness that is normally
applied to solving flow problems singly but to no other aspect of global optimization.
Babich and Jazayeri [BJ78b] suggest that total cost can be lowered by means of demand
analysis that answers data flow questions as they arise in the course of optimization. This
is selective updating pushed to its logical conclusion, and it deserves to be thoroughly
studied. Our algorithm can be rewritten in a demand-driven form. Studies of the usual
partial cost will continue to be important in the theory of data flow analysis, but the
mathematics of total cost for demand analysis should gradually assume a theoretical
prominence commensurate with its practical significance.

Acknowledgments. The author appreciates comments on the presentation by the
anonymous referees and by A. L. Brown, J. L. Carter, P. Cousot, P. C. Goldberg, H.
Holley, S. C. Johnson, J. D. Ullman, and M. N. Wegman.

REFERENCES

[A169] F. E. ALLEN, Program optimization, Ann. Rev. in Autom. Prog., 5 (1969), pp. 239-307.
[AC76] F. E. ALLEN AND J. COCKE, A program data flow analysis procedure, Comm. ACM, 19 (1976), pp.

137-147.
[AS78] M. A. AUSLANDER AND H. R. STRONG, Systematic recursion removal, Ibid., 21 (1978), pp.

127-134.
[BJ78a] W. A. BABICH AND M. JAZAYERI, The method of attributes]:or data flow analysis (Part I.

Exhaustive analysis), Acta Informatica, 10 (1978), pp. 245-264.
[BJ78b], The method of attributes for data flow analysis (Part II. Demand analysis), Ibid., 10 (1978),

pp. 265-272.
[Ca77] J. L. CARTER, A case study ofa new code generating techniquefor compilers, Comm. ACM, 20 (1977),

pp. 914-920.
[CK76] B. J. CORNELIUS AND G. H. KIRBY, A programming technique for recursive procedures, BIT, 16

(1976), pp. 125-132.
[CC77] P. COUSOT AND R. COUSOT, Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints, Proc. 4th ACM Symp. on Principles of
Programming Languages, January 1977, pp. 238-252.

[DDH72] O. J. DAHL, E. W. DIJKSTRA AND C. m. R. HOARE, Structured Programming, Academic Press,
London-New York, 1972.

[FKZ76] R. FARROW, K. W. KENNEDY AND L. ZUCCONI, Graph grammars and global program data flow
analysis, Proc. 17th IEEE Symp. on Foundations of Computer Science, October 1976, pp. 42-56.

[FKU75] A. FONG,J. KAM AND J. D. ULLMAN, Application oflattice algebra to loop optimization, Proc. 2nd
ACM Symp. on Principles of Programming Languages, January 1975, pp. 1-9.

[GRW77] H. GANZIGER, K. RIPKEN AND R. WILHELM, Automatic generation of optimizing multipass
compilers, Information Processing 77, B. Gilchrist, ed., North-Holland, Amsterdam, 1977, pp.
535-540.

[GW76] S. L. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analysis, J.
Assoc. Comput. Mach., 23 (1976), pp. 172-202.

196 BARRY K. ROSEN

[Han77] M. Z. HANANI, An optimal evaluation of Boolean expressions in an online query system, Comm.
ACM, 20 (1977), pp. 344-347.

[Har77a] W. H. HARRISON, A new strategy]:or code generationmthe general purpose optimizing compiler,
Proc. 4th ACM Symp. on Principles of Programming Languages, January 1977, pp. 29-37.

[Har77b],Compiler analysis ofthe value ranges for variables, IEEE Trans. on Software Engineering, 3
(1977), pp. 243-250.

[HSU77] H. B. HUNT, T. G. SZYMANSKI AND J. D. ULLMAN, Operations on sparse relations, Comm. ACM,
20 (1977), pp. 171-176.

[KU76] J. B. KAM AND J. D. ULLMAN, Global data flow analysis and iterative algorithms, J. Assoc. Comput.
Mach., 23 (1976), pp. 158-171.

[KU77],Monotone data flow analysis frameworks, Acta Informatica, 7 (1977), pp. 305-317.
[Ke75] K. W. KENNEDY, Node listings applied to data flow analysis, Proc. 2nd ACM Symp. on Principles of

Programming Languages, January 1975, pp. 10-21.
[Ki73] G. A. KILDALL, A unified approach to global program optimization, Proc. ACM Symp. on Principles

of Programming Languages, October 1973, pp. 194-206.
[Kn74] D. E. KNUTH, Structured programming with goto statements, Computing Surveys, 6 (1974), pp.

261-302.
[KS73] D. E. KNUTH AND F. R. STEVENSON, Optimal measurement points for program frequency counts,

BIT, 13 (1973),pp. 313-322.
[LA77] L. LAMPORT, Proving the correctness of multiprocess programs, IEEE Trans. on Software

Engineering, 3 (1977), pp. 125-143.
[LM75] H. F. LEDGARD AND M. MARCOTTY, A genealogy of control structures, Comm. ACM, 18 (1975),

pp. 629-639.
[Lo77] D. B. LOVEMAN, Program improvement by source to source transformation, J. Assoc. Comput. Mach.,

24 (1977), pp. 121-145.
[LM69] E. S. LOWRY AND C. W. MEDLOCK, Object code optimization, Comm. ACM, 12 (1969), pp. 13-22.
[MD76] P. MATETI AND N. DEO, On algorithms]:or enumerating all circuits ofa graph, this Journal, 5 (1976),

pp. 90-99.
[Ro76] B. K. ROSEN, Correctness ofparallelprograms: the Church-Rosser approach, Theoret. Computer Sci.,

2 (1976), pp. 183-207.
[Ro77a],Applications of high-level control flow, Proc. 4th ACM Symp. on Principles of Programming

Languages, January 1977, pp. 38-47.
[Ro77b],High-level data flow analysis, Comm. ACM, 20 (1977), pp. 712-724.
[Si78] R. L. SITES, Programming tools: statement counts and procedure timings, SIGPLAN Notices, 13 (12)

(December 1978), pp. 98-101.
[SMR75] H. R. STRONG, A. MAGGIOLO-SCHETTINI AND B. K. ROSEN, Recursion structure simplification,

this Journal, 4 (1975), pp. 307-320.
[TK76] K. TANIGUCHI AND T. KASAMI An O(n) algorithm]:or computing the set ofavailable expressions of

D-charts, Acta Informatica, 6 (1976), pp. 361-364.
[Ta75] R. E. TARJAN, Solving path problems on directed graphs, Rept. STAN-CS-75-528, Computer Sci.

Dept., Stanford U., November 1975.
[Ta76]., Iterative algorithms]:or global flow analysis, Rept. STAN-CS-76-547, Computer Sci. Dept.,

Stanford U., March 1976.
[U173] J. D. ULLMAN, Fast algorithms for the elimination of common subexpressions, Acta Informatica, 2

(1973), pp. 191-213.
[We75] B. WEGBREIT, Property extraction in well-founded property sets, IEEE Trans. on Software Engineer-

ing, (1975), pp. 270-285.
[WFSW75] D. S. WISE, D. P. FRIEDMAN, S. C. SHAPIRO AND M. WAND, Boolean valued loops, BIT, 15

(1975), pp. 431-451.
[Wu75] W. A. WULF, ET AL., The Design ofan Optimizing Compiler, American Elsevier, New York, 1975.
[Za74] C. T. ZAHN, A control statement]’or natural top-down structured programming, Lecture Notes in

Computer Sci., 19 (1974), pp. 170-180.
[ZB74] M. V. ZELKOWITZ AND W. G. BAIL, Optimization of structured programs, Software Practice and

Experience, 4 (1974), pp. 51-57.

SlAM J. COMPUT.
Vol. 9, No. 1, February 2980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0016 $01.00/0

FINDING THE VERTEX CONNECTIVITY OF GRAPHS*

ZVI GALIL?

Abstract. New implementation of known algorithms improve the running time of the best known
algorithms for finding the vertex connectivity of undirected and directed graphs.

Let G be a finite undirected graph, with no self-loops and no parallel edges with set
of vertices V and set of edges E. A set of vertices, $, is called an (a, b) vertex separator if
{a, b}

_
V- S and every path connecting a and b passes through at least one vertex of $.

Clearly, if a and b are connected by an edge, no (a, b) vertex separator exists. For a and
b in V letN (a, b) (N(a, b) when G is known from the context) be defined as follows" If
(a, b) e E then N(a, b) VI 1, otherwise N(a, b) is the least cardinality of an (a, b)

N (a, b)vertex separator The vertex connectivity of G, ko, is defined to be mina. v
The best algorithm for computing the vertex-connectivity of a given graph is due to

Even and Tarjan [4]. It is based on the following facts"
(1) ko can be computed by finding N(v, v’) for at most ko v’s and all v"s in V.
(2) If (a, b) e E, N(a, b) can be found by finding the maximum flow from a to b in a

network obtained from G by defining the capacity of each edge and each vertex except a
and b to be 1. Call such networks (with all edges and vertices of capacity 1) special
networks.

(3) Dinic’s algorithm [2] when applied to special networks takes at most O(] V] 1/2)
phases the cost of each of which is O([E[).

So to compute ko, we need to solve O(ko[V[) flow problems on special networks.
Therefore, Even and Tarjan’s method yields an algorithm with running time T1
O(kolE[]V]3/2). If we take into account that ko <= 2[EI/]V] [4] this bound and the
others below can be expressed in terms of lvI and IEI only.

In [3] Even solves the "easier" problem" Given an undirected graph G and an
integer k, find whether ko ->- k. We denote this problem by Po.k and Even’s solution to
Po,k by Ao,k.

First we review Ao,k" Let V {Vl,’’’, VlvI}, V] {Vl,""", Vj} and let (i be the
graph obtained from G by introducing a new vertex a and connecting it to all the
vertices in V..

Let

and

Ck min N(u, v),
l, V

/3k min N’(a, vi+ 1)
k<-i<lVl

Yk min (ak, ilk).

Even proved that ko => k iff Yk k (note that /3k <=k because N’k(a, Vk/l)<=k). He
computes 3’k by checking in at most k2 + VI flow problems if the value of the maximum
flow is at least k. In each flow problem he uses Ford and Fulkerson’s algorithm 15] to

* Received by the editors June 19, 1978.
t Department of Mathematical Sciences, Computer Science Division, Tel-Aviv University, Ramat-

Aviv, Tel-Aviv, Israel. This research was supported in part by the Israel Commission for Basic Research. Part
of this work was done while the author was visiting the Mathematical Sciences Department at the IBM T. J.
Watson Research Center, Yorktown Heights, New York.

197

198 zw aAm

look for at least k flow augmenting paths (f.a.p’s), and it takes O(IEI) steps to find one.
Therefore Even claims a time bound of O(k3]E] + kl V]]El). One can get slightly better
results by using Dinic’s algorithm to find whether the flow is at least k. The number of
phases in Dinic’s algorithm is O(min (k, vii/2)), and therefore Ac.k can be implemen-
ted in time

T(k)= O((k2+[V[)[E[min (IV[1/2, k))= O((max (k, V[1/2))2 min (IV] 1/2, k)[E[)

O(max (k, V[1/:Z)k[V]I/:Z[E[).

T(k) is better than Even’s bound if k is larger than [V[1/2. Although for k O([V[1/2)
Even’s bound and T(k) are the same, it is probably better to use Dinic’s algorithm
because it may find many f.a.p.’s in one phase. (In fact P.M.G. Apers [1] has recently
claimed that in the average the number of phases of Dinic’s algorithm is bounded by a
constant when applied to certain models of random networks with unit edge capacity.)

One can slightly simplify At,k" Let y, min (ak, fl’), where /3,
mink=i<lvl NC"(a, v.+l). One can show that kc --> k iff y, k. (Lemmas 1 and 2 in [3]
still hold with L replaced by Vk.) This modification of AC,k which we denote by AG,k is
somewhat simpler because the IV]- k flow problems for computing fig are on [V]- k
different graphs, while the flow problems for computing/3 , are on the same graph that is
the smallest of these]V[- k graphs.

Let T2- T(kc). One can use Ac,k to find kc" One way is to solve Pc,i, PC.E,’’"
until Pc.k+l yields a negative answer and kc k. The naive implementation of this way
yields an O(kcT2) algorithm. An alternative way is to do a "careful binary search" in
order to find kc, each time solving PC,k with a well chosen k. By a careful binary search
we mean the following procedure" first by doubling k find the smallest k which is a

power of 2 such that k <_- kc < 2k, and then find kc by a binary search on the interval
[k, 2k]. This approach yields an O(log kcT2)algorithm. Surprisingly, the first approach
can be implemented in time O(T2).

Our solution Bc for finding kc solves Pc, l, Pc,2 Assume we have solved Pc,k

and found that kc--> k. At this time we execute at most k Dinic’s algorithms that
compute Nc (u, v) for all pairs u, v in. Vk such that (u, v) is not an edge in G and V] k
Dinic’s algorithms that compute NCi(a, Vj/x), k <-j <]V[, and all flows are at least k.

In order to find quickly which flow problem to solve next we maintain a set of
queues {Qi}. At a certain time, the pair (a, b) is in Qi if at that time the flow in the
corresponding problem is i. It is obvious how to maintain these queues so that the
overhead is O([V[).

We now explain how to solve Pc,k/l after having solved Pc.k.
(i) We execute enough phases of Dinic’s algorithm in each of the flow problems

that correspond to the pairs (v, Vk /1) for v Vk such that (v, Vk/x) E until the flow in
each is at least k, and then put each pair in the corresponding queue.

(ii) Except the pair (a, Vk/l) that is deleted from Qk we execute a phase of Dinic’s
algorithm for the pairs (u, v) in Qk and then put them in the appropriate queues.

We say that a step succeeds if each phase in Dinic’s algorithm executed in it leads to
a flow increase. Step (i) must succeed by the correctness of Ac,k. If step (ii) succeeds,
then ak/l k / 1, and/3k/l k + 1 and thus kc -> k + 1. Also, as a.result we now have
the initial conditions for Pc,k+2. If step (ii) fails, then kc k, and we stop.

The total time bound is O(T2) since at most (kc + 1)2+1VI flow problems are
solved by Dinic’s algorithm. Note that unless k 0(I V[), T2 is always smaller than T1.
In particular when kc o(Ivl 1/) the factor of improvement is IV[1/2. When kc-
0 ([V[), Tz and T1 are comparable, but are no better than the time bound of the obvious

VERTEX CONNECTIVITY OF GRAPHS 199

algorithm that computes NC(u, v) for all u and v. Note also that by running the kelV]
Dinic’s algorithms that arise in Even and Tarjan’s algorithm in parallel (in a similar way
to Be), the bound T1 can be improved to r O(ke[V] IEI min (ke, V’[1/z)). Tz is still
smaller than T] unless ke O(1) or ke 0(1VI) in which case they are comparable. In
particular when ke 0(1 V[a/2) the factor of improvement is still IV] /2.

The price we pay is that we must use extra space. While Even and Tarjan’s
algorithm uses O(IE]) space because it solves each flow problem in turn, Be may solve
simultaneously 0(k +IV]) flow problems, and as a result the naive implementation of
Be uses O((k +]VI)]E[) space. M. Ben-Ari has pointed out to us that one can save
space by using the following trick: Maintain just one copy of G, and in each of the
k + V] flow problems represent an edge by a bit (1 if it is saturated, 0 otherwise). The
reader can verify that Be can be implemented with essentially no time loss and with
using O(IEI) registers to represent G plus O((k /IVI)IEI) bits.

One can.obtain a modified algorithm Bb from Ab,k in the same way Be is derived
from Ae,k. To compute fl , we need to solve VI- k flow problems on (k and when k is
increased by 1 we have to dd an edge to (k to get tk+1. So, to compute fl + we look
for an additional f.a.p, in VI- k 1 flow problems. Consequently, Be is simpler than
Bb because in the latter when k changes the graphs change, and we lose the advantage
of using Dinic’s algorithm for computing ilk. (Note that although Ab,k was simpler than
Ae,k, Be is simpler than B b).

The case of directed graphs is similar: Even and Tarjan’s algorithm can be slightly
modified to apply to directed graphs because facts 1)-3) still hold in this case [4]. Even’s
algorithm for solving Pe,k can also be modified as follows [3]: Let t; [(be tj with
all new edges directed from [to] the new vertex a and let

/k) where fl"k min
!_
[min GdT(a, U]+I), min NdT(v.+l, a)]min
k =j<l gl k_-<j<lgl

and ke _-> k iff k k. So it is obvious how to modify Ae,k (or (A’,k)) and Be so that they
apply to directed graphs.

Finally, we make some comments on the easier problem of finding edge connec-
tivity. Even and Tarjan’s algorithm [4] takes O(min (IEI /2, VI2/3)lVI IEI) time and
Schnorr’s algorithm [6] takes O(kl VI IEI) time, where k is the edge connectivity. The
two algorithms can be combined to yield an O(min (k, VI2/3)1W] IEI) algorithm.

Acknowledgment. I am grateful to S. Even, A. L. Rosenberg and C. P. Schnorr for
their helpful suggestions.

REFERENCES

[1] P. M. G. APERS, Average case analysis of Dinic-Karzanov network flow cilgo,rithm, Tech. Rep. HP
77-7-001, Dept. of Information Sciences, Univ. of California, Santa Cruz, June 1977.

[2] E. A. DINIC, Algorithm for solution of a problem of maximum flow in a network with power estimation,
Soviet Math. Dokl., 11 (1970), pp. 1277-1280.

[3] S. EVEN, An algorithm for determining whether the connectivity of a graph is at least k, this Journal, 4
(1975), pp. 393-396.

[4] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.

[5] L. R. FORD AND D. R. FULKERSON, Flow in Networks, Princeton Press, Princeton, NJ, 1962.
[6] C. P. SCHNORR, Multiterminal network flow and connectivity in unsymmetrical networks, Proc. 5th

Colloquium on Automata Languages and Programming (Udine, July 1978), Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp. 425-439.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0017 $01.00/0

VORONOI DIAGRAMS IN L1 (L) METRICS WITH 2-DIMENSIONAL
STORAGE APPLICATIONS*

D. T. LEEr AND C. K. WONG

Abstract. In this paper we study the problem of scheduling the read/write head movement to handle a
batch of n UO requests in a 2-dimensional secondary storage device in minimum time. Two models of storage
systems are assumed in which the access time of a record (being proportional to the "distance" between the
position of the record and that of the read/write head) is measured in terms of L1 and Lo metrics,
respectively. The scheduling problem, referred to as the Open Path Problem (OPP), is equivalent to finding a
shortest Hamiltonian path with a specified end point in a complete graph with n vertices. We first show in this
paper that there exists a natural isometry between the L1 and Loo metrics. Consequently, the existence of a
polynomial time algorithm for the OPP in one metric implies the existence of a polynomial time algorithm for
the same problem in the other metric. Based on a result by Garey, Graham and Johnson, it is easy to show that
the OPP in L1 (hence in L) metric is NP-complete. A heuristic to solve the OPP is therefore presented. It is
based on a geometric structure called the Voronoi diagram in L metric. An optimal (worst-case) algorithm of
time complexity O(n log nkfor constructing the diagram for a set of n points in a plane is described. Using this
diagram one can build a near-optimal path through each point either by constructing a minimum spanning
tree or by the closest insertion method.

Both algorithms are shown to take O(n log n) time which is the time for the construction of the diagram
and yield an approximate solution within a factor of 2. The bound is also shown to be tight in the worse case.
For the average case, simulation results show that the minimum spanning tree approach is better than the
closest insertion method. As expected, they are far better than the sequential one in which the request is
processed one at a time on the first-come-first-served basis.

Key words. L metric, L metric, L metric, Voronoi diagram, minimum spanning tree, closest insertion
method, nearest neighbor method, scheduling of read/write heads, 2-dimensional storage medium, NP-
completeness, near-optimal algorithm, approximate algorithm, worst-case analysis, average case per-
formance, open path problem, computational geometry, complexity of algorithm, Hamiltonian path,
traveling salesman problem

1. Introduction. A major technological trend for large database systems is the
introduction of mass storage. This allows computing centers to maintain on-line their
program libraries, less frequently used data files, backup copies, etc. under unified
system control.

In this paper, we consider two kinds of mass storage systems. Both of them are
2-dimensional arrays, which can be represented by the grid points (x, y) in a plane
where x, y are integers and 1 <= x, y =< N. A record is stored at each grid point. In the first
kind of system records are accessed by an electromechanical fetching mechanism,
known as the read/write head. The time for the read/write head to move from point
(u, v) to a point (x, y) is proportional to max(Ix- ul, lY-vl). The second kind is a
magnetic bubble device, where the time to move the read/write head from (u, v) to
(x, y) is measured by Ix ul + lY vl. (Section 2 contains a more detailed description.) It
is assumed in both systems that the read/write head, after accessing a record, will

* Received by the editors October 6, 1977, and in revised form April 4, 1979.
r Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,

Illinois 60201. The work of this author was supported in part by the National Science Foundation under Grant
MCS-76-17321 and by the Joint Service Electronics Programs under Contract DAABH07-72-C-0259. Part
of this work was done while the author was a summer visitor at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York from the University of Illinois at Champagne-Urbana.

t Department of Electrical Engineering and Computer Science, Columbia University, New York, New
York 10027, on leave from IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

2O0

VORONOI DIAGRAMS 201

remain at the position of the record until the next request is issued. In [12], [22], the first
kind of storage system is studied. It is assumed, however, that requests to records are
processed sequentially, i.e. one request at a time on the first-come-first-served basis.
The problem considered there is mainly the assignment of records to grid points based
on request probabilities so that the expected access time between consecutive requests
is minimized. In the present paper, we shall consider the accessing of batched requests,
i.e. we process a fixed number (a batch) of requests at a time. The advantage of batched
processing has been discussed thoroughly in 19] and is omitted here. (For a study of the
same problem, but in a linear storage, we refer to [23]).

Under this model, two problems arise immediately. First, for a given batch of
requests, how do we schedule the head movement so that it goes through the requested
records in minimum time (distance)? The distance is measured as the total length of the
path starting with the position of the last record processed in the previous batch, and
going through each requested record once. This problem is equivalent to finding a
shortest Hamiltonian path with a fixed starting point. The problem will be referred to as
the Open Path Problem (OPP). The second problem is the assignment problem of
records as in [12], [22] except that hatched processing is assumed. More specifically,
assume the request probabilities of the records are known. Let 7r be an assignment of
the records to the N grid points and let B be the batch size. Let A be an algorithm for
the OPP with the expected total distance DB(zr). The objective is to find r such that
DB(r) is minimized. (See also 4.) The second problem seems to be very difficult and
requires further research. We therefore assume in this paper that all request prob-
abilities are equal and the assignment problem disappears.

In 2, we shall define Lp metric, 1 _-< p -<_ o and we shall describe our basic models
in greater details and show that the two systems are equivalent as far as the compu-
tational complexity is concerned. Thus, only the second kind of system will be
considered further.

In practice, we cannot afford to spend too much time in solving the OPP.
Unfortunately, in 3 this problem is shown to be NP-complete in the sense of Cook [4]
and Karp [8], thus necessitating the.consideration of efficient heuristics. Our proposed
heuristics are based on the construction of Voronoi diagrams [15], [18] in L1 metric. For
other applications of the Voronoi diagram, see 18]. Using this diagram one can build a
near-optimal path through the given set of points either by constructing a minimum
spanning tree or by closest insertion method as discussed in [16]. We show that the
construction of the Voronoi diagram for n points in a plane in L (Loo) metric takes time
O(n log n). In [14], [18] an O(n log n) algorithm for constructing the Voronoi diagram
for n points in a plane in L2 (Euclidean) metric is presented. While our construction
follows the same basic approach as in [14], [18], it needs some nontrivial modifications.
Some new observations are also needed in order to achieve the bound O(n log n).

As a passing remark, we tried without success to construct Voronoi diagrams in Lp
metric, 3 <_- p <, in O(n log n) time. This is yet another example of the phenomenon
noted in [12], [20] that L1, L metrics are much harder to study than L2 metric, while Lp
metrics, 3 -< p < m, are just plain impossible. It should also be pointed out that even the
intuitively appealing heuristic of moving to the nearest neighbor takes O(n 2) time for a
general metric, It is not known if the construction time can be cut down to O(n log n) in
L1 (Loo) metric.

In 4, we consider expected performance of our heuristic. Unfortunately, no
significant analytic results have been obtained. Instead, we present simulation results
for various grid sizes and batch sizes.

202 D.T. LEE AND C. K. WONG

2. Basic models and equivalence of La and L metrics. We first define Lp
metrics. Given two points qi and qi in the plane R 2 with coordinates (xi, yi) and (x., yi),
respectively, the distance between them is defined as dp(qi, qi) ([xi- xil +]y/-
for p 1, 2, , and d(qi, qi)"-max ([xi- xil, lYi- Yi[). We shall denote the plane in
which L metric is the distance measure by R 2

p.

In the first kind of storage system, the records are accessed by an electromechanical
fetching mechanism which has equal and constant moving speeds along the x-axis and
y-axis. Suppose the fetching mechanism moves from point (xi, y) to point (xi, Yi); then
the path it takes consists of two segments" a straight line at 45 to the x-axis followed by
either a horizontal or a vertical line segment. The time it takes to complete the journey
is therefore proportional to max (]xi- x/],]y/- yi]). To see this, assume without loss of
generality that xi Yi_- O, Yi > xi > O. Then the path consists of two line segments" one
at 45 and of length /2x., the other being vertical and of length Yi xi. If the speed in the
horizontal and vertical directions is 1, then the diagonal movement has speed /. The
total distance is therefore (xi)//+ (Yi- xi) Yi. It therefore corresponds to the
metric.

The second kind of storage system is the magnetic bubble device described in [3].
Intuitively we have a square array of records, and the read/write head, which is a
magnetic sensor, can only move along the grid lines. For example, to move from (xi, yi)
to (xi, Yi) where xi < xi, Yi < Yi, the head moves first horizontally from (Xi, yi) to (Xi, Yi),
then vertically from (x., y/) to (Xi, Yi)" Thus, the total distance traveled is Ixi- xil + lYi-
Yil. It therefore corresponds to the L1 metric.

To show the equivalence of the L1 and L metrics, we define a linear mapping
from the plane Rz to the plane R1 as follows. For any point (x, y)E R2 we have
(x’, y’) E R where x’ (y + x)/2 and y’ (y x)/2. The distance between two points qi

and q. inR can be shown to equal the distance between their images q and q in R2.
Suppose the coordinates of q and qi are (xi, yi) and (xi, Yi) respectively and xi > xi, yi >
and xi-xi > Yi-Yi. The distance between q and q in R is given by dl(q, q)=
((y/-- yi)/2 + (Xj Xi)/2) + ((Xj Xi)/2 (Yi yi)/2) which is equal to xi xi doo(qi, qi).
Thus, f preserves the distance, i.e. it is an isometry. Figure 1 is an example which

y

q(.: {I, 2)

qi= (3,6)

X

qi :(4.5, 1.51

-qi (.5, 0.5

doo(qt, qj) 4 ’)=4dl (qi,’ qi

FIG. 1. Isometry between L1 andL metrics.

VORONOI DIAGRAMS 203

illustrates the isometry between these two metrics. The inverse mapping f-1 can also be
shown to be an isometry. As a result, the Open Path Problem (OPP) in the Loo metric is
polynomially equivalent to that in the L1 metric in the sense that any deterministic
polynomial time algorithm for the problem in the Lo metric can be applied to solve the
same problem in the L metric and vice versa. Throughout this paper, we therefore
consider only the L metric.

3. Approximation algorithms for the open path problem.
3.1. NP-completeness of the open path problem. In a recent paper [5], the

traveling salesman problem for points in R has been shown to be NP-complete. By a
slight modification of the proof it can be shown that the so-called "open" traveling
salesman problem, i.e. finding a shortest Hamiltonian path without specifying end
points, for points inR2, is also NP-complete [7]. To show that the OPP considered here
is NP-complete, we note first that it is obviously in NP. Since the open traveling
salesman problem is NP-complete, the existence of a polynomial time algorithm for this
problem (i.e. NP P) implies the same for the OPP. On the other hand, if the OPP has a
polynomial time algorithm, we can apply it n times to solve the open traveling salesman
problem in polynomial time by specifying in turn each point as a starting point and then
taking the shortest path of the n solutions.

Due to the difficulty of obtaining an optimal solution to this problem, we shall
present two approximation algorithms which run in O(n log n) time where n is the
number B of batched requests plus 1 and yield a solution within a factor of 2, of the
optimal.

3.2. Construction of Voronoi diagrams in L1 metric. We first introduce some
definitions and notations. Given two points qi and qj with coordinates (x, y) and (xj, y-),
respectively, in the plane R 2

o, the bisector Bo(q, q) of q and qi is the locus of points
equidistant from q and q, i.e. Bo(qi, qj) {rlr E.R2, do(r, q) do(r, q)}. In the Eucli-
dean plane, B2(q, q) is the perpendicular bisector of the line segment q--.. The bisectors
of q and q. in different metrics are shown in Fig. 2. If Ixi- xl > lYi- Yjl then B(qi, q) has
two vertical lines and one line segment (Fig. 2a). If]x-xl < ly- yl then B(qi, q) has
two horizontal lines and one line segment. (Fig. 2c). They are referred to as vertical and
horizontal bisectors respectively for short. In the case that Ix-xl lye-yl, B(q, qj)
has two unbounded regions (crossed area in Fig. 2b) and a line segment. Without
creating any significant difference inthe following discussion, we shall arbitrarily choose

B Bp B2 BI

B BBp Bo

qi Bp
Boo

Bp

p>2 p_>2 p>2

(a) (b) (c)

FIG. 2. Bisectors in different metrics.

204 D.T. LEE AND C. K. WONG

the vertical bisector (the thick lines) as Bl(q, q.). Note that the line segment portion of
Bl(qi, q) is of slope + 1.

We now define the generalized notion of Voronoi diagrams [15], [18] in Lp metrics.- the locus of points closer to qi than toGiven a set Z {q 1, q., , q,} of n points in R p,

qi,-denoted by ht,(qi, qi), is one of the "half-planes" determined by the bisector
2 dp(r, qi) < dp(r, q.)}. The locus of points closer, to qB,(qi, q), i.e. hp(qi, q) {r[r E R,

than to any other point, denoted by Vp(q) is thus given by Vp(q)= f’q#hp(qi, q), the
intersection of all the half-planes associated with q. The region Vp(q) is called the
Voronoi polygon (not necessarily bounded) associated with q. The entire set of regions
partitions the plane into n regions and is referred to as the Voronoi diagram V,() for
the set Z of points in L, metric. The points at which three or more bisectors meet are
called Voronoi points. We shall refer to the portion of a bisector between two Voronoi
points of a Voronoi polygon as an edge of the polygon. An edge of the Voronoi polygon
in Ll(Loo) metric can have at most three line segments. Since we shall deal only with the
L1 metric, unless specified otherwise, the subscript p denoting the metric will be
dropped without any confusion. The body HB(5) of the set 6e is defined as the smallest
rectangular region that contains the entire set Z. Since any two points of 6? define a
unique rectangle, the body of the set 6e can also be defined as HB(Z)=

{HB()] {q, r}, q, r E Z}, i.e. the union of the bodies of all its 2-subsets (subsets of
with cardinality 2.) In particular, ifZ {ql, q2} where ql, q2 lie on a line parallel to x-

or y-axis, the body HB(Z) is the line segment qiq2. Figure 3 shows the Voronoi diagram
for a set of 9 points, in which "A" denotes a Voronoi point, and the region within the
dashed rectangle is the body.

FIG. 3. Voronoi diagram and the body of set Z.

Several observations need to be made of the Voronoi diagram. First of all, the dual
of the diagram is a planar graph on the set of n points in which there is an edge between
qi andqi ifthe Voronoi polygons V(q) and V(qi) have a common edge, B(q, q.) as their
border. Since there is a one-to-one correspondence between an edge of the dual and a
bisector of the diagram, and a one-to-one correspondence between a region of the dual
and a Voronoi point, the number of bisectors and Voronoi points are both O(n). The
minimum spanning tree in L1 metric can be shown to be a subgraph of the dual of the
Voronoi diagram V(). The proof parallels that of showing the Euclidean minimum
spanning tree being embedded in the dual of V(ocf) [18] and hence is omitted here.
Secondly, the closest pair of points can be found in O(n) time if the diagram is available.
Since the proof that finding the closest pair of points in Lz metric requires tq (n log n)

VORONOI DIAGRAMS 205

time in the worst case [18] can be carried over to any metric, the construction of the
Voronoi diagram must take at least f(n log n) time. Thirdly, the diagram outside the
body of the set (see Fig. 3) consists only of vertical and horizontal lines. By the definition
that the body of the set 6e is the union of the bodies of all its 2-subsets and the fact that
the bisector B (q, r) of any two points q and r in is either vertical or horizontal, this
observation follows immediately. We note in passing that the last observation is
particularly important in the following discussions.

The Voronoi diagram in L1 metric (or metrics other than L2) is different from the
commonly known Voronoi diagram in Euclidean metric in that the Voronoi polygons in
the former diagram are not convex. Convexity plays an important role in the con-
structure of V2(6e) and makes the lower bound f(n log n) achievable [14], [18]. In the
procedure given in [18], the merge process can be accomplished in O(n) time by using
the property of convexity of the Voronoi polygon [14]. It is not apparent at all that the
same argument can be carried through directly if convexity is no longer available. That
is, the question of whether or not the Voronoi diagram in Lp metric can be constructed
in O(n log n) time still remains unsettled. We shall show in the following that the
Voronoi diagram in L1 metric can be constructed in O(n log n) time by using the
above-mentioned properties.

Construction of the Voronoi diagram in L1 metric. We shall use divide-and-
conquer technique to construct the Voronoi diagram V(). First of all, we presort the
data in ascending order of the x-coordinates (and y-coordinatesif x-coordinates are
equal) and number them 1 through n from left to right..Divide the set 6e into two
disjoint subsets L and R which contain the leftmost and the rightmost n/2 points
respectively. Recursively construct the Voronoi diagrams V(L) and V(R) for sets L
and R respectively. We shall merge them to form V(6e) by constructing a polygonal line
T with the property that any point to the left of the line is closer to some point in L and
any point to the right is closer to some point in R. After the line is constructed, the
portion of V(L) (and V(R)) that lies to the right (and left) of the line is discarded, and
the resultant V() is obtained. Note that the line T can be shown 17] to be monotone
with respect to y-axis, i.e. for any three points a, b and c on T, their y-coordinates satisfy
either y(a) -> y(b) _>- y(c) or y(a) <_- y(b) _-< y(c). If one can show that O(n) time suffices
to coristruct the line, then it follows by the recurrence relation T(n)= 2T(n/2)+ O(n)
that T(n)= O(n log n) is enough for the construction of the diagram V().

The example shown in Fig. 4 helps illustrate the idea of merging. Consider a set of
18 points numbered from 1 through 18. The left set is L {1, 2,. , 9} and right set is
R {10, , 18}. The Voronoi diagrams V(L) and V(R) are shown in short and long
dashed lines respectively. The merge process is described as follows. At first, the
rightmost point with the smallest index in the set L is found and is denoted by w. Since w
is the rightmost point in L, w is on the boundary of the body HB(L) and its associated
Voronoi polygon V(w) is unbounded. Consider the horizontal half-line emanating
from the point w to infinity in the same direction as the positive x-axis and denote it by
w. Take any point z on w. It is easy to verify that d (z, w) minuL d(z, u), which implies
that the entire half-line w is contained in the polygon V(w). Therefore V(w) is
unbounded.

The following process of determining the starting bisector is based on the property
that any line connecting two points which lie on different sides of T must intersect T.
The half-line w contains a point z whose x-coordinate is sufficiently large satisfying the
inequality d(z, w) > d(z, v) for some v in R. That is, z lies to the right of T. Since w is
known to lie to the le]t of T, an intersection point of the line segment - and T is

206 D.T. LEE AND C. K. WONG

FIG. 4. Example illustrating merging.

guaranteed to exist. Since T is a collection of bisectors B(u, v) for some u in L and v in
R, we shall look for the bisector B(w, s) for some s in R such that it intersects the line
segment -7. We first find the nearest neighbor r of w among the set R, i.e. d(w, r)=
minvRd(W, v), i.e., points 8 and 11, respectively, in Fig. 4. This step takes O(N) time. r
being the nearest neighbor ot w, its associated polygon V(r) contains w. We shall scan
the edges of V(r) to find which edge the line segment - intersects. Suppose
intersects an edge B(r, r’) at a point q. If q is found to lie to the right of T, i.e.
d(q, r)< d(q, w), then T intersects the line segment - at some point and B(w, r) is
our starting bisector. Otherwise we do the same by scanning the edges of V(r’) to find
which edge intersects -. Repeat the process until we either find an intersection point
which lies to the right of T or fail to find one. In either case, we shall use B (w, s) as our
starting bisector, where s is the point whose associated polygon V(s) is currently under
consideration. The time involved to find the starting bisector is O(N), for each edge of
V(R) is examined at most once. As shown in Fig. 4, B(8, 14) is the starting bisector, and
the construction of T shown in solid lines is carried out in two phases, upward and
downward, both using B (8, 14) as the starting bisector.

We remark here that this step for determining the starting bisector of the polygonal
line differs from that in constructing the line in L2 metric. In the latter, the starting
bisector is determined by the line segments created in forming the union of the convex
hulls of L and R [14], [18]. We first proceed by moving upward an imaginary point
following the direction of B (8, 11) until we meet B (8, 6) at which point, since is closer
to 6 than to 8, we follow the bisector B (6, 11) and so on. continue moving upward until
we go out of the body HB(S). The downward phase is similar.

We now show that the construction of T takes O(n) time. Before we proceed, we
make the following observation. At any time during the merge process, the imaginary
point always lies in two Voronoi polygons, one in V(L), the other in V(R). Whenever
a new Voronoi point is created, we will enter a new Voronoi polygon and follow a new
direction determined as follows. Suppose B(a, b) was the bisector that we followed in
constructing the polygonal line T and B(b, c) was the bisector that intersects B(a, b).
The new direction will be following B(a, c). As one can see, at each step we must
determine which edge, of the two Voronoi polygons where the imaginary point currently
lies, intersects the current polygonal line first. To do this we shall use the following

VORONOI DIAGRAMS 207

scanning scheme, i.e. scan the edges of the polygon in V(L) in counterclockwise
direction and those of the polygon in V(R) in clockwise direction [14]. This scheme is
crucial to make the construction of the polygonal line accomplishable in O(n) time and
will be justified later.

Note that when we are in the left (right) body and determining which edge of the
polygon in V(L) (V(R)) intersects the polygonal line, the only lines that can interfere
with the process are those horizontal lines emanating from the opposite body; and those
horizontal lines are in order of y-coordinate. Thus, during this process some horizontal
lines may be visited several times, but the total number of visits is proportional to the
number of Voronoi points created. This can be seen as follows. Referring to Fig. 4,
suppose we are at the point in the left body HB(L) and in Voronoi polygons V(6) and
V(ll). The bisector of V(6) which intersects the polygonal line T (i.e. B(6, 11)) is
determined by examining in counterclockwise fashion the two end points (Voronoi
points) of each bisector of the polygon until they lie on different sides of the line T. And
the intersecting point of T and the horizontal line from HB(R) (the double-dashed line
in Fig. 4) is also determined. A simple comparison decides the first intersecting point. A
new Voronoi point will be created and we will enter a new Voronoi polygon. The same
process is repeated. For example, t’ is created and we enter polygon V(9). If T meets an
edge of the polygon first and we still are in the left body HB(L), the same horizontal line
will be re-visited again in the next iteration. Thus, the number of times that the
horizontal line is visited is proportional to the number of Voronoi points created.

Since the polygonal line is monotone with respect to y-axis, at some point it will
either meet the horizontal line first or go out of the body HB(L). If T goes out of the
bodyHB(L) and enters the bodyHB(R), we have a similar situation as before except we
change "left" to "right" and "counterclockwise scan" to "clockwise scan". The case in
which T meets the horizontal line first needs more careful investigation. Recall that we
are at some point in the left body HB(L). Suppose that before we find the point t’
where T intersects the edge of the polygon, we are interfered with by a number of

r
B (.l,rl) T

FIG. 5. T meets the horizontal line first.

208 D.T. LEE AND C. K. WONG

horizontal lines emanating from HB(R). For detailed illustration see Fig. 5, where we
are following bisector B(ll, rl) and there are a number of interfering horizontal lines
n (rl, r2), n (rl, r3), etc.

We claim that some edge of the polygon in V(L) will be visited several times and
onceit is eliminated from consideration it will never be visited again, i.e. no backtrack-
ing is needed. In Fig. 5, we have the situation that T meets the horizontal line first.
Before we know that B(la, ra) meets B(r, r2) first, we have visited B(l, 12) once. At
point ta which is a new Voronoi point on T, we follow the new bisector B(l, rz). Again,
B(ll,/2) will.be revisited. Since both ends of B(l, 12) lie on the same side of B(la, rz), it is
eliminated. The next edge B(l,/3) is visited. Since B(Ix, r2) meets B(r2, r3) before it
meets B(ll,/3), another Voronoi point tz is created and a new bisector B(ll, r3) is
formed. As we can see, each time a new bisector is formed, it is on the left side of the
previous bisector, i.e. the portion of B(la, r3) in T is to the left of the bisector B(la, rz);
the portion of B(la, r2) in T is to the left of B(la, ra). Thus, the possible intersecting edge
of the polygon V(ll) moves in a counterclockwise direction. Therefore, no backtracking
is needed. To see this, it is sufficient to show that, for example, any point a on B(la, ra),
where y(a)> y(q), lies on the right side of the new bisector B(la, r2). Since d(a, r2)<
d(a, r) d(a, ll), it follows that a lies on the right side of B(l, r2). In other words, the
dotted-line portion of B(l, r) is on the left side of B(Ia, ra). A similar situation occurs if
we are in the right body except that the direction of the movement is clockwise. This also
justifies the scanning scheme mentioned above.

Thus, the number of edge visits in V(ll) is proportional to the number of edges of
V(l) and the number of Voronoi points created. Since the polygonal line is monotone
with respect to y-axis, it will eventually meet some edge of the polygon V(l) and enter a
new polygon. At the point, the same process is repeated. Thus, the total number of edge
visits in constructing the polygonal line is proportional to the number of bisectors plus
the number of Voronoi points on T. Since both of them are O(n), the time for the
construction of the polygonal line is O(n). This completes the description of the merge
process and verifies that the total construction time for the Voronoi diagram is
O(n log n), which is optimal in the worst-case sense.

3.3. Approximation algorithms.
3.3.1. Minimum spanning tree method. Recall that the MST is a subgraph of the

Voronoi dual. After we have constructed the Voronoi diagram, we can find its dual in
O(n) time. Now, we can apply any known minimum spanning tree algorithm [2], [21]
with time complexity no greater than O(n log n) to the dual graph. With the minimum
spanning tree obtained we can perform a depth-first search starting with the specified
point to visit each point once. By the triangle inequality the total path LENGTH must
be smaller than that of traversing the minimum spanning tree edges twice to visit all the
points. That is, if MST denotes the total length of the minimum spanning tree, we have
LENGTH<2. MST [18]. Since the optimal path is a spanning tree, the total length
OPT must be greater than MST. Thus, we have LENGTH< 2 OPT. In the worst case,
the approximate solution LENGTH may tend to twice the optimal solution. To see this,
suppose all the n points are colinear and thereare x points on one side of the specified
point and n x 1 points on the other side. Let the distances of the two extreme points
to the specified point be dl and d2 respectively. Suppose dl >> d2. The optimal solution
would be 2d2+d1, while the approximate solution could be 2d1+d2. Therefore
2dl + d2 2 OPT.

3.3.2. Closest insertion method. This approach is essentially the same as that given
in [16] except that we work on a path rather than a circuit. We start with a path

VORONOI DIAGRAMS 209

consisting of a single node, i.e. the specified starting point. At each step, we find the
uncontained node k closest to any contained node, i.e. find a minimum d(m, j) such that
m is in the path and j is not, and take k -j. Then we insert the node k to one of the
intervals (p, m) and (m, q) where p, q are in the path and (p, m), (m, q) are edges of the
path. Suppose the interval (p, m) is chosen. We replace edge (p, rn) by (p, k) and (k, m).
To implement this procedure, we shall use an AVL tree [13] as our data structure.
Whenever a node k is selected, those edges incident with k in the dual graph of the
Voronoi diagram will be inserted to the tree. Those edges that are already in the tree are
excluded. To find the node k, we search through the tree to find the minimum edge
(m,]) and delete it from the tree. If both m and j are already in the path, we keep
searching and deleting until an edge (rn,]) with an end point, say], not in the path is
found. Take k]. Since the total number of edges in the dual graph is O(n), we at most
perform O(n) insertions to and deletions from the AVL tree, and the time required is
O(n log n). This approximation algorithm also yields a solution within a factor of 2 [16]
and the bound is tight in the worst case, as described earlier.

4. Experimental resalts. In this section, we discuss the expected performance of
the approximation algorithms. As mentioned in 1, we assume that all of the N- grid
points are equally likely to be accessed. Suppose at time t, a batch A of B requests is
generated. (Note that multiple requests to a grid point are allowed.) Suppose the last

400

:550

:500

250

200

SQ, 15

/
SO, I0

. /’
/ MST, 5

,’/x o. C.I, I0
150 " "x/ MST, I0

,’’’" SQ, 5

C.I, 5

50
AP[" PROACH, BATCH SIZE

20 I
15 20 25 0 5 40

N (GRID SIZE)
F[o. 6. Graph o[numerical results.

210 D.T. LEE AND C. K. WONG

position of the head is 6e. (For 0, 6e is randomly chosen.) Let Ut denote the total
length of the Hamiltonian path with starting point 6e determined by the minimum
spanning tree method and W, denote that by the closest insertion method. Then
U=lim,_. (,Ut)/t is a measure of the expected performance of the minimum
spanning tree method. A similarly defined W has the same function for the closest
insertion method. Since U and W are very difficult to compute analytically, we resort to
simulation. We use a pseudo-random number generator to simulate the random
requests. Table 1 shows the outcomes for different values of N and B. The batched
processing is far better than the sequential one as indicated in Fig. 6. It also shows that
the minimum spanning tree approach is better than the closest insertion method.

TABLE

10

15

15 20 25 30 35 40

50.33
33.26
36.77

101.52
51.08
56.50

152.30
66.60
73.38

68.0J
46.06
50.04

131.66
72.62
75.78

197.53
90.62
94.87

83.83
56.10
63.19

167.22
88.19
92.88

249.72
111.56
118.41

98.83 113.41 135.12 Sequential
65.66 77.21 92.91 Minimum Spanning Tree
72.95 83.66 98.77 Closest Insertion

199.25 227.62 268.97 SQ
103.91 124.49 145.83 MST
111.63 128.75 150.96 C

298.95 342.37 399.11 SQ
13,.52 153.98 185.4’1 MST
131.93 163.74 190.06 C

5. Conclusions. This paper can be regarded as a contribution to the growing
studies of algorithms in L1 and Lo metrics. These metrics have many important
practical applications other than the ones mentioned here. For example, applications in
wire layout for printed circuit boards have been thoroughly discussed in [1], [5], [6].

One useful observation made in the present paper is the computational
equivalence of L andL metrics. Based on this, only one of these two metrics needs to
be studied. Depending on specific applications, one of them may prove to be more
convenient than the other to study.

We have discussed two O(n log n) methods to construct open Hamiltonian paths
with a fixed starting point. Another possible and more intuitive approximation
algorithm, for example, is the nearest neighbor method [16] which runs in O(rt 2) time
for a general metric. Whether or not the Voronoi diagram would help cut down the time
complexity is not known. For smaller batch size, this approach might be better than
those studied above as far as the time complexity is concerned.

Finally, as to the expected performance, mentioned in 4, we conjecture that the
methods proposed by Karp [9], [10], [11] may well be applicable to this problem.

Acknowledgment. The authors wish to thank Professors F. P. Preparata and Jon
Bentley for helpful discussions.

REFERENCES

[1] A. V. AHO, M. R. GAREY AND F. K. HWANG, Rectilinear Steiner trees" Efficient special case
algorithms, Networks, 7 (1976), pp. 37-58.

VORONOI DIAGRAMS 211

[2] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] A. K. CHANDRA, H. CHANG AND C. K. WONG, 2-dimensional fast access to contiguous data in
2-dimensional magnetic bubble memories, U.S. Patent Pending.

[4] S. A. COOK, The Complexity of theorem proving procedure, Proc. 3rd Annual ACM Symposium on
Theory of Computing, May 1971, pp. 151-158.

[5] M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON, Some NP-complete geometric problems, Proc. 8th
Annual ACM Symposium on Theory of Computing, May 1976, pp. 10-22.

[6] M. R. GAREY AND D. S. JOHNSON, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl.
Math., 32 (1977), pp. 826-834.

[7] D. S. JOHNSON, private communication.
[8] R.M. KARP, Reducibility amongcombinatorialproblems, Complexity of Computer Computations, R. E.

Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[9] ., On the computational complexity of combinatorial problems, Networks, 5 (1975), pp. 45-48.

[10] The fast approximation solution of hard combinatorial problems, Proc. 6th Southeastern
Conference on Combinatories, Graph Theory and Computing, Utilitas Mathematica, Winnipeg,
1975, pp. 15-31.

11] ., The probabilistic analysis ofsome combinatorial search algorithms, Algorithms and Complexity:
New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York 1976, pp. 1-19.

[12] R. M. KARP, A. C. MCKELLAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional
placement problem, this Journal, 4 (1975), pp. 271-286.

[13] D. E. KNUTH, The Art of Computer Programming Vol. 3: Sorting and Search, Addison-Wesley,
Reading, MA, 1973.

[14] D.T. LEE, On finding K-nearestneighbors in the plane, Coordinated Science Laboratory Report R-728,
University of Illinois, Urbana, IL, May 1976.

[15] C. A. ROGERS, Packing and Covering, Cambridge University Press, London, 1964.
[16] D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II, An analysis of several heuristics]or the

traveling salesman problem, this Journal, 6 (1977), pp. 563-581.
17] M. I. SHAMOS, Problems in Computational Geometry, Springer-Verlag, New York, to be published.
[18] M. I. SHAMOS AND D. HOEY, Closest-point problems, Proc. 16th Annual Symposium on Foundations

of Computer Science, Oct. 1975, pp. 151-162.
19] B. SHNEIDERMAN AND V. GOODMAN, Batched searching ofsequential and tree structured files, ACM

Trans. Database Sys., (1976), pp. 268-275.
[20] C. K. WONG AND K. C. CHU, Average distances in Lp disks, SIAM Rev., 19 (1977), pp. 320-324.
[21] A. YAO, An O(]EI log log IV[) algorithm for finding minimum spanning trees, Information Processing

Lett., Sept. 1975, pp. 21-23.
[22] P. C. YUE AND C. K. WONG, Near-optimal heuristics for the 2-dimensional storage assignmentproblem,

International J. comput. Information Sci., 4 (1975), pp. 281-294.
[23] J. R. BITNER AND C. K. WONG, Optimal and near-optimal scheduling algorithmsfor hatchedprocessing

in linear storage, this Journal, 8 (1979), pp. 479-499.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0901-0019 $01.00/0

ON THE COMPLEXITY OF CANONICAL LABELING
OF STRONGLY REGULAR GRAPHS*

LSZL6 BABAI

Abstract. We prove that a canonical labeling can be assigned to the n vertices of a strongly regular graph
by an algorithm of o(exp (2nl/21og n)) running time (in the worst case). This complexity, though still not

properly subexponential, is much better than O(2n).

Key words, isomorphism testing, canonical labeling, strongly regular graph, graph, worst-case analysis,
performance bounds.

1. Introduction. A graph F is strongly regular if each vertex of F has the same
valence and the number of common neighbours of any two vertices v, w depends only
on whether v and w are adjacent or not. Strongly regular graphs are recognized as hard
cases for isomorphism testing algorithms (cf. [3], [4], [5], [6]). Though a great number of
isomorphism testing algorithms has been published, no theoretical estimate of their
worst case running time seems to be available, which would be essentially better than
exp (cn log n). The aim of the present note is to show that well-known simple ideas
result in an algorithm whose worst case running time is o(exp (2/log2 n)). In
complexity theory it is reasonable to call the growth of exp (n) exponential for any
a > 0 (from the point of view of polynomial equivalence, exp (n) and exp (n) are the
same). In this sense, our estimate is still exponential; nevertheless, it is much better than
O(2n), say.

We stress that our aim is to deal with the worst case and not with a good average
performance. Therefore, the algorithm cannot be used for practice: it will need much
time even in cases when more sophisticated algorithms work promptly. One might ask
what would be the purpose of an algorithm like this. Let me answer this question. Such a
theoretical estimate may serve as a test ofalgorithms: if a sophisticated algorithm is not
faster (in worst case) than our straightforward algorithm, then we may well guess that
the complicated procedures cover lack of essential ideas.

Another possible use of this note is that Theorem 3.1 on which our estimate is
based might be applicable to other similar algorithms, too.

We remark that there exists an algorithm testing graph isomorphism within linear
expected time 1]. (Actually, a canonical labeling is constructed in linear expected time.)

2. Preliminaries. The algorithm. For F a graph, VF denotes its vertex set. Let K
be a class of graphs having the same vertex set V. We assume that K is closed under
isomorphisms, i.e. if F1 and F2 are isomorphic graphs with VF1 VF2 V, then F K
implies F2 K. Let VI n.

DEFINITION 2.1. By a canonical labeling of the class K we mean a function L
whose domain is K such that

(i) L(F) is a labeling of F (i.e. a bijection V {1,..., n}) for any F K;
(ii) If F1 and F2 belong to K, then they are isomorphic (if and) only if the map

L(F2)- L(F1): V V is an isomorphism F F2.
Clearly, a canonical labeling can be used to decide whether the graphs F and F2 are

isomorphic, provided at least one of them belongs to K. Our aim is to construct a
canonical labeling, defined on the class K of strongly regular graphs. Given F K, the
labeling L(F) will be computed within o(exp (2/log2 n)) time.

* Received by the editors May 14, 1978, and in revised form August 16, 1978.
t Department of Algebra, E6tv6s L. University, Budapest, Hungary.

212

LABELING OF STRONGLY REGULAR GRAPHS 213

2.2. The graph pKq, consisting of p disjoint complete graphs is strongly regular. In
all other strongly regular graphs, the relation "xRy iff x y or x and y are adjacent" is
not an equivalence relation. Similarly, for all strongly regular graphs but the comple-
ment of the graphs pKq, the relation "xR’y iff x y or x and y are nonadjacent" is not an
equivalence relation.

One can recognize and assign canonical orderings to the graphs pKq and their
complements by a straightforward linear time (=O(n2)) algorithm. Henceforth we
exclude these graphs when using the term "strongly regular graph."

2.3. For F a graph, F(v) denotes the set of neighbours of v e VF. (v F(v).)
DV.FINITION. A set S VF distinguishes the vertices v, w VF if v w and either

v e S or w e S or F(v) f-) S F(w) f’) S. The set F(v) S is the trace of v in S. We call S a
distinguishing set if S distinguishes each pair of distinct vertices.

Note that if $1 c $2 C VF and $1 is a distinguishing set then so is $2.
ASSUMPTION 2.4. The graph F has a distinguishing set of a given cardinality s.
We describe an algorithm to canonically label the class of graphs F satisfying this

assumption, where VF V, VI n.

2.5. The algorithm. We generate the ordered s-tuples of distinct vertices X.
’’, xs (] 1, 2, (s)s!) by some backtrack procedure. Let Si {x?),

x J)}. Given Xi, we order the remaining n s vertices in the lexicographic order of their
(i)traces on X" we set v < w if for the smallest such that xi F(v) AF(w), this xi

belongs to F(v). (A stands for symmetric difference.) If this ordering is not linear (i.e., S
is not distinguishing), we reject X. and continue with X./I. If Si is a distinguishing set, we
obtain a labeling (x (f , x of the vertices of F, and this yields an adjacency matrix

M.. We select the lexicographically first one among all these adjacency matrices (this
requires an elementwise comparison of two matrices at each /" such that S. is a
distinguishing set). We declare the corresponding labelling canonical. (It clearly
satisfies our definition of canonicity.)

The space required by the algorithm is O(n2). We estimate the running time. Given
X, the labeling of VF is found (or X. is rejected) within O(sn 2) time. The comparison of
the adjacency matrix M. with M., (the lexicographically first among Mk, k < j) takes n 2

time. Finding X//I requires O(n) time.
Summarizing, running time is bounded by

(1) Csn2(’)s! o(nS+3).

2.6. Application to strongly regular graphs. By Theorem 3.1 (below), Assump-
tion 2.4 holds for strongly regular graphs of order n > no with s [2/ log n]-3
(cf. 2.2). Hence the running time of our algorithm is bounded by

o(n
24-glg ")= o(exp (2410g2 n).

3. Distinguishing sets. In this section we prove the existence of distinguishing sets
of cardinality 2x/nlog n in strongly regular graphs of order n. We use a probabilistic
argument.

THEOREM 3.1. Let F be a strongly regular graph which is neither the union ofdisjoint
complete graphs nor the complement of such a graph. Let [VFI n > no.
Then F has a distinguishing set of cardinality /2/nlog nJ -3([xJ denotes the greatest
integer not exceeding x.)

LEMMA. 3.2. Let n, k be positive integers. Given a graph F of order n, assume that

It(v) ar(w)l_->k

214 Aszi5 BABAI

]’or any pair (v, w) ofdistinct vertices. Then, F has a distinguishing set S c Vofcardinality
IS[-<- [2n log n/(k + 2)] provided k >4log n. (Ix] denotes the least integer not smaller
than x.)

Pro@ Let us fix an integer s and choose a subset $ c V of cardinality s at random,
each subset having probability 1/(7) to be chosen. For v, w e V, v w, let A(v, w)
denote the event that $ does not distinguish v and w. Let P(v, w) denote the probability
of this event. Clearly, A(v, w) is equivalent to the event that

hence

s ({v, w} U (r(v) ar(w))) (R),

P(v, w) <=
s s

Let N denote the number of pairs (v, w) such that A(v, w) holds. The expected
value of N is

W(N)= P(v,w)<(n)(n-k)/(n)
fo.wt 2 s s

Assume now that

n

s <()"
Then E(N) < 1, hence Prob (N 0) > 0. But N 0 holds iff $ is a distinguishing set. This
proves that (1) implies the existence of a distinguishing set of size s.

Let now s->_2n log n/(k + 2). All we have to prove is that (1) holds in this case.
Using the condition k > 4 log n we infer

2 log n -log 2 < sk/n,

hence

<(exp(k/n))< 1+-+
k

< 1+
2 n i- n -k-i s s

Remark. This way we have actually proved that almost all s-subsets of V are
distinguishing. There is another way to prove Lemma 3.2, using Lovfisz’s estimate on
the efficiency of the greedy cover algorithm [2]. As a matter of fact, let us consider the
set-system (hypergraph) {F(v) F(w): v, w V, v w}. A fractional cover of this
hypergraph is obtained by assigning the weight 1 /k to every vertex, hence the optimum
fractional cover is r* n/k. Now, by Lovsz’s estimate, the size s of any cover obtained
by the greedy cover algorithm (see [2]) does not exceed r*(1 + log D), D being the
maximum degree in this hypergraph. D N () in our case, hence s N n(1 + 2 log n)/k, and
this is essentially the same as 3.2.

3.3 In order to formulate the second lemma, we need some definitions. A
hypergraph is a pair H V, F) where V is a nonempty set (the set of vertices) and F is a
family of subsets of V (the edges of H). If F we say H is empty. H is r-uniform if
[El r for any E F. The degree of a vertex is the number of edges containing it. H is
regular if every vertex of H has the same degree.

LMMA. 3.4. Let 1 d < r < n be integers, vI n and H (V,F) a nonempty
regular r-uni[orm hypergraph such that [E F[d for any E, F F. Then r> nd.

Pro@ Let denote the degree of the vertices in H. So, tn [Fir. Let us select an

LABELING OF STRONGLY REGULAR GRAPHS 215

edge E. Counting those pairs (v,/7) satisfying v E, F F, F E and v F in two ways,
we obtain

r(t- 1)=>(IFI 1)d =/{tn lid.\
r

Rearranging this inequality, we infer

t(r2- nd) >= r(r- d).

The right side being positive, r2> nd follows.
LEMMA 3.5. Let F be a strongly regular graph of order n. Then

It(v) ar(w)l >,/- 1

for any v, w e VF. (We assume that neither F nor its complement is the disjoint union of
complete grapks.)

Proof. Let r IF(v)l. As the complement of a strongly regular graph is strongly
regular, we may assume r < n/2. On the other hand, r _-> /n 1 since the diameter of F
is 2.

Let IF(v) fq r(w)l dx or d2 according to whether v and w are adjacent or not. For
v, w, z VF we have

r’(v)- r(w)
_
(r(v)- r(z)) 0 (r(z)- r(w)).

If v and w are nonadjacent and z is adjacent to both, we have

Ir(v)-r(w)l=r-d;
and

Hence

(2)

It(v)- r(z)l It(z)- r(w)l r- all.

r-d2<=2(r-dl).

We obtain analogously

(3) r- dl <- 2(r- dz).

Note that in deriving these inequalities we used that F is neither the union of
disjoint complete graphs nor the complement of such a graph (el. 2.2).

Let d min (dl, d2). We have (using (2) and (3)) for any v, w VF(v w)

Iv(v) ar(w)l 2(Ir(v)l-lr(v)rr(w)l)= 2(r-d)>=r-d.

If d 0, we are done since r => /n i > qn- 1. If d -> 1, we may apply Lemma 3.4
to the nonempty r-uniform hypergraph VF, F(v)’ v VF}. We infer r > Fnd, hence

r d > /--d- d /(/-/ => ",/- 1.

(We used that 1 =< d < n/2, the latter inequality being a consequence of our assumption
r < n/2.) El

3.6. Proot ot the theorem. By the lemma of 3.5, F satisfies the assumptions of
Lemma 3.2 with k =/-1. We infer by 3.2 that F has a distinguishing set 5’
of cardinality Isl <-- 1 + 2n log nl(,/-+ 1)<2x/log n -4 (if n =>25). (The condition
k > 4 log n also holds if n > 800.) 71

216 L/SZLO BABAI

Note added in proof. Gary L. Miller proves [7] that isomorphism testing can be
performed in exp (log2 n) time for certain classes of strongly regular graphs, related to
Latin squares.

REFERENCES

[I L. BABAI AND L. KUERA, Graph canonization with linear expected time, in preparation.
[2] L. LovAsz, On the ratio ofoptimal integral andfractional cover, Discrete Math., 13 (1975), pp. 383-390.
[3] R. MATHON, Sample graphs for graph isomorphism testing, Proc. 9th Southeastern Conf. on Comb.,

Graph Theory and Computing (1978), to appear.
[4] A. J. L. PAULUS, Conference matrices and graphs of order 26, Tech. rept., Dept. Math., Technological

University, Eindhoven, 1973.
[5] R. C. READ AND D. G. CORNEIL, The graph isomorphism disease, J. Graph Theory, (1977), pp.

339-363.
[6] B. WEISFEILER, On construction and identification of graphs, Springer Lecture N

No. 558, Springer-Verlag, Heidelberg, 1976.
[7] G. L. MILLER, On the nlgn isomorphism technique, to appear.

SIAM J. COMPUT.
Vol. 9, No. 1, February 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0901-0018 $01.00/0

CORRIGENDUM. A NEW REPRESENTATION OF THE
NUMBERS FOR FAST EASY ARITHMETIC*

RATIONAL

E. C. R. HEHNERt AND R. N. S. HORSPOOLt

p. 125, line -5, change "0 <di < b" to "0 -< di < b".
p. 126, line +6, change "22004" to "27004".
p. 127, line 29, change "0’-3 6’7" to "0’-3’ 6’7".
p. 127, line-7, change "127" to "12’7".
p. 127, line-3, change "9’6" to "9’3".

We were informed by D. Knuth of Hensel’s and Krishnamurthy’s work just in time to
introduce a reference into the journal paper. More reference is due, and given in our
later paper "Exact Arithmetic using a Variable-Length P-adic Representation", Pro-
ceedings of 4th Symposium on Computer Arithmetic, IEEE, Santa Monica, October
1978.

* This Journal, 8 (1979), pp. 124-134. Received by the editors July 12, 1979.

" Computer Systems Research Group, University of Toronto, Toronto, Ontario, Canada M5S 1A1.
School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6.

217

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0902-0001 $01.00/0

A MULTI-TERMINAL MINIMUM CUT ALGORITHM FOR PLANAR
GRAPHS*

YOSSI SHILOACH"

Abstract. Given an undirected planar graph with n vertices, we present an O((n log n)2) algorithm
which finds the minimum cuts between all the pairs of vertices.

Key words, algorithm, minimum cut, multi-terminal, planar graphs

1. Introduction. Through this paper, G (V, E) is an undirected, connected
planar graph and V[n.

Given s, V, an (s, t)-cut, Cst, is a set of edges, the deletion of which disconnects
s and t. ICst[is the size of the cut. An (s, t)-cut is a minimum (s, t)-cut if its size is not
greater than that of any other (s, t)-cut.

For any s, V, a minimum (s, t)-cut can be (and usually is) found by regarding G
as a flow network in which all the capacities are 1 and solving a max flow problem from s
to (or vice-versa). Finding a minimum cut in a general graph can be done in
O(n2/3(n + m)), (where m IEI), as shown in [1]. This amounts to O(n 5/3) as far as
planar graphs are concerned. Thus, if we employ Gomory and Hu’s multi-terminal
minimum-cutalgorithm given in [2], we obtain an O(n 8/3) algorithm for computing all
the minimum cuts in an undirected planar graph. However, recent results which are
given in [3] enable us to reduce the time to O((n log n)2). Note that this new algorithm
has an average of only O((log n)2) for finding one minimum cut.

Given a planar networkN (G; c; s, t) (directed or not) and a positive number k, it
is shown in [3] that a flow of value k from s to can be found if it exists, in time of
O(d,. n log n) where dt is the distance from s to t, i.e., the length of a shortest (s, t)
path. The same algorithm also indicates if such a flow does not exist. (The algorithm is
designed for directed networks but can be easily applied to undirected networks by
regarding each undirected edge as a pair of directed edges in opposite directions.)
Following the lines of this algorithm, it is easy to verify that it can be implemented in
O(dt n) time if all the capacities are 1. In this case, the value of a minimum cut is an
integer, not greater than n 1. Thus we can apply the same algorithm [log n times by
performing a binary search on the set {0, 1,..., n- 1} to yield the right value of a
minimum cut.

This result is summarized in the following lemma.
LEMMA 1.1. Given a planar (directed or not) graph and s, V, we can find a

minimum (s, t)-cut within O(dt n log n) time.

2. How to implement the G-H algorithm efficiently. In their famous multi-
terminal minimum cut algorithm, (denoted here as the G-Halgorithm), R. E. Gomory
and T. C. Hu show that a weighted tree T can be constructed by computing just n 1
max-flow problems, such that the minimum cut between each pair of vertices can be
obtained in O(n) time, by using the information stored in T. Thus, constructing T is the
dominant part in the G-H algorithm.

Received by the editors May 2, 1978.
t Computer Science Department, Stanford University, Stanford, California. Now’ at IBM Scientific

Center, Technion City, Haifa, Israel. This research was supported by a Chaim Weizmann Postdoctoral

Fellowship and by National Science Foundation under Grant MCS75-22870.

219

220 YOSSI SHILOACH

In this paper we show that the sources, Sl,’",sn-1, and the terminals,
h,’" ", tn-1, of these n- 1 max-flow problems can be chosen close enough to yield:

(2.1) X d,,, O(n log n).
i=1

Equation (2.1) combined with Lemma 1.1 yield the time of O((n log n)z) for the whole
algorithm.

3. The G-H algorithm preserves planarity. During the G-H algorithm, sets of
vertices are contracted into one node and it is not very clear that planarity is preserved.
This will be proved in this section and will enable us to use the result of Lemma 1.1 for
all the graphs which we encounter during the algorithm. We shall use the word "nodes"
to denote super-vertices which are formed by contracting several vertices of the original
graph. "Vertices" will always denote vertices of the original graph. We will sometimes
identify a node with the set of vertices that it represents, and use the same character for
both.

Though we assume that the reader is familiar with the G-H algorithm, we are going
to describe its kth step in detail. The reason for that is that the same notations and
terminology will be used several times later.

The input to the kth step is a weighted tree T= (U, Ak, w), where U=
{U,. ., U}. The U ’s are mutually disjoint subsets of V and their union is V. (Note
that T has exactly k nodes.) w’ A --> Z/ assigns a positive integer to each edge of T.
Step k (k_-<n-1).

1 Choose a node U such that]U[=> 2. Without loss of generality we assume that
U is chosen.

2. Let T,. , T denote the connected components which are obtained from T
if U is removed.

3 LetS.={vVlvUk Ukand T},] 1,’’ ", r.
4. Let Gk (Vk, Ek) be the graph which is obtained from G by contracting each

of the S’s into a single node. (G k may have multiple edges.)
5. Choose two vertices s, Ukk. (Note that s, Vk too.) Solve one max-flow

problem from s to in Gk, and find a set C Vk such that s C, t Vk C
and the (s, t)-cut determined by C is a minimum (s, t)-cut having size of c.

k +1 t where6 Let Tk+l (Uk+l, Ak+l, w k+l) be given by: Uk+l {Ulk+l, Ukk+l"k+l k+l (q .U/k+l U/k for i= 1, ., k- 1, Uk U (q C and Uk/l U
and w k+l" If e=(U, U)and i,]# k, then e becomes (U+1, U+l)and
retains its weight. If e (U, Uk) and U-S C then e transforms into

k+(U+1 U+1). If S , then e becomes (U+1 Uk+). In both cases it retains
its weight. A new edge (U+1 r rk+l,- +1 is added with a weight of c.

The initial tree is TI=(U A1, w 1) where UI={U}={V} and A1= w1=
Thus GI= G. T T is the output tree of the G-H algorithm.

THEOREM 3.1. Gk is planar for k 1, , n 1.
Proof. Gl= G and therefore planar. In the following we will show that if G is

planar for =< k, so is Gk+l.
The next Lernma is a well-known one.
LEMMA 3.1.1. IfG V, E) is planar and (u, v) E, then the contraction o]: u and v

into a single node yields a planar graph.

Contracting several vertices into one node usually yields multiple edges. Thus, we allow multiple edges
to occur. Lemma 1.1 still holds as long as the number of edges remains O(n). Since these edges are original
edges of the graph, their number cannot exceed O(n).

A MULTI-TERMINAL MINIMUM CUT ALGORITHM 221

LEMMA 3.1.2. IfG V, E) is planar and G’ V’, E’) is a connected subgraph of
G, then the contraction of V’ into a single node yields a planar graph.

This lemma can be easily proved by using the previous one as a basis for induction
on [V’[and for the inductive step as well.

DEFINITION. In Step k above, we transformed Tk into Tk/l by splitting Ukk into
UkTM and U+1

+1. This operation will be denoted as splitting a given node.
U+ U+ +LEMMA 3 1.3. If Uk is split in Step k into U+1 and k+l and if k+l U 1) is

split in the next step, then Gk+ can be obtained from Gk by contracting the vertices and
nodes of C (C) into a single node.

Proof. The connected components of Tk+ which are obtained by removing U,++
and its incident edges, remain the same, if they belong to C. Those which belong to C,
together with U+, form a new connected component (of TTM) that consists exactly of
the vertices of C (see Fig. 1). Thus Gk+l can be obtained from Gk by contracting the
nodes and vertices of C into a single node. The corresponding assertion in the
parentheses is proved in the same way. [3

Let Gk(c) denote the’subgraph of Gk which is induced by C.

k+11 (= T)

/k+l (= T)

Tkl

_
Xl T

FIG.

LEMMA 3.1.4. Gk(C) (Gk()) is a connected graph.
Proof. We assumed in the beginning of this paper that G is connected. Contrac-

tions preserve connectedness and therefore Gk is also connected. Assume to the
contrary Gg(C) has more than one connected component. Let B =(VB, EB) be a
connected component of Gk(c), such that sg VB. Since Gk is connected, B must be
connected to t and since s Vn, C-Vn also determines an (s, t)-cut. This cut,
however, is smaller than C and contradicts its minimality. The proof for C is similar.

Lemmas 3.1.2, 3.1.3, and 3.1.4 imply the following corollary.
COROLLARY 3 1.5. If Uk Uk+ Uk+1

k is split in Step k into Uk+
k and k+andifeither k or

k+Uk+ is split in the next step, then G +1 is planar.

222 YOSSI SHILOACH

TTk+I (Uk+l) isLEMMA 3.1.6. If U is split in Step k into U+1 and ,-, k+X and if U+1 k+l

split in Step l, where > k, then G is planar
TTk+IProof. The connected components, resulting from Tk+ when U,+ (k+l) is

removed, are not affected by a further splitting of other nodes, different from U+

(U,++). Thus, they are also the connected components, resulting from T when U+*,
(Ukk+l Gk+l

+ is removed. Thus, G is the same graph as of Lemma 3.1.3, (i.e., as G+’1 in
ease that U+1 (U+1

+ is split in Step k + 1). Thus, by Corollary 3.1.5, G is planar. El
The proof of Theorem 3.1 follows immediately from Lemma 3.1.6. El

4. How to achieve (2.1). Let $1,"" ", Sn-1, tl,""" tn-1 denote the sources and
terminals respectively, which are used in the n- 1 max-flow problems, computed
during the G-H algorithm. Thus we have:

(4.1) Si, Vi, 1,. , n 1.

G has at least as many vertices and edges as each of the Gi’s. Thus the complexity of our
algorithm would not exceed O(n log n Y’,i=l ds,t,).

In the following, we will show that the si’s and ti’s can be chosen so that (2.1) is
satisfied. Moreover, the time involved in choosing them will be negligible.

LEMMA 4.1. Let G be a connected graph with n vertices, m of which are blue and the
other n-m are red. Then there are two blue vertices vi, vi such that

(4.2) dr,v, =< 2 [n/m].

Proof. Let V 1,’" ", /)m be the blue vertices, and let Gi---(Vi, El), 1,..., m, be
connected subgraphs of G such that vi V and v, [n/m + 1 for 1,. , m. Such
Gi’s can be easily found if we start a search at vi and stop it as soon as In/m + 1 vertices
are encountered.

Y-i=1 IVi] > m .n/m n and therefore there exist and/" such that V (3 V. Q. Let
v V/(q V-; then dv,v -< Inm and d, <= Inm J. Thus

The bound on this lemma cannot be improved as one can verify by considering a
star with a red center and blue leaves.

COROLLARY 4.1.1. IfG has m vertices and r nodes, then si and ti can be chosen so
that

(4.3) ds,,, _<- 2
t m J"

Moreover, using the search which is described in the proof ofLemma 4.1, S and ti can be
found in linear time.

Let us consider Tk again. Each of its nodes which contains a >_- 2 vertices is going to
be split and subsplit until it breaks into a nodes (which are single vertices) in the final
tree. We will refer to this process as a complete split of a given node. The whole G-H
algorithm is just a complete split of the single node of T1.

With each node that occurs in any of the trees T1, , Tk, we shall associate two
numbers. The first, m, is the number of vertices that it contains and the second, r, is the
number of connected components, resulting by removing it from the tree that it belongs
to. We have already noticed (Lemma 3.1.6) that if the node appears in Tk for the first
time and in T for the last time (l _-> k) then r remains the same for Tk, , TI. Thus, r
can really be associated with the node as long as it exists, regardless of what tree it
belongs to. Note that if this node is going to be split in the/th step, then m and r will be
the numbers of the vertices and nodes of Gl, respectively. A node with the associated
numbers m and r will be called an (m, r)-node.

A MULTI-TERMINAL MINIMUM CUT ALGORITHM 223

n-1We would like to have an upper bound on -"i=1 dsiti which can be interpreted as
the sum of the distances between sources and terminals in all the max-flow problems
which occur during a complete split of the initial (n, 0)-node, namely U. This
motivates the following: Let U be an (rn, r)-node; then fv(m, r) denotes the worst-case
sum Y ds,t, taken over all the max-flow problems which are involved in a complete split
of U, assuming that si and ti are always chosen so that (4.3) is satisfied.

Let f(m, r) max {fv(m, r)l U is an (m, r) node}. In order to obtain an estimate for
f(n, 0) we establish and solve a recursion formula for f(m, r).

LEMMA 4.2.

f(1, r) 0,
(4.4)

f(m, r)=2/m +r]< + max {f(m’, r’ + 1)
1. m

+f(rn -m’, r-r’+ 1)11 =<m’-<m 1, 0=<r =<r}.

Proof. Obviously, f(1, r) 0 since a (1, r)-node is not going to be split anymore. In
view of Lemma 3.3 and Fig. 1, it is easy to see that an (m, r)-node is always split into
an (m’, r’ + 1)-node and an (m m’, r- r’ + 1)-node, for some 1 =< rn’ -< rn 1 and
0 =< r’ =< r. Thus, (4.4) is now implied by Corollary 4.1.1. I-!

Let In denote the natural logarithm.
THEOREM. 4.3.

(4.5) f(m, r) <-- 2(m + r) In m.

Proof. Using induction on m, (4.5) reduces to proving that

max {(m’+ r’+ 1) In m’ +(m-m’+ r-r’+ 1) In (m- m’)ll -<m’-<m- 1, 0=<r’_< r}
(4.6)

N(m +r) In rn-
rn

Since (m’+r’+l)lnrn’+(m-m’+r-r’+l)ln(rn-m’) is linear in r’, it attains a
maximal value when r’ 0 or r’ r. In the first case, the left-hand side of (4.6) reduces to

(4.7) max {(rn’ + 1) In rn’ + (m + r- m’ + 1) In (m rn’)ll <- m’ =< m 1}

and in the second, it reduces to

max {(m’+ r + 1) In m’ +(m -m’+ 1) In (m m’)ll =< m’ =< rn 1}

(4.8) max {((m m’) + 1) In (m m’)

+(m + r-(m -m’)+ 1) In (m -(m m’))[1 =<m’ =<m 1}.

Obviously, (4.7) and (4.8) are equal and we will consider only (4.7).
Let gl (m’) (m’ + 1) In m’ + (rn m’ + 1) In (m m’) and let g2(m ’)

r In (m- m’). Then

d2gl 1 1 1 1
g’ =dm’2 m’ m ’2 - m-m’ (m -m

Since g>O in the interval l<m’<m-1, ga is convex in this interval. Since it is
continuous at 1 and m 1, a maximal value is attained when m’ I or rn’ m 1, which
in this case have the same value.

g& -r/(m m’) < 0 for 1 _-< m’ _-< m 1 and therefore g2 attains its maximal value
when m’= 1.

224 YOSSI SHILOACH

Thus, (4.7) =max {gl(m’) + g2(m’)ll m’=< m 1}= (m + r) In (m 1). Hence, the
left-hand side of (4.6) <= (m + r)/m + (m + r) In (m 1) < (m + r) In m.

The last inequality follows from the inequality

In (m- 1)+ 1--<ln m
m

which in turn follows from the basic inequality

-1 X

This completes the proof of Theorem 4.3.
Since In n and log n differ by a multiplicative constant, equation (2.1) is proved.

dledge. The author thanks the reteree for his helpful comments.

REFERENCES

[1] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975),
pp. 506-518.

[2] R. E. GOMORY AND T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math. 9 (1961), pp.
551-570.

[3] A. ITAI AND Y. SIRILOACI-I, Maximum flow in planar networks, this Journal, 8 (1979), pp. 135-150.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0002 $01.00/0

ON MULTIPLICATION OF POLYNOMIALS
MODULO A POLYNOMIAL*

S. WINOGRADt

Abstract. The multiplicative complexity of the direct product of algebras Ap of polynomials modulo a
polynomial P is studied. In particular, we show that if P and Q are irreducible polynomials then the
multiplicative complexity of Ap x Ao is 2 deg (P) deg (Q) k, where k is the number of factors of P in the field
extended by a root of Q.

Key words, complexity of computations, multiplicative complexity, product of polynomials

n-1
U

n-1
UEi=0 Yi1. Introduction. Let R(u) iffio xi and S(u) be two polynomials with

n--1
Uindeterminates as coefficients. Let P(u)=un+i_oa be a polynomial with

coefficients in a field G. (We will assume that G is of characteristic 0, even though the
results hold whenever G has enough elements and the field extensions needed are
separable.) The coefficients of the polynomial T(u) R(u). S(u) mud P(u) form a system
of bilinear forms, which is designated by Tp. The multiplicative complexity of Tp was
studied in [1] and [2]. It was shown there that the minimum number of multiplications
needed to compute Tp is 2n- k where k is the number of irreducible polynomials which
divide P. The results of the investigation of the complexity of Tv led to new algorithms
for computing the cyclic convolution and the Discrete Fourier Transform ([3], [4]).

In this paper we will extend the results of [2] to multivariate polynomials. Let
a(u, v) xk=- n-1

U V
k-1 n-1

U VEiffi0 Xij and Sl(u, v) Xj=0 yiji--o be two polynomials with
indeterminates as coefficients. Let P(u) and Q(v) be two polynomials of degree n and k,
respectively with coefficients in G. In this paper we will investigate the multiplicative
complexity of computing the coefficients of the Tl(u, v) Rl(u, v). Sl(u, v) mud P(u),
Q(v). We will limit the scope of our investigation to the case that P(u) and Q(v) have no
repeated roots. It shall be clear from the results that they are not limited to polynomials
of two variables, but that they cover the more general multivariate case.

As an example of the class of bilinear forms under consideration, let P(u) be the
polynomial P(u) u2 + 1 and Q(v) be the polynomial Q(v) v + v + 1. In this case we
want to compute the coefficients of

(Xo,0 + X1,0U + Xo,IV + X1,1UV)

(Yo,o + Y,oU + Yo, v + y,lUV)

mud (02 + 1, V2 "[" V + 1).

Multiplying the two polynomials and substituting -1 for u2, and -v- 1 for v2 we obtain
that the four coefficients to be computed are to,0, tl,o, t0,i, and t1,1 where

to,o / Xo,o--X1,0 X0,1 X1,1 \/Yo,01
tl,o|= Xx,o Xo,o "-X1,1 --Xo,1) [Yl,o].to,l] xo. xo,o-xo.
tl,1/ Xl,1 Xo,1 Xl,O-- Xl,1 Xo,o Xo,1/\Yl,1/

The structure of this matrix becomes more apparent if we "block" it into 2 2 blocks, in

*"Received by the editors October 13, 1977, and in revised form April 27, 1979.

" IBM T. j. Watson Research Center, Yorktown Heights, New York 10598.

225

226 s. WINOGRAD

the block form we have to compute

which is the coefficient of (Xo+Xlv)(Y0+YlV)mod(v2+v+l), while each of the
blocks has the structure of multiplication modulo u2+ 1. This structure suggests
denoting this system of bilinear forms by Tu2/l Tv2/v/l. Another reason for the tensor
product notation comes from viewing the system of bilinear forms as multiplication of
two "general" elements in an algebra. By slight abuse of notation we will denote by
Tu2+l the algebra of linear polynomials with multiplication modulo u2+ 1, and by
Tv2/v/l the algebra of linear polynomials with multiplication v2+ v + 1. The algebra of
the four bilinear forms under consideration is Tu2+l Tv2+v+l.

The example given above illustrates the subject of this paper. That is, to determine
the complexity of Tp. To where P and Q are polynomials such that neither of them has
a repeated root. The ffaive way of computing Tp To is to start with (non commutative)
algorithms A and B computing Tp and To respectively, and use them to build the
algorithm A B computing Tp To. (This type of construction was used in [3], [4], and
[5]). It was shown in [2] that A B does not necessarily use the minimum number of
multiplications even though A and B do..The specific example given in [2] shows that
while the minimum number of multiplications to compute Tu2/l over the rationals is 3,
the multiplicative complexity of Tu2+l Tv2+l is 6 (and not 9).

In the next section we will show that if P and Q are irreducible polynomials (in G)
then the multiplicative complexity (over G) of T, To is 2 deg(P)deg(Q)-m where m is
the number of factors of P in the field G extended by a root of Q. More specifically, we
will show that if fl is a root of Q and if in G(/) P I-[= P then Tp To is isomorphic to
the direct sum Tv + Tv2 + +Tv where Vi is an irreducible polynomial of degree
deg(Pi)deg(Q), that means that using only additions and scalar multiplication the
problem of computing TpXTo can be transformed to computing m independent
problems Tv, Tv2" , Tv.

If P is a polynomial without repeated roots, we can write P I-Iik= Pi where the Pi’s
are (distinct) irreducible polynomials. By the Chinese remainder theorem, Tp is
isomorphic to Tp + Tp +... + Tp. Thus the result mentioned above also yields the
complexity of Tp To for any two polynomials without repeated roots; and even more
generally that of Tp T, Tp, whenever none of the polynomials Pi have repeated
roots.

By taking Pi uni-1 we thus obtain the multiplicative complexity of nx n2
n s-dimensional cyclic convolution, and in a way analogous to [4] new algorithms for
multi-dimensional discrete Fourier transform.

2. Results. Let A be a system of bilinear forms Zk ’j= 2[aiik Xi Yi, k
1,2,.... t. Let Rrxr, Sss, and Ttt be nonsingular matrices. Substitution xi

=1 Ria xi, yi Y-I=I Si,l y into A, and computing z = Tk, z we obtain a new
system of bilinear forms A’ defined oy Zk 2.j=l Zi=l aijkxiYj, K 1, 2,’’’, t. Clearly
every algorithm for computing A can be transformed into an algorithm for computing
A’ (and vice versa) using only additions and scalar multiplication.

DEFINITION. Two systems of bilinear forms A and A’ are called equivalent if and
only if A’ is obtainable from A by the construction above. In other words, A and A’ are
equivalent if and only if the tensor (aijk) is obtainable from (aijk) by change of bases.

Let F be a finite extension of the field G and let el, e2, , e be a basis of F. Let

MULTIPLICATION OF POLYNOMIALS 227

’.=lziei- (1 xiei) (-.=lYiei), then the zi’s form a system of bilinear forms which is
denoted by Tv,,. If e , e,. , en is another basis of F then Tv,e, is equivalent to
Tv,i. That means that up to equivalence we can assign a system of bilinear forms Tv to
every finite extension F of G.

This assignment of a system of bilinear forms can be extended to any finite
dimensional algebra. Let A be an algebra and let el, ea, , en be a basis, then if i=1 zi

ei (i= xiei) (’-i= yiei) the zi’s are a system of bilinear forms. Again, a change of basis
yields an equivalent system, and we can therefore denote the system of bilinear forms by
TA (without reference to the basis). We will continue to denote the system of bilinear
forms of the algebra of polynomials modulo P by Tv.

If P and Q are polynomials, and AI,, Ao are the algebras of polynomials modulo P
and Q respectively, then Tv + To is the system of bilinear forms associated with the
algebra Av+Ao the direct sum of Av and Ao. That is, Tv +To is the system of bilinear
forms consisting of the systems Tv and To on a disjoint set of indeterminates. The
system Tv To is the one associated with the algebra Av Ao the direct product of Av
and Ao.

The main theorem of the paper is:
THZOM. Let P and Q be irreducible polynomials over a field G, and let be a root

of Q, and over G(/3) let P 1-I= Pi where the P’s are irreducible. Let Ol. be a root of Pi.
Then Tv To is equivalent to T6(t,,, + T6(t,, +" + TG(/,am), and the minimum
number of multiplications needed to compute TvTo is 2deg(P)deg(Q)-m. Moreover,
every minimal algorithm computes each of the T6(a,,’s separately.

Proof. The proof of this theorem can be obtained directly from the main result of
[2]. However, we will give a separate (and longer) proof which also shows how to derive
the algorithms.

Let p deg (P) and q deg (Q), then Tv is A(x)y where A(x) is a p p matrix whose
entries are linear forms of {Xo, Xl." ",xp-1} and y is the (column) vector
(yo, y, , yp-1). Similarly, To is B(xl)y where B(x) is a q x q matrix whose entries
are linear forms of {Xox, x y).,.. xq_} and is the (column) vector (y, y," Yq-1
The system of bilinear forms Tp x Tq C(xi)y(is obtained from A(x)y and B(xl)y by
substituting the matrix B(x(i) for every occurrence of xi in A(x) and the vector
y(i= (y, yi,..., y)__l)X for Yi in y. (The indeterminates {xli} are disjoint, and so are
{ (i.y ,, As this construction is the key to the proof, the reader may want to go back to the
example of the introduction. The problem of computing the coefficients of (Xo,o+
X,oU + Xo,V + x,uv) (yo,o + yl,ou + Yo,lv + y,lUV) mod (u + 1, v + v + 1) can be
viewed as multiplying (Xo+Xv)(Yo+YlV) mod v+v+l, where Xo=
Xo,o + xl,ou; X1 Xo,o + X,lU; Yo yo,o + y,oU; Y1 Yo, + yl,U; and Xo, X1, Yo, Y are
viewed as elements of Tu-/l.

If we denote the pq bilinear forms of Tv To by zi,j 0 < p, 0 -< < q, we can give
an alternative description of Tv To in terms of Tv and To. A "general" element in
G(/3.) (whereB is a root of Q) is IK

(i) q-1=j=0xli)fl.’. Let the lth row of A(x)y be
p--x p--1 x(i)y(ji.j=oai,j, xiyj, then Zk is the coefficient of/k in i,j=oaii, This follows from the

observation that the kth row of B(x(i))y(j) is the coefficient of/k of x(i)y(j). Therefore
Tp To can be viewed as A(x)y where A(x) is obtained from A(x) by replacing xi by x(i),
and y is obtained from y by replacing yi by y(i). The advantage of A(x) is that we can use
the field G(/) as the field of constants, and can describe, for any g G(/3) the

(i)’scomponents of g x(i) in terms of linear forms over G of the x
Since P- 1-In= Pi in G(B), the Chinese remainder theorem states that A(x)y is

equivalent (over G(B)) to Tvl +Tv+’" + Tpm, where Tv is Tv, with "general" ele-
ments of G(B) replacing the indeterminates. Reversing the process and substituting

228 s. WINOGRAD

B(x’) for " in ’pj we obtain that Tp x To is equivalent to TG(,al)
TG(O,am).

Let Vi be a polynomial whose root generates G(/, ai), then To(,p is equivalent to
Tvi, and consequently Tp x To is equivalent to Tvl + Tv2 + + Tvm.

It was shown in [2] that the minimum number of multiplications needed to compute
m

Tvl + Tv2 +’ + Tvm is i-- (2 deg (Vi)- 1) i-- (2 deg (Pi) deg (Q)- 1) 2 deg (P) deg
(Q)-m. It was further shown in [2] that every minimal algorithm necessarily computes
each of the Tvi’S separately. This proves the theorem.

Since Tp x To is equivalent to To x Tp we obt/fin the following corollary:
COgOLLAg. Let P and Q be irreducible polynomials in G, let

a root of O, then the number offactors of P in G(/) is the same as the number ofroots of Q
in G(a).

The corollary can be strengthened. Let a be a root of P, then Q I-Ii= 1Q in G(a).
Let/3i be a root of Qi 1, 2,. , m, then by the result of [2] we obtain:

COgOLLAg. The set offields {G(/3, ai)}’=l is equivalent to {G(a,/3i)}= 1.

In applications to multidimensional cyclic convolution and multidimensional
discrete Fourier transform we use the field of rational numbers G} for G, and the
polynomials P and Q are cyclotomic polynomials. As usual we will denote the minimal
polynomial whose root is the hth root of unity by .

COROLLARY. Let p and q be prime numbers; then
1. T%T%m (m_->n) is equivalent to direct sum T%m+T%m+’"+

Z n--1
%m ((p-1)p times), and therefore its multiplicative complexity is 2pm/-

4pm+n-l_pn+pn-1.
2. T%, x T,, is equivalent to T%,m (p, q distinct primes).
Proof. Let ah be the hth root of unity, then (apm) splits po (m _-> n) into (p 1)p-

linear factors. This proves the first part of the corollary. To prove the second half,
assume that Opn can be factored into P. P2"..." Pk in Q(aq), and without loss of
generality assume that ap- is a root of P. Since p and q are relatively prime there exist
integers r and s such that rp" + sq I mod pnqm. Using the fact that ab ab we obtain
that the field Q(aqm, ap,,) includes the element OqmOp
Opnqm. So the dimension of Q(qm, Opn) is at least (p-1)pn-l(q 1)qm-x. On the other
hand the dimension of Q(aq, apo) is deg. (qm) deg (Pa)<-deg (qm) deg (q-)=
(p- 1)p"(q- 1)qm, Therefore equality has to hold, P po, and Q(aq-, apO) Q(Opnqm).

Using this corollary we can analyze the multiplicative complexity of multiplication
of group algebras for commutative groups. We will illustrate by analyzing the multi-
plicative complexity of a p"x qm two-dimensional cyclic convolution. By the Chinese
remainder theorem Tu,"_a (where p is a prime) is equivalent to T%o + T%o-1 + + Tpo.
If we use r. Tp to denote the r-fold direct sum Tp / Tp + + Tp, we obtain:

COROLLARY. Let p and q be primes, then:
1. Tupn-x X rvpm_x (m > n) is equivalent to p". (i=n+m1T%i) += (pi + p- 1). T%, +

T_lXT_, and therefore its multiplicative complexity is 2pm+"-(m-n)pn-
(pn/l +pn-- 2)/(p-- 1).

2. Tup"_l Tvqm’_x is equivalent to =0 .Y.i=o T%q, (where T,} denotes Tu-), and
therefore its multiplicative complexity is 2p"q- (m+ 1)(n+ 1).

Proof. Tuo- is equivalent to in=0 T%, and therefore Tupm_l Tup"_l is equivalent to

(m) (n) () (n) (njoZcbpj x =oZpi-- n+lZpj x =oZpi 4- oZ,pj x =oZpjj=
mBy the previous corollary it is equivalent to p. __+1 T% + (--o T%3 x (Y’---o T%,)

n. [,$,n-1 T.pj) X (in_=’- T%,).P (E=n+l T%)+T%o x T.p. + 2" T%o x (Ej T%)+ ,i=o

MULTIPLICATION OF POLYNOMIALS 229

__pn. pn-1)+T,I,,., +(p’+ "T,I,.+ =oT,t, x =oT,t,,,,
Continuing this way we obtain that T_xT"_ is equivalent to pn.
Y’.- (p+ p’-) T.+T,- + Tv-. Therefore, the multiplicative complexity is

p y’. (2(p-1)p--l)+ (p+p-)(2(p-1)p--l)+l
j--n+1 i=1

m-n-1
2(i-1) pi-1=2(p-1)p 2 P-(m-n)P+2(p-1) p -(p+l) Y. +1

j=O i-1 i=l

2p2n(pm-n- 1) (m_ n)p + 2(p2n_1)_ (p + 1)(pn- 1)
+1

p-1

2pm+n (m- n)pn
pn+a + pn__ 2

This proves the first half of the corollary.
To prove the second half we observe that T"_)<Tvq-I is equivalent to

(EI0 Tq),i) x (ET=0 T,qj) Ei=l Ej=I T,pl T,qj + Ei=l Tpi)< Tv-1 + Ej=I T,j x Tu_ q-

Tu-x Tv-1. By the previous corollary it is equivalent to yin___ Yjm= T%’nJ + YI’=I T,pi +
ET= Tpj + Tu-1 Tv-x. Because the degree of T(i,q, is (p- 1)(q- 1)p’-lqj-1 (i, => 1) we
obtain that the multiplicative complexity is

E (2(p- 1)(q- 1)pi-lqj-l- 1)+ (2(p- l)pi-1-1)+ Y. (2(q- 1)qj-l- 1)+ 1
i=lj=l i=1 j=l

2p"qm (m + 1)(n + 1).

REFERENCES
[1] C. M. FIDUCCIA AND Y. ZALCSTEIN, Algebras having linear multiplicative complexities, J. Assoc.

Comput. Mach. 24 (1977), pp. 311-331.
[2] S. WINOGRAD, Some bilinear forms whose multiplicative complexity depends on the fields of constants,

Mathematical System Theory, 10 (1976/77), pp. 169-180.
[3] R. C. AGARWAL AND J. W. COOLEY, New Algorithms for Digital Convolution. IEEE Trans. on

Acoustics, Speech and Signal Processing, to appear.
[4] S. WINOGRAD, On Computing the Discrete Fourier Transform, Proc. Nat. Acad. Sci., U.S.A., 73 (1976)

pp. 1005-1006.
[5] V. STRASSEN, Gaussian Elimination is Not Optimal, Numer. Math., 13 (1969), pp. 354-356.

SlAM J. COMPUT.
Vol. 9. No. 2. May 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0902-0003 $01.00/0

ON THE EVALUATION OF POWERS AND MONOMIALS*

NICHOLAS PIPPENGER"

Abstract. Let Yl, , Yp be monomials over the indeterminates Xl, , xq. For every y (yl, , yp)
there is some minimum number L(y) of multiplications sufficient to compute y 1, , Yo from x 1, , xq and
the identity 1. Let L(p, q, N) denote the maximum of L(y) over all y for which the exponent of any
indeterminate in any monomial is at most N. We show that if p (N+ 1)() and q (N+ 1)(), then
L(p, q, N) min {p, q} log N + H/log H + o(H/log H), where H pq log (N + 1) and all logarithms have
base 2.

Key words, addition chain, computational complexity, monomial, power

1. Introduction. The result described in the abstract generalizes a number of
previous results and solves a number of open problems. In 1937, Scholz [7] raised the
problem of determining L(1, 1, N) (computing one power of one indeterminate) and
observed that

log N <_- L(1, 1, N) _-< 2 log N.

In 1939, Brauer [2] obtained the asymptotic formula

L(1, 1, N) log N,

and in 1960, Erd6s [3] improved this to

[log(N+l) .)log(N+ 1)
+L(1, 1, N) log N +

log log (N + 1) ,1oo-/ 1)

In 1963, Bellman [1] raised the problem of determining L(1, q, N) (computing one
monomial in several indeterminates), and in 1964, Straus [-8] showed that

L(1, q, N)--- log N

for each fixed q.
In 1969, Knuth [4] (Section 4.6.3, Exercise 32) raised the problem of determining

L(p, 1, N) (computing several powers of one indeterminate), and in 1976, Yao [9]
showed that

L(p, 1, N)-- log N
for each fixed p.

In a preliminary version of this paper [5], the author raised the problem of
determining L(p, q, N) and showed that if p 2(and q 2(", then

L(p, q, 1)pq/log (pq).

In this paper we shall prove the following
THEOREM.

n u((lo_g_gl__og./--/l/2),log S]
L(p, q, N) v log N +log-- + O(w),

where v min {p, q}, H pq log (N + 1), and w max {p, q}. The expression U(. .)
denotes a factor of the form exp O(. .);/f the quantity represented by the ellipsis tends to
O, U(. .) is equivalent to 1 + 0(. .).

Received by the editors November 1, 1978, and in revised form April 30, 1979.

" Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

230

EVALUATION OF POWERS AND MONOMIALS 231

Since p (N + 1)(q) and q (N +1)(") together imply (in fact, are equivalent to)
w o(H/log H), this theorem implies the result described in the abstract, as well as all
the other asymptotic formulae cited above. The proof of the theorem is in two parts: a
lower bound and an upper bound. The lower bound, presented in 2, owes several ideas
to the paper [3] of Erd6s cited above. The upper bound, presented in 3, would be the
more difficult part of the proof if we had to start from scratch. In another paper[6],
however, the author has given a result (also growing out of the preliminary version [5])
which allows the upper bound to be deduced as a corollary.

1.1. Reformulation of the problem. It is both traditional and convenient to
reformulate the problem at hand in additive rather than multiplicative notation.

Let q => 1 be a integer. A sequence

/=(fl,... ,.)

of nonnegative integers will be called a (q-dimensional) vector, and fl,""", fq will be
called its components. The vector

Xo (0, .,0)

will be called the zero vector, and the vectors

Xl=(1. "’’,0),

xq =(0," ", 1)

will be called unit vectors. If

and

the vector

f=(fl,""" ,f)

g=(gl,""", g,),

f + g (f + gl, f, + g,)

will be called the sum of f and g.
Let p => 1 be an integer. A sequence

Y=(Yl.’’’.Y.)
of (q-dimensional) vectors will be called a (p-by-q) matrix, and y 1, , yp will be called
its rows.

Let _-> 1 be an integer. A sequence

Z --(Zl,""" ,Zl)

of vectors will be called a chain, and Zl, , z will be called its rows, if each vector Zk
(1 --<_ k -<_ l) is (1) the zero vector, (2) one of the unit vectors, or (3) the sum of two of the
vectors z1,’", Zk-1 that precede it in the sequence (these two vectors need not be
distinct). The zero and unit vectors will be called basic vectors; the others will be called
auxiliary vectors. The number of basic vectors will be denoted by m; the number of
auxiliary vectors will be denoted by n and called the length of the chain.

Let N-> 1 be an integer. We shall say that a vector is (N + 1)-ary if all its
components are in the set {0, 1, , N}, and that a matrix is (N + 1)-ary if all its vectors
are (N + 1)-ary.

232 NICHOLAS PIPPENGER

We shall say that a chain z computes a matrix y if each vector yi (1 --_< p) appears
as one of the vectors Zk(1 <= k <-l). If y is a matrix, L(y) will denote the minimum
possible length of a chain computing y, and L(p, q, N) will denote the maximum of L(y)
over all p-by-q (N + 1)-ary matrices y.

2. The lower bound. In this section we shall prove the lower bound

H log log H)L(p’q’N)>-vlgN+logHU(-t- +O(w).

2.1. The easy case. Consider first the case

H log log H
v log N <-

(log H)2

In this case the first term, v log N, is absorbed by the U-factor of the second term,

H log log n n o[n log logniogHU(i0gH)= logH
+ \ (logH)2]"

Thus it will suffice to show

If

H [loglogH\
L(p, q, N)>= i0g’H u 10gH] + O(w).

H
log H’

the desired bound is trivial; hence we shall assume

w <__-._----
H

log H"
If

H
L(p, q, N) >-i0g’ ’H’

we are done; hence we shall assume

H
L(p, q, N)<-log H"

It follows that we may also assume

l-m+n

<=q + 1 +L(p, q, N)

O(i0g’HH).
Let us consider a chain and assign to each vector in it a number called its depth. The

basic vectors are assigned the depth 0. For d 1, 2,. , if a vector is the sum of two
preceding vectors that both have depth at most d- 1, but is not the sum of two
preceding vectors that both have depth at most d 2, then it is assigned the depth d. By
induction, this assigns depths uniquely to all the vectors in the chain.

EVALUATION OF POWERS AND MONOMIALS 233

Let us impose upon the set of all vectors a definite total order, which will be called
the standard order.

We shall say that a chain is standard if its rows are all distinct, rows of lower depth
precede those of higher depth, and rows of equal depth appear in the standard order.

LEMMA 2.1-1. If a matrix is computed by a chain z, then it is also computed by a
standard chain z’ of no greater length.

Proof. Given a chain z, consider the set of all vectors appearing in z. Remove from
this set all the basic vectors and arrange them in the standard order to form a chain.
Then remove from the set all the vectors that are the sum of two vectors currently in the
chain, arrange them in the standard order, and append them to the end of the chain.
Repeat this process until no more vectors can be removed. When the process
terminates, the set must be empty, for if it contains any vectors, at the very least the one
that appears earliest in z can be removed. The process thus yields a chain z’ which is
standard by construction, which contains every vector that appears in z (so that, in
particular, it computes every matrix computed by z), and which contains no other
vectors (so that, in particular, it has no greater length than z). I3

By virtue of this lemma, we may henceforth restrict our attention to standard
chains, and all chains will be assumed to be standard even if this is not explicitly
mentioned.

We shall say that a matrix is standard if its rows are distinct and appear in the
standard order. Henceforth we shall restrict our attention to standard matrices, and all
matrices will be assumed to be standard even if this is not explicitly mentioned.

LEMMA 2.1-2. There are at least

2HU(w log H)

matrices.
Proof. There are (N + 1)q rows that can appear in a matrix, and thus

(N + 1)’)P

ways to choose p distinct rows to form a matrix. Using the bound

(AB) A(A-1) (A-B + I)/B(B -1) 1 >-_(A/B)

we obtain

=> (N + 1)"/p’
+ 1

P /

2HV(p log p)

2nU(w log H)
matrices. [3.

LEMMA 2.1--3. For some value of n <= L(p, q, N), there are at least

2nU(w log H)

chains.

234 NICHOLAS PIPPENGER

Proof. Each matrix is computed by some chain of length at most L(p, q, N). Each of
these chains computes at most

U(p log l)

U(w log/-/)

matrices, so there are at least

2U(w log H)/U(w log H) 2U(w log H)

chains of length at most L(p, q, N). Each chain has one of at most

L(p, q, N) U(log/-/)

possible lengths, so for some length n L(p, q, N), there are at least

2HU(w log H)/U(log H) 2HU(w log H)

chains. 1
With each chain z we shall associate an object, which will be called a code,

constructed as follows. Each basic vector in z is xj for some j such that 0 /" q. Let d/
be the subset of {0, 1, , q} that contains the m values of corresponding to the basic
vectors in z. Each auxiliary vector Zk in z is zak + Zbk for some ak and bk such that
1 ak bk k 1. Let W be a subset of {1, , l} {1, , l} that contains n ordered
pairs (ak, bk), one corresponding to each auxiliary vector in z. The ordered pair (d/t, W)
will be the code associated with z.

LEMMA 2.1-4. A chain is uniquely determined by its code.
Proof. Let (, W) be a code. From , determine the set of basic vectors; arrange

these in the standard order to form a chain. Remove from W the pairs (a, b) for which b
is less than or equal to the number of vectors currently in the chain. For each such pair,
compute the vector za / Zb; arrange these vectors in the standard order and append
them to the end of the chain. Repeat this process until no more pairs can be removed.
Clearly only the resulting chain can have the code (d/, W).

LEMMA 2.1-5. For any value of n <--L(p, q, N), there are at most

(HE/n)nU(n)U(w)
chains.

Proof. For any m and n, there are at most

codes, since the two factors bound the number of ways of choosing and W,
respectively. Using the bounds

and

(AB) <--A/B! <-(Ae/B)B

EVALUATION OF POWERS AND MONOMIALS 235

(where e 2.718 is the base of natural logarithms), we obtain

<-_ 2q/ (l e/n)

=(l/n)U(n)U(q)
=(l/n)U(n)U(w).

There are

q + 1 U(log q)

U(log w)

possible values of m, and for each value of n <-L(p, q, N),

l= O(H)

_-<HU(1).

Thus, for any value of n <-_ L(p, q, N), there are at most

U(log w)(H2U(1)2/n)nU(n)U(w)=(H2/n)nU(n)U(w)
codes.

Each chain is associated with some code, and at most one chain is associated with
each code. Thus the bound just derived applies to chains as well as codes. 7]

We can now complete the proof. By Lemmas 2.1-3 and-5, there is a value of
n <-L(p, q, N) such that

(H2/n)nU(n)U(w) >-_2HU(w logH)

or, by taking logarithms,

2n logH-n logn+O(n)>-H+O(w log H).

Ignoring the n log n term for the moment, this implies

2n log H + O(n) >-_ H + O(w log H)

or

This yields

or, by taking logarithms,

(1)>Hu(wlog.H)(2n log H)U
log H H

H w H
2log H U(ioglH)U(log

log n _-> log H + O(log log H)+ Ot, w log H)\H

Multiplication by n yields

n log n => n log H + 0(n log log H)+ O(nw log H’
\ H /

=n log H+ o(H log log H)logH
+O(w).

236 NICHOLAS PIPPENGER

With this bound on the n log n term, the original inequality implies

or

Thus

n log H + O(n)>H + O(H log log H)log H
+ 0(w log H)

(n log H)U(io)>HU log log H)H (--’ + O(w log/4).

L(p, q, N) >- n

H /log logH\
-logH u o-/- ,)+O(w),

which is the desired lower bound.

2.2. The hard case. Consider now the case

v log N =>
H log log H

(log H)2

Since H vw log (N + 1), we have

(log H)2

log log H"
If

H
L(p, q, N) >-_ v log N +

log H

we are done; hence we shall assume

L(p, q, N) <= v log N+
H

log H"

It follows that we may also assume

<--q + 1 +L(p, q, N)

O(H).

For any vector f and any 1 -</" -<_ q, let us define

D(f, j) E fi +f- E fi.
l<=i<j j<i<=q

Thus D(f, f) measures the extent to which the jth component of f exceeds all the other
components combined.

We shall say that a vector f is a f-vector if

D(f, j)>- 1.

Clearly, a vector can be j-vector for at most one value of j.

EVALUATION OF POWERS AND MONOMIALS 237

Let z be a chain and let Zk (m + 1 <= k <--_ I) be an auxiliary j-vector in z. We shall say
that zj is j-immediate if it is equal to 2 times a preceding f-vector. Let

h [(log H)I.

We shall say that Zk is j-short if it is not j-immediate but is the sum of two preceding
f-vectors, between which fewer than h j-vectors intervene. Finally, we shall say that Zk is
f-long if it is neither f-immediate nor/’-short.

Let nj, 5, sj, and t. denote the numbers of f-vectors,/’-immediate vectors, j-short
vectors, and j-long vectors in z. Clearly,

Let

be the golden ratio. Then

Let

Then for h => 2,

n ri + sj + t.

=(1+51/2)/2 1.618.

-2+-1 1.

O h 1/h <_ 31/3 1.442 .

For h 2, this is trivial to check. For h => 3, it follows from

0-h-2= h -1 exp (-2h -1 In h),

4,-1= exp (-h -1 In h),

and

and

exp x _-< 1/(1 x),

lnh=>l.

LEMMA 2.2-1. For any chain z, any vector zk in z, and any 1 <= j <-_ q,

D(zk, j) 2%bsi+tJ

D(zk, /) <= 2rJ+si.
Proof. We shall proceed by induction on nj =ri + si + i. If ni 0, there are no

auxiliary j-vectors. But if Zk is a basic vector or not a f-vector,

D(Zk,])<= 1,

and the assertions of the lemma are trivial. Suppose then that ni _-> 1 and that zk is an
auxiliary]-vector. It follows that it must be]-immediate,]-short, or f-long.

If Zk is]-immediate, there exists 1 b _-< k- 1 such that Zk 2Zb. The vector Zb
appears in a chain with at most ri + sj + ti- 1]-vectors, of which at most ri- 1 are
]-immediate. By inductive hypothesis,

D(Zb,]) <= 2rj-b sj+t’

238 NICHOLAS PIPPENGER

(since 2 _->), and so

D(zk, j)=2D(z,])

<=2+.
If on the other hand z is not]-immediate, there exist 1 -< a < b -< k 1 such that

z z + zo. The vectors z and z both appear in a chain with at most ri + si + ti- 1
j-vectors, of which at most ri are j-immediate. By inductive hypothesis,

D(z,, j) <_ 2",&s,+’,-1

and

If Zb is not a f-vector,

and

D(zo,]) <- 2ri si+ti-1

D(zo,]) -< O

D(Zk,]) D(z,,]) + D(zo,])

<-D(za,])

If on the other hand z0 is a]-vector, then za appears in a chain with at most ri + s. + ti 2
]-vectors, of which at most r are]-immediate. By inductive hypothesis,

D(z,]) 2

and so

D(Zk,]) D(za,]) + D(zo,])

-< 2,& s,+,,-2 ..].. 2"i+/’-1

2" si+t’.

This proves the first assertion of the lemma.
If Zk is not i-long, there exist 1 -< a <= b -< k 1 such that zk za + z0. The vectors z

and z0 both appear in a chain with at most rj + s. + ti- 1/’-vectors, of which at most
ri + si- 1 are not i-long. By inductive hypothesis,

D(z,, i) -< 2+,-Id t,

and

(since 2 -> 4’), and so

D(zo,]) < 2r+s’-l ti

D(Zk, i) D(z,,]) + D(zo,])

-<2 2"+’- ti

If on the other hand zk is f-long, there exist 1 -< a < b -<_ k 1 such that zk z +
and at least h f-vectors intervene between za and z0. The vectors z and z0 both appear

EVALUATION OF POWERS AND MONOMIALS 239

in a chain with at most 5 + s. + tj 1/’-vectors, of which at most rj + s. are not -long. By
inductive hypothesis,

D (z,,,]) _<_ 2,+*,’,-a

and

If Zb is not a/’-vector,

and

D(Zb,]) <= 2ri+s’ot-l.

D(Zb,])<--_O

D(Zk,]) D(z,,]) + D(zb,])

__< 2+0"
If on the other hand Zb is a j-vector, then Z appears in a chain with at most
rj + s. + t. h 2 f-vectors, of which at most r. + s. are not j-long. By inductive
hypothesis,

and so

D(z,, j) <- 2rj+s,d/t -h-2

D(Zk,]) D(z,,]) + D(Zb, 1)

2ri+sioti-h-2 + 2+sOt,-1
N 2q+sot"

This proves the second assertion of the lemma. !-1
Let z be a standard chain and let Zk (m + 1 <= k =< l) be an auxiliary vector in z. We

shall say that zk is immediate if it is f-immediate for some 1 =< <= q. We shall say that zk
is short if it is/’-short for some 1 =< f =< q. Finally, we shall say that zk is long if it is neither
immediate nor short.

Let r, s, and denote the numbers of immediate, short, and long vectors in z.
Clearly,

n=r+s+t.

that

and

We shall say that a chain is special if, for each 1 <- u <_- v, it contains a vector Zk such

D(zk, u) >=N/2.

LEMMA 2.2-2. For any special chain of length at most L(p, q, N),

0
H

s+t= (log H)

(H log log H’r+s>=v logN+O\ il--g--:].

240 NICHOLAS PIPPENGER

Proof. If z is a special chain, it must contain, for each 1 <= u <= v, a vector Zk such that

D(Zk, U) >=N/2.

Applying the preceding lemma to this vector, we obtain

or, by taking logarithms,

ru + (su + t) log b . log N 1.

Summing this over 1 =< u v and using

, ru r,
<uv

Su "::: S,
luv

we obtain

Subtracting this from

yields

, tu <= t,
lu:v

r + (s + t) log b => v log N- v

O((log H)2

)v log N + \log i0g-H/"

r+s+t=n

<-_L(p, q, N)

H=< v log N 4-
log H

H O((log H)2
)(s + t)(1 log 6) =< i0g H +

\log log H/"

Since 1- log 4 > O, this proves the first assertion of the lemma.
Again applying the preceding lemma to z, we obtain

2+’ >=N/2

or, by taking logarithms,

r. + Su + tu log _--> log N- 1.

Summing over 1 _-< u

_
v, we obtain

r + s + log ->_ v log N- v

(log H)2

EVALUATION OF POWERS AND MONOMIALS 241

Since

and

this yields

t<=l

O(H)

log h -a log h

log log H

H log log H)r +s > v log N + O (logH)Z
which proves the second assertion of the lemma.

We shall say that a matrix is special if, for every 1 <= u v, it contains a vector Zk
such that

D(z,, u) >=N/2.

LEMMA 2.2-3. Them are at least

(log H)4

U log logn)
special matrices.

Proof. Let

L 4q J"
For any 1 -<-<] ---q, there are at least (K + 1)4 vectors [such that

D(f,]) >- N/2,

since if

O--</]-<K for l<--i<-_],

N-K <=[. <=N,

O<-/]=<K for]<i<-q,

then there are K + 1 possible values for each component and

D(f,]) N qK

-N-q[N+I|
>-_N/2.

It follows that there are at least

+ 1))P

242 NICHOLAS PIPPENGER

special matrices. Estimating this binomial coefficient as before, we obtain

P P

(K + 1)U(w log w)

(N+ 1)P-> 4"q U(w log w)

(N + 1)4U(wE log w

special matrices.
LEMMA 2.2--4. For some value of t, there are at least

2U((lg__H) .]
\log log

special chains of length at most L(p, q, N).
Pro@ Each special matrix is computed by a special chain of length at most

L(p, q, N). Each of these chains computes at most

U(p log l)

matrices, so there are at least

2HU((lOg- /-/)4"lOglog n]
0

4

/. [(log H)3
\ H. [(1 g H) \

special chains of length at most L(p, q, N). Each chain has one of at most

(p, q, N)= O(H)

U0og H)

possible values of t, so for some value of there are at least

special chains.
With each special chain z we shall associate an object, which will be called a special

code, constructed as follows. Let be the set defined above. Each immediate vector Zk
in z is 2Zb for some bk such that 1 bk k 1. Let be a subset of {1, , l} that
contains r elements bk, one corresponding to each immediate vector in z. Each short
vector Zk in z is a f-vector for some 1 j q and is Za + Zb for some ak and bk such that
1 ak < bk k 1, Za and Zb are both j-vectors, and the number Ak of j-vectors inter-
vening between z and Zb satisfies 0
{1,..., l} that contains s ordered pairs (Ak, bk), one corresponding to each short

EVALUATION OF POWERS AND MONOMIALS 243

vector in z. Each long vector Zk in z is Zak -- Zbk for some ak and bk such that
1 <- ak < bk -< k 1. Let - be a subset of {1, , l} x {1, , l} that contains ordered
pairs (ak, bk), one corresponding to each long vector in z. The ordered quadruple (//, ,, -) will be the special code associated with z.

LEMMA 2.2-5. A special chain is uniquely determined by its special code.
Proof. Let (t/, , ,) be a special code. From ///, determine the set of basic

vectors, arrange these in the standard order to form a chain. Remove from Y all
elements b, from 6 all pairs (A, b), and from all pairs (a, b) for which b is less than or
equal to the number of vectors currently in the chain. For each b removed from ,
compute 2Zb. For each (A, b) removed from 5e, determine j such that Zb is a j-vector,
determine a such that za is a j-vector and exactly A j-vectors intervene between za and
Zb, and compute z + Zb. For each (a, b) removed -, compute Za + Zb. Arrange the
computed vectors in the standard order and append them to the end of the chain.
Repeat this process until no more elements or pairs can be removed. Clearly, only the
resulting chain can have the special code (, , 6e, -). !-1

LEMMA 2.2-6. For any value of t, there are at most

(H2/t)U(t)u(H log log H)log H

special chains o) length at most L(p, q, N).
Proofs. For any m, r, s, and t, there are at most

(q +
special codes, since the four factors bound the number of ways of choosing ///, , 6, and
’, respectively. Since

q + 1 0
\log log HI’

then

Since

q + 1) _< 2,+ ,[(log H)2
\

m

and

l= O(H)

m+s+t

m+s+t log H

244 NICHOLAS PIPPENGER

Since

and

Since

There are

hl O(H(log H)2)

s:

(hsl)<_(hle/s)S U(HlglgH)log H

l= O(H),

(l) <= (12 e/t)t (H2/t)tU(t).

(log H)2,, +
U(log log H)

possible values of m, and at most

L(p, q, N)2 O(H2)
U(log H)

possible combinations of values of r and s. Thus, for any value of t, there are at most

H log log H)(H2/t)U(t)U(log H
special codes.

Each special chain is associated with some special code, and at most one special
chain is associated with each special code. Thus the bound just derived applies to special
chains as well as special codes. Vl

We can now complete the proof. By Lemmas 2.2-4 and-6, there is a value of such
that

H log log H) 2nU((log H)4

’](H2/t)’U(t)U logH ->
\log log H/’

since these quantities bound the number of special chains of length at most L(p, q, N).
Taking logarithms, we obtain

(H.!0g10g H)2t log H- log + O(t) >-H + O\ log H

Ignoring the log term for the moment, this implies

H log log H)2t log H + O(t) H + 0 i0gn

EVALUATION OF POWERS AND MONOMIALS 245

or

This yields

or, by taking logarithms,

Multiplication by yields

(1) (1og lor./-/)(2t log H)V i0g H >-- HU o

t>_
H [loglogH\

21ogHU, o-af)

log >= log H + O(log log H).

log log H + O(t log log H).

With this bound on the log term, the original inequality implies

or

Thus

Since for special chains

we obtain

(H log log,H)log H + O(t log log H) >=H + O
\ 10gH

log log H log log H(tlogH)U(-’i ’)>=HU(o--i ’)"

H [loglogH\
t_->

log H uk i0g H"]"
H (H log log.H

log---- + 0 \ l-’g H)z]

r+s>-vlgN+O\ (logH)2)’

L(p, q,N)>-_-r +s +

H /’H log 10gH>=vlgN+iogH+O\ (logH)2 /

H (log log H)log N iog’H U\ o/-

which is the desired lower bound.

3. The upper bound. We shall prove

,ogH ((loglogH1/2)\.logH /q, log s +

246 NICHOLAS PIPPENGER

We shall begin with the preliminary upper bound

L(p, q, N) <=
log H \ log H /

which we shall deduce from a theorem on graphs.
Let y be a p-by-q (N + 1)-ary matrix. Let C(y) denote the minimum possible

number of edges in a directed graph in which
(1) there are p distinguished vertices called inputs and q other distinguished

vertices called outputs;
(2) there is no directed path from an input to another input, from an output to

another output, or from an output to an input; and
(3) for all 1 _-< -<_ p and 1 _-<] _-< q, the number of directed paths from the ith input to

the]th output is equal the]th component of the ith row of y.
Let C(p, q, N) denote the maximum of C(y) over all p-by-q (N + 1)-ary matrices

y. In [6] it was shown that

H
C(p,q,N)<_

log H
log log H’X 1/2)o) + 0(log N)+ O(w).

Thus the preliminary upper bound will follow if we prove L(y)_-< C(y), which implies
L(p, q, N) C(p, q, N).

Consider a graph with at most C(y) edges that meets the conditions enumerated
above. We may assume that this graph has no cycles, since the deletion of all edges
involved in cycles would not affect the number of paths from an input to an output
unless that number were originally infinite. From this graph we can obtain another in
which the degree (the number of edges directed from) each vertex is 0, 1 or 2, which has
at most C(y) vertices with degree 1 or 2, and which also meets the conditions
enumerated above; this is done by replacing each vertex with degree d-> 3 by d- 1
vertices with degree 2. We can then associate with each vertex a vector which, for
1 -<_] <= q, has as its]th component the number of paths from the vertex to the]th output.
It is easy to verify that these vectors can be arranged to form a chain of length at most
C(y) that computes y. Thus L(y) =< C(y), which completes the proof of the preliminary
upper bound.

3.1. The easy ease. Consider first the case

In this case

v log N "<
H log log H

(log H)2

v log N
H log log H 1/2).

and the desired lower bound follows from

<
H u((log_l_og.Hl/2)L(p, q, N)

log H \ log H]
+ O(v log N) + O(w),

which has already been proved.
At this point we have proved the case N 1, since in this case v log N 0. In

particular,

<
cd [/log log (cd)\ 1/2L(c, d, 1)=

log (cd-----t --- j] + O(c) + O(d).

EVALUATION OF POWERS AND MONOMIALS 247

3.2. The hard case. Consider now the case

which, as before, implies

v log N ->
H log log H

(log H)2

(log H)2

log log H"

Let y be a p-by-q (N + 1)-ary matrix. For 1 =< =< p and 1 =< j -< q, let eg,i denote the

flh component of the ith row of y, so that

Y/= E eidx]

Let

s=[(q log(N+ 1).) /2],P

t=[(p lg (N + 1))1/21.q

Then

st >= log (N + 1),

SO

2st I>=N.

On the other hand

st<__{(q lg (N + 1)) 1/2

P

1/2

log (N + 1)+
/|q log (N + 1)]\ 1/2

\ P /

1/2

SO

Similarly,

pqst <-- H + (p + q)H/2 +pq

o(H1/E(log H)z
=H+ , il-O-H J"

vst v log N + O(H1/2),
ps=O(H1/2),
qt O(H1/2).

We shall consider two cases, according to whether p -> q or p < q.
If p _-> q, we shall compute yl, , yp from Xx,""", xq in three steps as follows.
(1) For 1 _-< j _-< q and 1 <- b _-< t, compute

2s(b-1)XjXt(j-1)+b

248 NICHOLAS PIPPENGER

for 1 < <This defines x g g qt. For 1 -< < p and 1 -] < q, write ei,j as a t-digit number in
base 2s.

ei,i 2s(b-1)
ei,t(]-l)+b

l<b_t

<2where 0 < e i.,(i-1)/b 1. This is possible since 0 ei,i =< N < 2s‘ 1,’ it defines e i,g for
1 < =p< and 1 <= g <= qt. Now write each ei,g’ as an s-digit number in base 2"

a--1
ei, e,)+a,g2es(i-

l<as=

<1 This is possible since 0 <ei,g= -1; it defines e"where 0=< es(i-1)+a,g < 2 t,g for
1 =<f<ps= and l<=g<qt.=

(2) For 1 <- f--- ps, compute

Y= 2 e’/,xr
lgqt

(3) For 1 -< p, compute

yi 2’-ly’s(i- 1)+a.
l<a<s

It is easy to verify that this computes yi correctly:

Y 2- , ei-+,gxg
i<as 1-gqt

2s(b-1Y. 2’- Y’, , e s(i-1)+a,t(i-1)+b)Xj
las _bt ljq

)Xi, Y ei,t(i_l)+b2 (b-1

lbt l]q

E ei,ixi
li_q

Let us now count the number of additions required to perform these steps.
Consider X,(j-,)+b. For b 1, it is xi; for 2-< b -t, it can be computed from
using s additions:

Xt(i-1)+b 2SXt(i-1)+b-1

Thus step (1) requires at most

q(t-1)s<=vst

v log N + O(H/2)
additions. Since 0-e" < 1 for 1 <t, =f< ps and 1 <g < qt, step (2) requires at most

< pqst ((loglog(pqst’\] /2)L(ps, qt, 1)=log(pqst) U \ "(o--(p’]
+O(ps)+O(qt)

H u((loglogH]X/z)log-- \ log H]
+ O(H1/2)

EVALUATION OF POWERS AND MONOMIALS 249

additions, by taking c ps and d qt in the case N 1. Finally, consider the sum

Ysci-1)+r-- 2"-rY s(i--1)+a

For r= s, it is ysi, for 1 < r<s-= 1, it can be computed from yci-1)+r+l using two
additions:

Y s(i-1)+r Ys(i-1)+r "+"

Since yi y,-1/1, step (3) requires at most

2p(s 1) 2ps

=O(H1/2)
additions. Summing these contributions completes the proof of the upper bound for
p>

If p < q, we shall compute yl, , yp from xl, ’, xq in three steps as follows.
(1) For 1 =<] =< q and 1 =< b =< t, compute

2b-1X t(i-1)+b

for 1 < < =< p and 1 </" < q, write ei.i as an s-digit number inThis defines x g qt. For 1 _-__
base 2"

,3t(a-1)
ei,i ’, e s(i-1)+a.jZ,

la_s

<2’ 2’where 0<e,,_l)+a.j= -1. This is possible since 0<eia<N<= -1’ it defines eafor,
1 <-[<= ps and 1 _-<] -_< q. Now write each er.i as a t-digit number in base 2"

e’ 2b-f,j Z 1)+bef,t(i-
lb_t

" < 1 This is possible since 0 =< e, -< 2’ "where O<=et.t<j_l)+b 1,itdefines et,g for 1 <-_f<-ps
and 1 < <=g =qt.

(2) For 1 =< f-< ps, compute

(3) For 1 -< -< p, compute

y= X e’r’.x’g.
lgqt

Yi Z 2tc-l)Y(i-1)+a.
las

It is again easy to verify that this computes yi correctly:

Yi 2t(a-1)Y s(i-1)+a
las

Z 2’c’-1} Z esci-1)+a,e,Xe,
las _gqt

<=as lbt
es(i-1)+a,,(i-1)+b 2b-lxi

Z ei,ixi
ljq

250 NICHOLAS PIPPENGER

Let us again count the number of additions required to perform these steps.
Consider x’ti-1)+b. For b 1, it is xi, for 2 <= b <-t, it can be computed from x tj-l)+b-1

using one addition"

Thus step (1) requires at most

x ,’-l)+b 2X’t0"-l)+b-1.

q(t-1)<-qt

=O(H1/2)
additions. Since 0 _-< e’’,g =< 1 for 1 <= f <= qs and 1 <= g <= qt, step (2) requires at most

L(ps, qs, 1)-<lognU \ o ! +O

additions, as in the case p _>-q. Finally, consider the sum

Ys(i-1)+r
t(a-r)
Z. Ys(i-1)+a.

ra--s

For r=s, it is Ysi; for l_-<r<_-s-1, it can be computed from Ysi-l/r+l using t+l
additions:

Ys(i-)+r Ys(i-1)+r + 2 s(i-1)+r+l.

Since yi Ys(i-1)+l, step (3) requires at most

p(s- 1)(t + 1) vst + ps

v log N + O(H/)
additions. Summing these contributions completes the proof of the upper bound.

REFERENCES

[1] R. E. BELLMAN, Addition chains of vectors, Amer. Math. Monthly, 70 (1963), p. 765.
[2] A. BRAUER, On addition chains, Bull. Amer. Math. Soc., 45 (1939), pp. 736-739.
[3] P. ERDGS, Remarks on number theory, 111: On addition chains, Acta Arith., 6 (1960), pp. 77-81.
[4] D. E. KNUTH, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Addison-

Wesley, Reading, MA, 1969.
[5] N. PIPPENGER, On the evaluation of powers and related problems, Proc. 17th Ann. IEEE Symp. on

Found. of Computer Sci. (Houston, TX), 25-27 Oct. 1976, pp. 258-263.
[6], The minimum number ofedges in graphs with prescribed paths, Math. Systems Theory, to appear.
[7] A. SCHOLZ, Jahresbericht der Deutschen Mathematiker-Vereinigung (II), 47 (1937), pp. 41-42.
[8] E. G. STRAUS, Addition chains of vectors, Amer. Math. Monthly, 71 (1964), pp. 806-808.
[9] A. C.-C. YAO, On the evaluation ofpowers, this Journal, 5 (1976), pp. 100-103.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

(C) 1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0004 $01.00/0

EFFICIENT SYNTHESIS AND IMPLEMENTATION OF LARGE DISCRETE
FOURIER TRANSFORMATIONS*

SALVATORE D. MORGERA"

Abstract. A systematic technique is presented for synthesizing and efficiently performing large discrete
Fourier transformations (DFT’s) in the range from 60 to 5000 points. The technique is termed the mutual
prime factor cyclic algorithm (MPFCA). The mutual prime factor portion of the algorithm is attributed
originally to L. H. Thomas, with generalization supplied by I. J. Good; the cyclic aspect of the algorithm has
recently been formalized by S. Winograd. Three methods are described for implementing the MPFCA;
computational complexity (multiplications and additions) is estimated for each method and compared with
the fast Fourier transform (FFT). For special purpose hardware, the MPFCA is at least twice as efficient as the
FFT. A major result of importance is the realization that the three considerably different implementation
methods presented lead to rather similar multiplication complexities for large size DFT’s; furthermore, the
resulting multiplication complexity is considerably higher than that achieved for small size DFT’s. It is felt that
further substantial improvements for large size DFT’s built up using mutually prime factors will require more
general theoretical results in addition to long, tedious hours spent with computer based formula manipulation
systems.

Key words, discrete Fourier transformation (DFT), fast Fourier transformation (FFT), fast spectral
analysis, finite impulse response (FIR), cyclic convolution, mutually prime factors, cyclic group, primitive
root, cyclotomic polynomials

1. Introduction. Because of its widespread interdisciplinary use, untold numbers
of diverse workers have concerned themselves with the efficient implementation of the
DFT. The FFT algorithm was first described by Cooley and Tukey [1] in 1965. Their
algorithm was quite general in that the number of points, N, could be composite and not
necessarily a power of 2; however, only when N is a power of 2 (or 4) do this greatest
saving and the commonly quoted proportionality of multiplications and additions to N
log2 N result.

Thomas describes an algorithm [2] which he used as far back as 1948 for
performing calculations of Fourier series. His algorithm is different vis-a-vis the
Cooley-Tukey algorithm for the following major reasons" (1) the factors of N must be
mutually prime, and (2) no intervening phase shifts ("twiddle factors") are employed in
multidimensional transformations. Good showed that if N is composite, with mutually
prime factors (i.e., N N1 N2 NL, where g.c.d. (Nk, N) 1; k, 1, 2,. , L;
k l), a one-dimensional Fourier analysis of N points can be performed by doing
L-dimensional Fourier analysis on an L-dimensional, N1 N2 " x NL, array [3]. This
generalization by Good to rectangular arrays in conjunction with the insight offered by
Winograd [4], [5], and Agarwal and Cooley [6], 17] in the efficient transformation of the
factors themselves leads directly to the MPFCA described here.

Winograd has published a rather general theorem [4] which states that the number
of multiplications needed to compute the product of two polynomials, modulo a third
polynomial, viz.,

(1) RM SM(mOd UM)

is 2M- k, whereM is the polynomial degree, and k is the number of irreducible factors
of UM over the field, G, of interest, e.g., rationals, reals, or complex numbers. Recently,

* Received by the editors July 6, 1977, and in revised form April 13, 1979.
t Systems Engineering Laboratory, Raytheon Company, Submarine Signal Division, Portsmouth,

Rhode Island. Now at the Department of Electrical Engineering, Concordia University, Montr6al H3G 1M8,
Qu6bec, Canada.

251

252 SALVATORE D, MORGERA

Winograd has further shown in a rather terse communication [5] that the DFT can be a
special case of (1), and, consequently, when M p is absolutely prime, it is possible to
perform the "difficult part" of the DFT in [2(p-1)-k] multiplications (over the
rationals). The result follows from the theorem of Winograd and the fact that the group
of nonzero integers with the operation of multiplication modulo p is isomorphic to Zp_
(the group of integers under addition modulo p- 1). In practice, the key to achieving
this efficiency is to exploit the fact that the transformation matrix associated with the
difficult part of the DFT can be put into circulant form. For this work, it is important to
realize that a DFT of size M pr, where p is an absolute prime, can also be performed
efficiently; the reduced complexity follows again from the theorem of Winograd and the
fact that the group of integers relatively prime to M with group multiplication modulo
M is isomorphic to Z(p-1)(M/p)) for p 2. A very important part of this work involves
the calculation of this cyclic group of integers in a manner which maintains the overall
computational complexity (multiplication and additions) at a reasonable level. In
general, more than the minimum number of multiplications (as dictated by the theorem
of Winograd) is required in order to hold the number of additions down.

In general, when an N-point DFT is decomposed into mutually prime factors (i.e.,
N NI N2 NL, where g.c.d. (Nk, Nt) 1, k, 1, 2,. , L; k l), each of the
factors NI can take on one of the following forms: (1) N,--p, an absolute prime; (2)
N =pr, a power r 22 of an (odd) absolute prime; and (3) N 2t. In this work, we
synthesize DFT sizes which always have a factor of 4, i.e., 2; the remaining factors
are then of the form p or p*. We further restrict the distinct absolute primes which
appear in the remaining factors to be either 3 or 5. The advantages of such a systematic
approach are threefold" (1) a more than adequate selection of transformation sizes in
the important range from 60 to 5000 points results, (2) the number of distinct cyclic
transformations (3- and 5-point) that must be programmed is kept to a minimum, and
(3) the overall computational complexity is kept to a minimum. The latter point
certainly follows for multiplication complexity, one reason being that the factor of 4
leads to a 4-point transformation of multidimensional data which requires no multi-
plications.

We present three methods for implementing the N-point transformation
synthesized as above; the methods differ in the manner in which the factors of form pr
are handled. Method I obtains the transforms of size p as p(-l)r cyclic transformations
of size p, with intervening twiddle factors. Method II obtains the transforms of size p as
two transforms of size p(r-l and a cyclic convolution of size p(-(p- 1). For smaller
transform sizes (N _-< 900), the multiplication complexity of Method II is significantly
less than that achieved using Method I; however, for larger transform sizes, the.addition
complexity for Method II is about twice that of Method I. The reason for the larger
addition complexity stems from the fact that the larger transform sizes implemented
using Method II require long cyclic convolutions which have rather large addition
complexities. We have used the best algorithms presently available [6], [7] for the long
cyclic convolutions; it is possible that future improvements to the algorithms in the way
of further minimizing the addition complexity at little (or no) expense in multiplication
complexity will be made. Whether specific applications and processing environments
await these future improvements is up to the user; e.g., multiplication is considerably
more expensive than addition for a special-purpose machine or a computer which
favors integer arithmetic. Method III does not compute the transform of size p per se;

By "difficult part" we mean the (p- 1)-dimensional transformation that results by excluding the first
column and first row of the transformation matrix.

DISCRETE FOURIER TRANSFORMATIONS 253

the complete N-point transformation is factored into a portion that is implemented with
a number of small nested cyclic transformations and another portion that is implemen-
ted with both cyclic transformations and cyclic convolutions. Method III allows a
reduced addition complexity vis.h-vis Method II but an addition complexity that is still
greater than Method I, although in several cases the difference is slight. Definite
promise for the partial nesting technique does reveal itself for certain transform sizes.

With regard to terminology, we use the wording cyclic transformation to mean a
prime size transformation with point ordering permuted such that the transformation
matrix of the difficult part is of circulant form. The wording cyclic convolution takes on
the standard meaning found in the literature. We utilize the above distinction although
recognizing that a prime size transformation may (also) be cast in the form of a
convolution of one periodic sequence with another [8]. The recent book of McClellan
and Rader [14] provides an excellent tutorial for understanding some of the manipula-
tions carried out in this work, and the accompanying anthology contains many
important references.

2. Synthesizing transforms of large size. Table 1 presents a list of the transform
sizes, in the range from 60 to 5000 points, which are readily synthesized from the
mutually prime base factors (4, 3, 5) of a 60-point transform. The transform sizes of
Table 1 include selections close to the power of 2 sizes with which we are intimately
familiar, as well as some potentially useful intermediate size selections.

TABLE
Transform sizes synthesized from 60-point trans-

form factors.

Transform size Mutually prime factors

60 4.3.5
180 4. (3)2. 5
300 4.3. (5)
540 4. (3)3. 5
900 4. (3)2. (5)

1,500 4.3. (5)
1,620 4. (3)4. 5
2,700 4. (3)3. (5)
4,860 4. (3)5. 5

All the transform sizes of Table 1 may be written as

(2) N 4. (pl)r. (p2)s, r, s 1,

where pl 3 and P2 5 are absolutely prime. The factors (pl) and (p2) are mutually
prime. Thus, using a version of the Chinese remainder theorem, the transform of size
N/4 may be cast in the form of a two-dimensional transformation, wherein a (p)r point
transform is performed in which each point is the result of a (p2) point transformation.
These transforms require that transforms of size p and p2 be performed; the imple-
mentation details associated with these cyclic transformations are provided in Appen-
dix B. The matrix algebraic manipulations in Appendix B are also easily extended to
larger prime sizes. Method I for implementing the transform of size N/4 requires a
number of small cyclic transforms of sizes p and p2, twiddle factors associated with
transforms of sizes (p.)r and (p2)s, and the procedure (control) for interconnecting the
transforms. Method II also requires cyclic transformations of sizes pl and P2, a number

254 SALVATORE D. MORGERA

of cyclic convolutions, and the procedure for interconnecting transforms and con-
volutions. Method III utilizes a nesting technique, and although substantially different
in principle from the first two methods, it does employ some ingredients from both
Methods I and II.

Since the cyclic transformations of sizes pl 3 and p2 5 are common to all the
methods described here, we review their complexity before proceeding further. As
dictated by the theorem of Winograd [5], the multiplication complexity of prime size (p)
transformations is given by [2(p- 1)-k] (real complex, for complex data) multi-
plications, where k is the number of irreducible factors of the polynomial U(p-l) -1
over the field of rationals. The factorization of U(p-l) 1 over the field of rational
numbers is known in terms of the cyclotomic polynomials. Useful rules for the
generation of the cyclotomic polynomials are provided in Appendix A. From Appendix
A we have,

U(p-I) 1 U- 1 (U- 1)(U + 1),
(3)

U(pz-1) -1= U4-1=(U-1)(U+ 1)(U2+ 1).

Therefore, the multiplication complexity is given by,

(4)
[2(pl- 1)- k1] 2(real x complex) 4(real) _a m 1,

[2(p2-1)- k2] 5(real omplex) 10(real) _a
m2

as verified by the details of Appendix B. AppendiX B also provides the respective
addition complexities as al 6 (complex)= 12(real), and a2 16(complex)= 32(real)
additions. In this work, we consider both addition and multiplication complexity for
each of the methods because both complexities may be equally important for certain
software environments and/or hardware implementations.

3. Method I: MPFCA with cyclic transformations only. From a programming
standpoint, this method is perhaps the most straightforward and modularly redundant
of the methods presented here. The modules are basically the 3- and 5-point cyclic
transformations. We proceed simply by performing a transform of size pr as p(r-1)r
cyclic transforms of size p with (r 1)(p 1)[p (r-l) 1 intervening twiddle factors; e.g.,
a transform of size (3)2 9 requires 6 cyclic transforms of size 3 and 4 complex phasors.
Thus, the large transform of (2) is synthesized as (pl) transforms of size (pz)s, each
requiring (p2)(s-1)s cyclic transforms of size p2, and (s 1)(pz- 1)[(p)(-1)- 1] twiddle
factors, and (p) transforms of size (pl)’, each requiring (pl)’-)r cyclic transforms of
size pl, and (r- 1)(pl- 1)[(pl)(r-l)- 1] twiddle factors. All this must be performed four
times; although further additions are required by the 4-point transformation, no further
multiplications are required. It is very important to note that no additional twiddle
factors are needed to interconnect the transforms of the mutually prime factors: 4, (pl)’,
and (p2).

The transform sizes of Table 1 synthesized in the above manner have multi-
plication and addition complexities, MNt and AN1, respectively, which may be related to
the complexity of the cyclic transformations, viz.,

(5a) MNI <4[(pl)r(pz)(-l)sm (r-1)rm a+ (p2)S(pl) 1] + 3 TNr Mr(real),

(5b) ANI <4[(pl)(pz)(S-1)sa2+(pz)S(pl)(r-1)ra1]+ (Pl)(P2)Sao + 5 TN a aN(real),

where

(5c) TNz __a 4{(pl)r (S 1)(p2 1)

[(p2)(s-l)- 1]+(p2)S(r 1)(pl 1)[(pl)(r-l) 1]}(complex)

DISCRETE FOURIER TRANSFORMATIONS 255

and ao is the number of (real) additions required by a 4-point transformation; i.e.,
a0 16 (real) additions. We see that both Mvx and Avx are upper bounds; these bounds
may be lowered somewhat, but not necessarily concurrently, at the cost of storage for
precomputed quantities. A tradeoff between speed and memory is generally biased in
favor of the former because the cost of memory continues to decrease rapidly. Table 2
results from an evaluation of (5) for the transform sizes of Table 1. In evaluating (5), the
cyclic transformation complexities of (4) and Appendix B have been employed along
with the equivalence of three real multiplies and five real additions per complex
multiply.

We see from Table 2 that when the transform sizes are synthesized using the
MPFCA with cyclic transformations only, approximately one-half to one-third as many
multiplications are required vis-a-vis MN __a 2N log2 N (truncated), and about the same
number of additions as AN __a 3N log2 N (truncated). The FFT multiplication and
addition complexities are used as comparative guidelines here although it is recognized
that MN and AN are measures of these complexities only when N is a power of 2.
Furthermore, we assert that the MN and AN used here are the complexities associated
with commonly available software; optimized FFT software is not generally used, but it
can reduce the (real) multiplication complexity to 3((N/2) log N (3N/2) + 2), and the
(real) addition complexity to 2N log N + 5. (number of multiplications). The reduc-
tions are achieved by not performing multiplications by unity and +/’. The work of
Singleton [13] provides an operation count for a specialized algorithm for computing a
mixed radix FFT.

TABLE 2
Upper bound on multiplication and addition complexities for MPFCA Method I.

N Mv(real) A(real) M (real) A(real) (c 1/2)
CN

60 200 864 708 1,063 0.50
180 1,080 3,712 2,697 4,045 0.62
300 2,176 7,200 4,937 7,405 0.66
540 5,160 15,296 9,802 14,704 0.74
900 8,928 27,200 17,664 26,497 0.72

1,500 17,912 52,320 31,652 47,478 0.79
1,620 21,240 58,368 34,544 51,816 0.83
2,700 36,384 102,400 61,553 92,329 0.81
4,860 80,520 211,744 119,038 178,557 0.89

To develop a better appreciation for the results of Table 2, we define the upper
bound on overall computational complexity as,

(6) Cvz AM; + cAw,

where c denotes the "cost" of addition relative to multiplication. If we assume that
additions "cost:’ half as much as multiplications (roughly halfway between what we

expect for general purpose computers and specially constructed digital processing
devices) and normalize the resulting quantity by CN a__ MN + CAN, the last column of
Table 2 results. We see that anywhere from 50 to 11 percent of the FFT computational
complexity is saved by employing the MPFCA Method I for the transform sizes of Table
2. It is stressed that the figures shown in Table 2 represent an upper bound, with
additional savings possible if certain nondata-dependent parameters are precomputed
and stored. The algorithm must be worked out in detail for the transform sizes of
interest in order to precisely determine these parameters. As an example, the algorithm

256 SALVATORE D. MORGERA

has been worked out for (among others) the 60-point transformation [9]; optimizing
speed at the sacrifice of storage resulted in 120 (real) multiplications, as opposed to the
200 (real) multiplications of Table 2. The number of additions did not increase, and it
remained at the value of 864 (real) additions as shown in Table 2. The normalized
computational complexity is now 0.44, for a relative savings of 56%.

It is clear from Table 2 that some transform sizes (r, s combinations) result in lower
computational complexity vis-h-vis neighboring sizes; e.g., 900 and 2,700 are notably
"better" sizes. We now investigate why this may be the case, and in so doing we provide
some general characterization of the optimization of the computational complexity for
any set of primes pl, pz. A necessary condition that a pair (r, s) give rise to minimum
normalized computational complexity is that the pair be a solution to a linear combina-
tion of the two relations obtained by taking the partial derivative of the normalized
computational complexity with respect to each variable independently and setting the
result equal to zero, i.e., a linear combination of the two equations,

(7a)
OCuC"

OCm
NI CN

Or Or

(7b)
Cucu CN.
OS OS

The solution to (7a) is the set of r-values for fixed s which minimize the normalized
computational complexity; the solution to (7b) is the set of s-values for fixed r which
minimize the normalized computational complexity (the second partial derivatives are
positive).

Before forming a linear combination of (7a) and (7b), we solve (7a) using (6) and
CN (2 + 3c)N log2 N. Taking the partial derivative with respect to r of (6) and
simplifying results in

(8a)
Or

where

(8b)

OCNI[1][ar+bs+k+fl(r)+fz(s)]}t (2 + 3c) log2 (4pp2e)

a [(m + ca)+ (3 + 5c)(pa- 1)]/pl,

b =(m2+ca2)/p2,

k =[(ml .+ cax)- (3 + 5c)(p1 1) In PI]/P In PI +cao/4,

f(r) (3 + 5c)(p- 1)[(p)(-- 1]/(pl) In pl,

fz(s) (3 + 5c)(p2- 1)(s 1)[(pz)(s-l)- 1]/(p2)

and the variation of the FFT computationl complexity with respect to r is given by,

(8c) OCt= (2 + 3c)4(pl) In p(p2) log2 [4(pl)r(p)e],
Or

where e is the base of natural logarithms. The relations (d/dx)a a In a (du/dx) and
(d/dx) loga u loga e/u(du/dx) have proved instrumental in obtaining (8). Inserting
(8) into (7a) and after much algebraic manipulation, we obtain the optimization
conditions for r (s fixed),

(9a) air
2 + br + C1 dl(pl) r,

DISCRETE FOURIER TRANSFORMATIONS 257

where

a (3+5c)(p- 1) lnp,

b bx(s) (3 + 5c)(p- 1) In [4(p2)/p],

c Cl(S) -(3 + 5c)(p- 1)[1 + s In (pie) In (4p2)/ln Pl],
(9b)

d d(s) s{(m2 + caa)/p2-1n (4p2)[(m + cax) + (3 + 5c)(p- 1)]/p In pl}

+{(3 + 5c)(p2-1)(s- 1)[(p2)(s- 1)- 1]/(pz)S}--(3 + 5c)(pl-- 1)/px + cao/4.

The solution to (9) is the intersection of the quadratic and exponential curves; there is
only one admissible solution, i.e., one for which r ___> 0. Due to the "symmetric" form of
Crz and Cr, (7b) follows directly from (9), viz., (7b) becomes,

(9c) a2s
2 + b.s + cz d2(p2)s,

where a2, b2, C2 and d2 are gqual to al, b, c and d, respectively, with px replaced by p2
(and vice versa); ml and al replaced by m2 and a2, respectively (and vice versa); and s
replaced by r.

The linear combination we form is now obtained by subtracting (9a) and (9c),

(10a) [a lr a2s] + [bx r b2s + [Cl c2] [d(pl) d2(p2)"].

The variation of (10a) has been extensively studied on the computer; the solution is
given by,

[p21n p2]
/2

(lOb) r=lj s.

However, the local region about this extremal point is asymmetrical, with slightly
smaller values of r not causing great deviation from the minimum, but larger values of r

causing a large jump in normalized computational complexity. The following range of r

(in terms of s) is completely satisfactory for obtaining minimum computational
complexity,

(10c) s -< r -<_ [In P2
1/2

pa lnplJ s.
k

This result is very general and significant. It allows one to select combinations of pl, p2, r
and s which give rise to minimum normalized computational complexity. Also, we see
that the power of the smaller prime should always be lower bounded by the power of the
larger prime. For the cases we have studied, we have s <= r <-- (1.56)s, which is completely
in accord with the observations derived from the data of Table 2.

4. Method Ii: MPFCA with cyclic transformations and convolutions. This
approach to synthesizing the transform sizes of (2) uses a more complicated number
theoretic technique for performing the constituent transforms of size p. We restrict p to

be an odd prime. This restriction holds for the transform sizes in (2) since the even
number 4 is a mutually prime factor. Rather than breaking down the transform of sizep
into a number of cyclic transformations of size p with intervening twiddle factors as in
Method I, we compute the transform points in two steps: (1) those points that are not

mutually prime to p and (2) those points that are mutually prime to p. We note that the
latter set of points form a cyclic group [10]

DEFINITION. A group (subgroup) is called cyclic if there is some element in the

258 SALVATORE D. MORGERA

group (subgroup) whose multiples constitute the whole group (subgroup). The parti-
cular element is called the primitive root a of the group (subgroup).

THEOREM. The integers not exceeding, and mutually prime to, a fixed number, M,
form a group under multiplication modulo M. The group is cyclic ifMis equal to 2, 4, pr, or
2" pr, where p is an odd prime number.

COROLLARY. The group of integers {1, 2,..., p- 1}, where p is a prime number,
form a cyclic group under multiplication modulo p.

By way of example, the integers {1, 2, 3, 4}, with the operation of multiplication
modulo p 5, form a cyclic group. The primitive root of the group is a 2. By the

-1axioms of group theory, the unique inverse of the primitive root a =/3, such that
a /3 1 (the unique identity element) is also a member of the group. Thus, multiples of
/3 also constitute the whole group. For this example,/3 3.

The M pr transform points are given by,

M-1

x,.= Z x,W?
k=O

m =0, 1,2,. .,M-l,

where WM a_ e -2ri/M. The M/p transform points which are not mutually prime toM are
proportional to p, i.e.,

M-

Wt, M
(12) Xp= Xk /=0 1,2,’’’,----1.

k=O P

Recognizing that W WM/p, (12) becomes

(13)

M-1

x,.= E
k=O

X (k’(M/p)+k) WM/p, O, 1, 2, , 1,
k=O P

which is precisely the form of an M/p point DFT. The remaining (M/p)(p- 1) points
which are mutually prime to M are given by,

M-1

W+)k, M
(14) X+= E xk l=0,1,2,’",---1, q=l,2,... ,p-1.

The DFT of (14) may be further decomposed into two transformations" one which
operates on the data Xk for which k k’p, and one for which k k’p + q’, viz.,

(15)

(M/p)-I
lI&r(Ip+q kXlp+q E Xk,p M/p

(M/p)-1 p-1

Wr+q)(k’p+q’)E E x,....+...
k’=O q’=l

The first term of (15) is another M/p point DFT. This DFT serves to provide those
transform points for which 1 =< (lp + q) <= (M/p) 1. The transform is calculated only for
these distinct points; then, these points are also utilized for larger values of (lp + q) by
proper modulo M/p application. The second term of (15) is somewhat more compli-
cated and requires that we recall the definition of a cyclic group given earlier. The two
sets of (M/p)(p-1) integers---(lp+q) and (k’p+q’), l, k=0, 1,2,..., (M/p)-l; q,
q’ 1, 2, , p 1--with the operation of multiplication modulo M, each form a cyclic
group; therefore, any one of the integers in either set may be represented as a multiple
of the primitive root a or its inverse a- =/. We choose to represent (lp + q) =- a and

DISCRETE FOURIER TRANSFORMATIONS 259

(k’p + q’)=-/3k; therefore, the second term of (15) is equivalent to,

(M/p)(p-1)--I

E xW
(M/p)-I p-1

Wr+q)(k’p+q’)E E x,+,
k’=O q’=l

(16)
(M/p)(p-1)-I

k=0

where it is understood that (a-l) =a i.e.,a is such that a .a =lmoduloM.
The result of (16) is of the form of a cyclic convolution with impulse response

According to the theorem of Winograd [5], the convolution can be done in [2(M/p).
(p-1)-k] (real complex) multiplications, where k is the number or irreducible
factors (over the rationals) of the polynomial UM/p)p-a) 1.

(r--l)We see, then, that a M p point transformation is performed as two M/p p
point transformations and a cyclic convolution of size (M/p)(p- 1) p-a)(p 1). The
transformations cannot be performed cyclically unless r= 2, i.e., unless M/p is
absolutely prime. Thus, in order to achieve maximum efficiency, we must decompose
the transformations further. In general, we will have (r-1) stages (r 2) of de-
composition, leading to the computation of a M p point transformation as 2-a)

p-point cyclic transformations and 2-1) cyclic convolutions of size p-)(p- 1), where
i= 1,2,. .,r-1. Any one of these cyclic convolutions requires m,
[2p-)(p 1)-k.] (real complex) multiplications, where k. is the number of irre-
ducible factors (over the rationals) of the polynomial Up"-’’p-a) 1. The large trans-
form of (2) is synthesized as a (p) point transformation in which each point is a (p2)
point transformation, both performed as above. The (pa) point transformation
requires cyclic convolutions of lengths 6, 18, 54, and 162, for r 2, 3, 4, 5; whereas, the
(pz) point transformation requires cyclic convolutions of length 20 and 100 for s 2, 3.
As with Method I, everything must be carried out four times. Although no further
multiplication complexity is added, some addition complexity is added by the 4-point
transformation.

The transform sizes of Table 1 synthesized in the above manner have a multi-
plication complexity Mull, which may be related to the computational complexity of the
cyclic transformations and cyclic convolutions, viz.,

(17)
Mutt =<4 (p) 2(s-1)m2 + 2(i-X)mi, +(p2) 2(-1)m1+ 2(i-1)mg,

i=1 i=1

&MH(real).

We assert that Mgm is an upper bound (albeit, tight) on the multiplication complexity
for Method II. This upper bound may be lowered slightly (neglecting, for the moment,
the important issue of what may happen to the number of additions) at the cost of
storage of certain precomputed quantities and by simply reducing nonessential cal-
culations, e.g., by calculating only the distinct points in the first term of (15). In
computing (17) for the powers r and s of Table 1, the cyclotomic polynomial factoriza-
tions (cf. Appendix A) and subsequent theoretical convolution complexities of Table 3
are required. We emphasize the word theoretical because although the theorem of
Winograd gives the minimum number of multiplications required to compute such
convolutions, as the powers r and s grow, the number of additions becomes very large.
Agarwal and Cooley [6], [7] have studied this difficult problem and have found that, in

260 SALVATORE D. MORGERA

TABLE 3
Cyclic convolution minimum multiplication complexity.

Theoretical multiplication
Convolution Polynomial complexity

length factorization (real x complex)

[ki, k(r-i)] [mi,
Generated [" 6 kl 4 m 8
by t18 k2=6 m2=30
Factor 54 k3 8 m3 100
(pl) 162 k4 10 m4 314

[ki, ks-i] [mi, ms-i]
k =6 m 34(P2)

100 k2=9 m2 191

general, more than ,the minimum number of multiplications is required to keep the
number of additions to a reasonable level. For example, a (pl)r=(3)3=27-pOint
transform requires two 6-point cyclic convolutions and one 18-point cyclic convolution.
It is relatively easy to find an algorithm to compute the short 6-point convolution using 8
(real x complex) multiplications, as in Table 3, and a reasonable number of additions.
However, the best algorithm found by Agarwal and Cooley for the 18-point cyclic
convolution requires 44 (real complex) multiplications as opposed to the theoretical
number of 30 (real x complex) multiplications from Table 3.

The technique of Agarwal and Cooley utilizes a multidimensional approach
wherein a long one-dimensional cyclic convolution is written as a multidimensional
convolution that is cyclic in all dimensions. Convolution along each dimension is of
short length and is implemented by an efficient algorithm using a rectangular transform
approach which reduces the number of multiplications and additions. The rectangular
transform approach may be written in the following manner,

(18) m=Ah(R)Bx, y=Cm,

where A, B, and C 7- are rectangular matrices of dimension (Me No), M being the
number of points in the transform domain, and N being the number of input data
points. The symbol (R) denotes point-by-point multiplication, it is obvious thatM _>- N;
thus, the matrices A and B transform h and x, respectively, to a higher dimension
manifold. The necessary and sufficient (n.s.) condition on the A, B, and C matrices in
(18) needed to produce the (No 1)-dimensional output data vector y as the cyclic
convolution of the (No 1)-dimensional input data vector x and impulse response vector
h is that the matrices should exhibit the property,

(19) , Cn,kAk,pBk,q
1, p + q n mod N,

k=o 0, otherwise.

For our application and many others, the impulse response vector h is fixed;
therefore, Ah may be precomputed and the associated operations not counted.
Generally, the matrices B and C have integer elements and do not add to the number of
multiplications required to compute (18); however, the integer elements may be rather
large and as costly as multiplication. The objective of Agarwal and Cooley [6], [7] is to
obtain algorithms with as few multiplications as possible in the point-by-point multi-
plication of Ah and Bx while still keeping the matrices B and C of simple form. An
immediate decrease in the complexity of (18) is possible if we realize that the number of

DISCRETE FOURIER TRANSFORMATIONS 261

additions required in the calculation of Cm is much larger than that required in the
calculation of either Ah or Bx. In order that advantage may be taken of this situation, it
is possible to replace A by A’, and C by C’ where,

(20) A’k.p C_pk,. C’. A.-n.
Now, the vector A’h, which involves the largest number of additions, is the pre-
computed quantity. It is easy to show that the matrices A’, B, and C’ satisfy the n.s.
condition of (19). Efficient algorithms of the form of (18) and (20) have been derived for
the short lengths Nc 2, 3, 4, 5, 6, 7, 8, and 9. The "best" long convolution algorithms
are then obtained by picking mutually prime factors from this set, ordering them
properly, and using the Chinese remainder theorem to map the sequences into the
multidimensional arrays.

If there are L mutually prime factors, i.e., if

(21) N’c=N.Nc...Nc.
repeated application of (18) and (20) generalizes to the form,

(22) y= CC C’L[(A’ a.a)h (R) (BL BzBx)x],

where y is (now) a (N’c x 1)-dimensional output data vector. The number of additions
required to compute (22) depends on the ordering (21); the ordering which minimizes
the number of additions is given by requiring that the quantity T(Nc,)<-_ T(Nc,,) when
< k, where,

(23) T(Nc,) ml-Nc_____, 1, 2,..., L.
al

The quantities mt and at are the multiplication and addition complexities, respectively,
for the cyclic convolution of short length

it should now be obvious that if we pick mutually prime factors, No,, from the above
set, then, of the required sizes of Table 3, we can compute only the length N’c 6, 18,
and 20 cyclic convolutions. For the additionally required sizes, we choose to substitute
longer convolutions using the observations that a cyclic convolution (or correlation) of
length N1 may be computed as part of a cyclic convolution of length Nz, where
Nz>=2N1 1 [8], [12]. An alternate approach is to imbed a portion of the cyclic
convolution of size N1 in a cyclic convolution of size N3 <N2, and compute the
remaining points directly. We have examined this alternate approach for the specific
sizes required here and found that the former technique of computing cyclic con-
volutions of size Nz is more desirable from a computational complexity standpoint. For
the required sizes of 54, 162, and 100, we compute longer convolutions of length 120,
360, and 210. Table 4 shows the selected convolution sizes, the short (ordered)
transform factors, and the practical multiplication and addition complexities. The
overall addition complexity, ANn, is given by

ANt_I <4= (Pl) 2(’-)az+ 2(i-a)ai. +(P2) 2(r-a)aa + , 2<i-)ai,r + (px)"(p2)ao
i=1 i=1

(24) _a A,H(real).

Table 5 results from an evaluation of (17) and (24) for the transform sizes of Table
1. The cyclic transformation complexities of (4) and Appendix B, and the cyclic
convolution complexities of Table 4 have been employed in the evaluation of (17) and
(24).

262 SALVATORE D. MORGERA

TABLE 4
Cyclic convolution multiplication and addition complexities using multidimen-

sional rectangular transforms.

Multiplication Addition
Convolution Ordered complexity complexity

length factors (real complex) (complex)

(54)
(162)

[mi.r m(r-i)] [ai.r a(r-i)]
6 ml 8 al 34
18 2 9 m2 44 a2 178

120 3 8 5 m 560 a3 3,096
360 8.9 5 m4 3,080 a4 15,916

(lOO)

[mi, m(s_i)] [ai, a-i)]
20 4 5 m 50 a 230

210 2.3.5.7 m2= 1,520 a2=7,566

TABLE 5
Upper bound on multiplication and addition complexities for MPFCA Method H Cvu Mvu + cAvu.

N Mn-(real) Avu(real) M,(real) A, (real) (c 1/2)

60 200 864 708 1,063 0.50
180 840 3,712 2,697 4,045 0.57
300 1,840 8,688 4,937 7,405 0.71
540 3,800 16,416 9,802 14,704 0.70
900 6,720 31,664 17,664 26,497 0.72

1,500 41,760 206,160 31,652 47,478 2.61
1,620 32,600 166,848 34,544 51,816 1.92
2,700 26,560 121,392 61,553 92,329 0.81
4,860 193,800 993,664 119,038 178,557 3.32

We see from Table 5 that when the transform sizes are synthesized using the
MPFCA with cyclic transformations and cyclic convolutions, approximately one-half to
one-third as many multiplications are required vis-?-vis Mv __a 2N log2 N (truncated)
for N <= 900 points. The addition complexity for this same range of transform points is
approximately that of the FFT, i.e., approximately Av-a-3N log2 N (truncated).
Therefore, Method II has about the same normalized computational complexity for
N <= 900 points. For larger transform sizes, the multiplication complexity is approxi-
mately equal to Ms, and the addition complexity can grow to as large as 8AN. The large
multiplication complexity is caused by the necessity to perform cyclic convolutions of
length N2--_> 2N1-1, with the extremely large addition complexity arising from the
double length convolutions as well as the large addition complexities of Table 4 for the
cyclic convolutions of long length. The exception to this is N 2,700 which has a
normalized computational complexity of 0.81, equal to that for Method I. This
transform does not require double length cyclic convolution and uses only cyclic
convolutions of lengths for which optimal algorithms have been found.

For large transform sizes (N > 900 points) we can see that a better approach is to
synthesize the transform size by using an increased number of mutually prime factors,
i.e., let N p]pp3, for example, where the pi are mutually prime. In this way the
required cyclic convolution length will remain small and even double length cyclic
convolutions, if required, will not exhibit extremely large addition complexities. For

DISCRETE FOURIER TRANSFORMATIONS 263

sizes N -< 900 points Method II is competitive with Method I and does have the distinct
advantage of requiring the investigation and software implementation of relatively
efficient cyclic convolutions, which are very important in the computation of auto- and
cross-correlation functions, design of finite impulse response (FIR) and infinite impulse
response (IIR) filters, and the solution of difference equations.

5. Method III: MPFCA with cyclic transformations and nested factors. Yet
another method has been examined for implementing the transform sizes of Table 1.
This technique attempts to capitalize on a property of a transformation whose size is the
product of certain "special" numbers, some of which are absolu.tely prime. For the sizes
2, 3, 4, 5, 7, 8, 9, and 16, the associated transformation matrix Wsa may be decomposed
in the following manner [11],

(25) ff’t $tDMTsa,

where TM is a (J x M)-dimensional incidence (graph theoretic) matrix; (i.e., the
element values are 0, + 1, and -1 only), S is a (M J)-dimensional incidence matrix,
and Da is a (J J)-dimensional diagonal matrix. It is not difficult to decompose the
transformation matrix in the form of (25) for J >> M, e.g., J M2", what makes the above
numbers special is that the decomposition of (25) exists for J M. The implication here
is that the number of multiplications required to perform a transformation of size
M 2, 3, 4, 5, 7, 8, 9, or 16 is M. Examples for the sizes 3 and 5 relevant to our work
here are given in Appendix B.

If the desired transform size 3/can be written as the product of L mutually prime
factors ML" ML-1 M1, then we have,

X’ Wx"
(26)

]/[ML * /rML_I *’" * /VM1)Xif,

where the operation denotes the Kronecker (direct) matrix product. The vectors x"
and X’ are the (M 1)-dimensional input data and transform vectors, respectively; the
primes indicate that the point ordering is not "natural" and it is generally different for
the two vectors. When each factor ofM corresponds to one of the special numbers such
that the L factors are mutually prime, then (25) may be substituted L times in (26) to
obtain,

(27) X’ (SML 1 SML_I *’’" * Sx)(DI,_ D,_I *"" * DM1)(T4,. * T,_ TM1)X",
whereM 2, 3, 4, 5, 7, 8, 9, or 16, with g.c.d. (M, Ml) 1, k, 1, 2, , L and k # l.
It follows from (27) that the multiplication complexity of the transform of size A?/is
given by the product of the individual multiplication complexities, ml,; i.e.,

L

(28) Mgt I-I mt,
/=1

independently of the ordering of the factors. We point out that a relationship similar to
(28) also holds for long cyclic convolutions performed using the multidimensional
rectangular transform approach of (22). If we wish to enjoy the computational savings
offered by (28), we are limited to an upper transform size of 37/= 16 7 5 9 5040,
because the factors must be mutually prime.2 Of course, the number of sizes that can be
synthesized is again limited to the product of mutually prime special numbers. We note
that there is no theoretical limit to the transform size synthesized in the manner of (2).

Strictly speaking, this is not true. The author has also found an efficient transform of size 11. This allows
an upper transform size of//= 16.11 7 5 9 55,440.

264 SALVATORE D. MORGERA

The addition complexity of the transform of size 57/is easily obtained via induction on
two factors as,

(29) A 2 a,_/ I-[m (complex),
/=1]=L-l+2

where it is understood that 1--[= (")= 1 for a > b.
The result of (29) applies to complex data, where a, andm denote the number

of (complex) additions and (real x complex) multiplications required to compute a
transform of size M. The ordering of the factors which minimizes the number of
additions is identical to (23).

Methods I and iI presented previously derive par of their advantage from the

decomposition of (25) for the sizes 3 and 5. It would seem that if the transform sizes of
interst were factored such that there were products comprising at least one factor that
were mutually prime special numbers, then savings in excess of Methods I and Ii might
derive. For the transform sizes of Table 1, it is natural to choose the (ordered) factors
/ 3 4 5 60, and ?’/ 4.5 9 180, and synthesize the larger transform size
N- ’/. (1-I M), as shown in Table 6.

ThBLE 6
Transform sizes synthesized from the nested factors

Transform size Factors

60 -/1 3’ 4’ 5
180 /rE =4" 5 9
300 A?/1 5
540 A/2" 3
900 ME" 5

1,500 f/l" 5
1,620 A/2’ 32
2,700 /if/E" 3.5
4,860 37/2 33

We note from Table 6 that the factors other than are special numbers. However,
these other factors are obviously not mutually prime to 37/. The other factor (I-It MI) is
either a single special number (N 300, 540, and 900), of the form (pl) or (p2)
(N 1,500, 1,620, and 4,860), or a composite of two special numbers (N 2,700).
Since the factors of the form (pl) and (p2) involve a cyclic convolution no larger than
length 20, we choose to perform this transformationusing Method II" the composite
factor is handled just like a transformation of size M. A number of complex twiddle
factors TNm (57/- 1)([I Ml- 1) are required to interconnect the transform of size 37/
with the remaining factor (I-[M).

The transform sizes of Table 1 synthesized in the above manner have multi-
plication and addition complexities, MNm and ANm, respestively, which may be related
to the associated complexities, Mgt and Agt of the factor M, and, M(Ia,M0 and A(l-I,M,), of
the remaining factor (I-it M), viz.

(30a) MNm-----(_/r)M(n, ,)+(M)Mgt+3Tcz,a--Mrzzz(real),
(30b) ANm <-- (.’I)A(n,M,) +(M)A + 5 Tr,,, --a Avm(real),

DISCRETE FOURIER TRANSFORMATIONS 265

where

(30c) Trm (M- 1) MI- 1 (complex)

and/r J/1 or A?/2. The addition and multiplication complexities for the transform of
size 57/are given by (28) and (29); i.e.,

(31)

Jl 60" Atl 444(complex) 888(real),

180"

M 72(real complex) = 144(real),

A;t2 2,028(complex) 4,056(real),

M2 312(real x complex) 624(rea!).

In calculating the value of (31), the number of multiplications (and associated additions)
for 3-, 4-, 5-, and 9-point transformations given by Silverman [11] have been used
because these numbers count multiplications by W, as required for the nested
approach. Table 7 results from an evaluation of (30) using (31) for the transform sizes of
Tables 1 and 6. Once again, we employ the equivalence of three real multiplies and five
real additions per complex multiply.

We see from Table 7 that, again, at most, one-half to one-third as many multi-
plications are required vis-a-vis the FFT. In general, the number of multiplications

TABLE 7
Upp,er bound on multiplication and addition complexities]’or MPFCA Method III Cvm Mvm + cAlvin.

Cm (c 1/2)(real) Avm(real) M (real) A (real)

60 144 888 708 1,063 0.47
180 624 4,056 2,697 4,045 0.56
300 2,028 7,540 4,937 7,405 0.67
540 3,666 16,118 9,802 14,704 0.68
900 7,068 29,620 17,664 26,497 0.70

1,500 15,048 60,720 31,652 47,478 0.81
1,620 14,232 57,360 34,544 51,816 0.70
2,700 23,358 102,530 61,553 92,329 0.69
4,860 55,290 229,982 119,038 178,557 0.81

required is less than the number for MPFCA Method II and about the same (with some
substantial savings for N 1,620 and 2,700) as MPFCA Method I. We have reduced
the number of additions considerably over MPFCA Method II because by partial
nesting, the remaining factor (1-I MI) can be implemented with cyclic convolutions no
larger than length 20. The addition complexity is still greater than that for MPFCA
Method I although in several cases the difference is slight. Definite promise in the
partial nesting technique reveals itself for N 2,700, where both factors, M2 and 3 5,
are partially nested and combined with the appropriate twiddle factors.

6. Conclusions. A systematic approach to synthesizing large discrete Fourier
transformations has been described that minimizes the number of small distinct
cyclic transformations that must be programmed. In fact, the synthesis offered here of
transformations in the large range from 60 to 5000 points requires only that cyclic
transformations of sizes 3 and 5 be coded. Three methods have been presented and

266 SALVATORE D. MORGERA

compared for implementing the large transformations: Method I interconnects cyclic
transformations exclusively, Method II interconnects cyclic transformations along with
a number of cyclic convolutions, and Method III is a partial nesting technique which
employs ingredients from both Methods I and II.

Of primary importance is the realization that for large sizes the considerably
different implementation methods lead to rather similar multiplication complexities.
Furthermore, the multiplication complexity appears to behave asymptotically as
N log2 N, in the same manner as that of the FFT. The implication is that the highly
efficient multiplication complexity (2N k), promised by the theorem of Winograd and
achievable for small transformation sizes, is not presently achievable for large trans-
formation sizes. This is not to say that present methods do not offer improvement over
the FFT complexity for large sizesmthey do, as substantiated by the results presented
here. Further substantial improvements for large sizes, however, will probably require
theoretical breakthroughs in addition to long, tedious hours spent with computer-based
formula manipulation systems.

To highlight sorrle of the results, Table 8 presents (for complex input data) a
comparison of the average computational complexity of the methods presented here
relative to the FFT. By average computational complexity, we mean the linear
combination of the (upper bound) number of multiplications and additions averaged
over the transform sizes synthesized in the range of 60 to 5000 points; the parameter of
Table 8 is the linear weighting, i.e., the "cost" of an addition relative to that of a
multiplication.

TABLE 8
Upper bound on average computational complexity relative

to FFTfor selected addition/multiplication costs.

MPFCA
implementation

method 1/16 1/2

0.56 0.73 0.82
II 0.80 1.32 1.58

III 0.43 0.67 0.80

The left-most column of Table 8 (c 1 ! 16) might be indicative of a special purpose
machine or one which favors integer arithmetic, whereas the right-most (c 1) is
suggestive of a general purpose computer. We see from Table 8 that all three methods
favor special purpose hardware, with the saving of average computational complexity as
high as 57%. Method II is actually more complex than the FFT for c 1 !2 and 1. This is
due primarily to the large complexities of transforms larger than 900 points; for
N-< 900, we have that the average computational complexity is 0.64 for c 1/2 and
0.76 for c 1. We stress again that the figures of Table 8 are upper bounds; the
complexities may be reduced further at the expense of storage for certain precomputed
nondata-dependent quantities. Special purpose hardware implementations optimized
in this manner have yielded computational complexities as low as 16 to 20% of the FFT
computational complexity for certain transform sizes [9]. In a general purpose
computer, both Methods I and III seem to share the advantage, with the saving of
average computational complexity as high as 20%.

All three methods are equally difficult to program. Method II does have the
advantage that the detailed implementation of efficient cyclic convolutions of long
length benefits many other application areas, e.g., the calculation of auto- and cross-
correlation functions, design of IIR and FIR digital filters, solution of difference

DISCRETE FOURIER TRANSFORMATIONS 267

equations, MODEM design, and spatial beamforming. Finally, we mention that if these
multidimensional cyclic convolutions are implemented in modulo arithmetic, there is
no roundott error introduced at any stage of the computation. Even if ordinary
arithmetic is used, the rectangular transform approach described is likely to have less
arithmetical roundoff noise than an FFT approach.

Appendix A. The purpose of this appendix is to introduce the factorization of a
certain polynomial. The results presented here are important in that the number of
factors is required for the calculation of the minimum multiplication complexity for
certain discrete Fourier transformations and cyclic convolutions while the specific form
of the factors is necessary for their detailed implementation.

The factorization of the polynomial UM- 1 over the field of rational numbers is
given in terms of the cyclotomic polynomials C,,(U), i.e.,

(A. la) UM 1 H Cm(U),
O<m<-M

(A. lb) C,(U) l-I (u-w).
g.c.d.(n, m)=

l<=n<m

In (A.1) the notation m lM is read as "all m that divide M", and W,,, a__ e-2i/m. The
theorem of Winograd uses the number of factors, k, where k is the order of the set
{m IM; 0 < m -< M}, to establish the minimum multiplication complexity. For example,
if we wish to compute a cyclic convolution of lengthM 6, we have k 4 (1, 2, 3, and 6
divide 6), and 2M-k 8(real complex) multiplications are required for complex
input data.

The cyclotomic polynomials C,, (U) are easily generated from the following rules
when p and q are absolutely prime (CI(U)= U- 1),

(A.2a) Cp(U) U(p-I + U-2 +... + U + 1,

(A.2b) Cv,(U) C’,(U’"-’>),
(A.2c) C2v(U) Cv(-U) (p odd),

(A.2d) Co. U)
c(u) G(u)
c u) c,, u)

It can be seen, therefore, that the cyclotomic polynomials have simple coefficients
(0, +1, and-1).

Appendix B. The purpose of this appendix is to provide the implementation details
associated with cyclic transformations of prime sizes pl 3 and p2 5.

(B.1)

B.1. Cyclic transformation of size px = 3. The 3-point DFT is given by"

Xl/ W3 W x1

x).]

W3 W Xl

W3 W3_]
_

268 SALVATORE D. MORGERA

where we have used the fact that W3 e -2"r’i/3 W. The difficult part of the DFT is
given by’

]
W3.1 x x2

We see that the transformation matrix 2.3 is already in circulant form. This matrix may
be expanded in the following manner,

(B.3a)

where

(B.3b) [1] a__ [1 1]1 1

(B.3c) [l+/-]--a [1
-1

Inserting (B.3) into (B.2) results in,

(B.4) YIIy21 W3-["2 (x1

W + W,)(x2

The complete transform is then given from (B.1) and (B.4) as

Xo xo + (X + X2),

(B.5) Xl Xo + Y1,

X2 Xo+ Y2.

The following real and pure imaginary quantities should be precomputed and
stored for the calculation of (B.5).

(B.6a) (.W+W!) (W+W’) (ff.) 1
2 2

cos ,
(B.6b) _](W3- W)= _](W3- W’): sin ()= /_

2 2 2"

Note that the 3-point transformation requires two (real complex) multiplications
and six (complex) additions. The decomposition (25) for the transformation matrix
follows directly from the above, i.e.,

(B.7a) I3 S303 T3,

DISCRETE FOURIER TRANSFORMATIONS 269

where the incidence and diagonal matrices are equal to

(B.7b)

(B.7c) T3 1
1

(B.7d)

1

D3 cos

0 0 10

0 -/" sin ()3
B.2. Cyclic transformation of size P2 = 5. The 5-point DFT is given by:

(B.8)

"Xo 1 1 1 1 1] Xo
X 1 W5 W52 W53 W541 x
X2 1 W52 W W W53[x2

_x, w w w
1 1 1 1 l,’] Xo

1
W W, (W52)* W5 X

w w* w (w) x

Wff (W52)$ W52 W5 A 4

where we have used the facts that W Ws*, and W (W52)*.
The difficult part of the DFT is easily extracted, i.e.,

(B.9)
Y, W W5 (W)*
Y w w* w
v w), w

w* (w), w

1 x,

w)l. 4 x_

W / X3 X3

WsA 4

The permutation of the cyclic group of integers {1, 2, 3, 4} which puts the trans-
formation matrix ff’4.5 in circulant form may be determined from the primitive root

0 O2 3
a 2. We have a 1, a 2, 4, a 3 (mod 5); thus, the desired permutation is
{1, 2, 4, 3}. Performing the permutation, we allow the transformation matrix W4.5 of
(B.9) to be partitioned in the following manner,

(B.10a) X2

/’2,5A X4

3

270 SALVATORE D. MORGERA

where

Partitioning the transform vector and data vector in the same fashion, we may write
(B, 10) as,

Y,2 W2,sX,2 + W2,s x,3,
(B.II)

Y4,3 1Z,5 Xl.2 + l’’r2,sx4,3.
In order to take advantage of the symmetry relationships inherent in (B. 11), we

must work separately with the real and imaginary components. The transformation
matrix I2,5 may be written as

(B. 12a) ff’2,5 I2,5R +
where

(B.12b)

I:z.sa Re { I9_.5}

inserting (B. 12) into (B. 11), we have,

(B.13a) Y,2 /’2,5R(X1,2 + X4,3) + jk2,5I(X1,2 1K4,3),

(B. 13b) Y4,3 W2,5R(Xl,2 + x4,3)-fW2,5I(Xl,2-

From (B.13), we see that there are only two linear transforms that must be computed"
25R(X,2 + ,3) and 2 si(x,2-X4,3)’ we concentrate on these individually.

The circulant matrix WB,SR may be expanded in the following manner,

(B.14, = [wl wz]=(wm+wz)[1]+(wl-wz.)[l],WR WR 2 2

where the matrices [1] and [1] are given by (B.3a) and (B.3b), respectively. Use of
(B. 14) permits the first term transformation of (B. 13) to take the form

(B.15) w + WR2 (X1 +X2+X3+X4)+ (X1 +X4--X2--X3
2 2

W 5(x, + x4)

The symmetric (but not circulant) matrix .s is exapanded in the same fashion, but
with an additional term, i.e.,

(.16)2,5i [Wi1wi2 -WIljWIzl=(wI’+wI)2[1]+ (WI1--WI2’)[I]--2(WI1)[020 7]

DISCRETE FOURIER TRANSFORMATIONS 271

Use of (B.16) permits the second term transformation of (B.13) to take the form

WI1 + WI2 (X X4 + X2 X3) -" (X X4 X2 -i- X3)
2 2

(B.17) W2,5i(Xl,2- x4,3)

l(WIl+wI2)(xl-x4q-x2-x3)-(wI1-WI2)(Xl-X4-X2x3)2 2
(2 wi1)(x2- x3)A

The complete 5-point transform is then given from (B.8) and (B.13) simply by

Xo Xo - (Xl -[- x2 -- x3 -+- x4),

(B. 18) X1,2 xo+Y1,2 Xo+ l2,sr(xl,2 + x4,3) + jlVE,st(Xx,2 x4,3),

X4,3 X0 "+" Y4,3 Xo q- //’2,5R(Xl,2 +" X4,3)-jI/’2,5I(Xl,2- X4,3).

The following quantities should be precomputed and stored for the calculation of
(B.18).

(B 19a) (wa+ w2)= [cos.()+cos ()]= [cos (-)+ 2 cos2 ()-1]2

-w l_[cos =1(B. 19b) (WR1 R2) 2l (-)-cos (-)] [cos ()-2 COS
2 (-)q" 1]2

(B 19C) (WIl-+-wI2)=-[sin ()+sin ()] =-[sin (-’rr)+ 2 sin ()cos ()]2

(B 19d, (wtl-wry)=-[sin ()-sin (7)] -[sin (-)- 2 sin (5--zr) cos2

(B.X9e) (2Wtl) -2 sin ().
As before, it is easy to decompose the transformation matrix W5 in the form of

(B.Ta) by including the additional "multiplication" by W. Note that the 5-point
transformation requires five (real complex) multiplications and 16 (complex) addi-
tions.

Aeknowleflgment. The author wishes to acknowledge many useful discussions with
both Ralph W. Lamp of Raytheon Company and Dr. M. Vidyasagar of Condordia
University, who have extraordinarily intuitive insight into the properties of multi-radix
discrete Fourier transformations and functional optimization, respectively. Also, the
comments of Dr. Eric Dubois of Universit6 du Qu6bec Montr6al are most gratefully
acknowledged.

REFERENCES

J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex Fourier series,
Math. Comput., 19 (1965), pp. 297-301.

[2] L. H. THOMAS, Using a computer to solve problems in physics, Application of Digital Computers, Ginn,
Boston, MA, 1963.

[3] I. J. GOOD, The interaction algorithm and practical Fourier analysis, J. Roy. Statist. Soc. Ser. B, 20
(1958), pp. 361-372; Addendum, 22 (1960), pp. 372-375.

272 SALVATORE D. MORGERA

[4] S. WINOGRAD, Some bilinear forms whose multiplication complexity depends on the fieM of constants,
IBM T. J. Watson Research Center Rep. RC 5669, October 1975.

[5] ., On computing the discrete Fourier transform, Proc. Nat. Acad. Sci. U.S.A. (73), 4 (1976), pp.
1005-1006.

[6] R. C. AGARWAL AND J. W. COOLEY, New algorithms .for digital convolution, Conference on
Acoustics, Speech, and Signal Processing Record, Hartford, CT, May 1977, pp. 360-362.

[7],New algorithms]’or digital convolution, IBM Thomas J. Watson Research Center Rep. RC 6446,
March 1977.

[8] C. M. RADER, Discrete Fourier trans]ormation when the number ofdata samples is prime, Proc. IEEE, 56
(1968), pp. 1107-1108.

[9] S. D. MORGERA, A mutual prime factor cyclic algorithm for discrete Fourier transformation, Raytheon
SSD Memorandum, SDM: 77/01, 5 April 1977.

[10] T. NAGELL, Introduction to Number Theory, John Wiley, New York, 1951.
11] H. F. SILVERMAN, An introduction to programming the Winograd Fourier transform algorithm (WFTA),

IEEE Trans. Acoust., Speech, Signal Process, ASSP-25 (1977), pp. 152-165.
[12] C. M. RADER, Personal Communication, October 1978.
[13] R. C. SINGLETON, An algorithm]:or computing the mixed radix fast Fourier transform, IEEE Trans.

Audio Electroacoust. AU-17 (1969), pp. 93-103.
[14] J. MCCLELLAN ANDC. RADER, Number Theory in Digital Signal Processing, Prentice-Hall, New

Jersey, 1978.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0902-0005 $01.00/0

PROBABILISTIC ALGORITHMS IN FINITE FIELDS*

MICHAEL O. RABINS"

Abstract. We present probabilistic algorithms for the problems of finding an irreducible polynomial of
degree n over a finite field, finding roots of a polynomial, and factoring a polynomial into its irreducible factors
over a finite field. All of these problems are of importance in algebraic coding theory, algebraic symbol
manipulation, and number theory. These algorithms have a very transparent, easy to program structure. For
finite fields of large characteristic p, so that exhaustive search through Zp is not feasible, our algorithms are of
lower order in the degrees of the polynomial and fields in question, than previously published algorithms.

Key words. Computations in finite fields, root-finding, factorization of polynomials, probabilistic
algorithms

in this paper we utilize the method of probabilistic algorithms to solve some
important computational problems pertaining to finite fields. The questions we deal
with are the following. Given a prime p and an integer n, how do we actually perform
the arithmetical operations of E GF(pn). Given a polynomial f(x) of degree rn with
coefficients in E, we wish to find a root a E of/(X) 0, if such a root does exist. This is
the root-finding problem. Finally, given a polynomial f(x) E[x], we want to find the
factorization f =/’1 f2 fk of f into its irreducible factors fi(x) E[x]. This is the
factorization problem.

All of the above problems are of great significance in algebraic coding theory, see
[2], in algebraic symbol manipulation, and in computational number theory.

Algorithms for the latter two problems are given in Berlekamp’s book [2], and more
completely in the important paper [3] which culminates his own work on the subject and
also incorporates important ideas of Collins, Knuth, Welch, Zassenhaus, and others.

Berlekamp solves the root-finding problem for f GF(p"), deg (f)= m, by re-
ducing it to the factorization problem of another polynomial F(x) Zp[x] (Zp GF(p),
is the field of residues mod p), where deg(F)= ran. The problem of factoring F(x)
Zp[x] is solved by reducing it to finding the roots in Zp of another polynomial
G(x) Z[x]. Thus everything is reduced to root-finding in Zp. For root-finding in a
large Z, a case in which search is not feasible, Berlekamp proposes a probabilistic
algorithm involving a random choice of d Zp. The article [3] does not contain a proof
for the validity of this algorithm.

Our starting point is to solve directly the problem of root-finding in GF(pn)= E
for polynomials f E[x], by a probabilistic algorithm which generalizes to arbitrary
finite fields Berlekamp’s algorithm for Z. The validity of the algorithm is based on
Theorem 4 which has a surprisingly simple proof.

We now base factorization of a polynomial f(x)Z[x] on root-finding for the
same f. Namely, if f(x) has irreducible factors of degree rn, hi(x) Zo[x], 1 <- <= k, then
the product D(x)= IIhi(x) of these factors can be readily found by computations in
Zo[x]. The roots of D(x) are in GF(p") and the above root-finding algorithm allows us
to directly find such a root a GF(p’). The minimal polynomial h(x)Zp[x] of a,
which is of degree m, can be found by one of two methods given in 3. Now, a is also a
root of some hi(x) of degree m, so that h(x) hi(x), and we have found one irreducible
factor of f(x). An iteration of this process finds all the irreducible factors. The same

Received by the editors December 15, 1978.

" Department of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel, and Massachusetts
Institute of Technology, Cambridge, Massachusetts. This work was done while the author was visiting MIT
Cambridge, Massachusetts in 1976.

273

274 MICHAEL O. RABIN

algorithm works for factorization of polynomials f(x) E[x], where E is any finite field,
by use of roots of the polynomial f(x) itself.

In terms of the number of Zp-operations (additions and multiplications mod p, of
numbers 0 =< a, b < p) used, our algorithms are of complexity proportional to log p. Thus
they are feasible even for fields GF(p") where p is so large that exhaustive search
through Zp is not possible.

Leaving out the factor log p and factors of order log n log log n, the algorithms
presented here have the following complexities. A root off(x) GF(p"), deg f m, can
be found in O(nm) Z-operations. A polynomial f(x)Z,[x], deg (/)= n, can be
factored in O(n) operations.

If the arithmetical operations of the field E GF(p") are wired into circuitry so
that an E-operation can be viewed as a unit, then the above root-finding algorithm uses
O(nm) operation. Under the same assumption for the fields GF(pg), i<-n, the
factorization of f(x) uses O(n 2) operations.

The root-finding and factorization algorithms for the case of large p, given in [3] are
of higher order in n. Root-finding for f(x) GF(p"), deg (f)= n, uses O((n. m)3. m)
Zo-operations. Factorization of f Zt,[x], deg (f)= n, uses O(n 4) Zp-operations.

If p is small so that it is practicable to find a solution in Z, off(x) 0 by search, then
a more careful comparison between the algorithms given here and the nonprobabilistic
algorithms presented in [3] is necessary. The latter algorithm for factorization will run in
time O(n3) but there is an O(p) factor. Our algorithm will run in .O(n 3) (in the
nonpreprocessed case) with a factor of O(logp). Thus for very small p, exact
comparisons will depend on the numerical constants involved. However, the algorithms
given here are sufficiently fast in all cases to justify their use even for small values of p.

The probabilistic nature of our algorithms does not detract from their practical
applicability. The basic probabilistic step is a random choice of an element 6 E which
is then used in an attempt to split a polynomial f(x) into two factors. We prove that for
any fixed finite field E and any fixed f(x), the probability of success by such a random
choice is at least half. Thus the expected number of such steps leading to success is at
most two. Furthermore, in an algorithm involving many such steps, the probability of a
run of bad random choices leading to a significant deviation from the expected total
number of steps is very small.

1. Arithmetic of GF(p"). Let p be a prime, n an integer and q p n. As customary,
denote by GF(q)= E the unique finite field of q elements. In particular GF(p)= Z, is
the field of residues mod p. We want to actually compute with elements of E. For
Zo ({0, 1,..., p- 1}, +,), the operations are simply addition and multiplication
mod p. If

(1) g(x)= x" +a._x"- +’" +aoZ[x],

is an irreducible polynomial of degree n, then

GF(p") Zp[x]/(g(x))

where (g) is the ideal generated by g. Given such a g(x), E can be represented as the set
of n-tuples of elements of Z. Let/3 (b.-1,’’’, bo), y (c.-1,’’’, Co). Addition is
eomponentwise. To multiply, form

n-1d(x) (b,,_xx"- +" + bo)(cn-lX +" + Co)

and find the residue 6(x)= d,,_lX"-+ + do of d(x) when divided by g(x). Then
/3 ,/= (d,-1, "’, do).

PROBABILISTIC ALGORITHMS IN FINITE FIELDS 275

Thus we need a method for finding an irreducible polynomial (1). To test for
irreducibility we use the following.

LEMMA 1. Let 11,’’’. Ik be all the prime divisors o[n and denote n/li mi. A
polynomial g(x) Zp[x] o/" degree n is irreducible in Zp[x] if and only if

(:z) g(x)l(x -x),

(3) (g(x), x’’ -x) 1, 1 <- <- k,

where (a, b) denotes the greatest common divisor o[a and b.
Proo[. Assume that g(x) is irreducible, then every root a of g(x)=0 lies in

E GF(p"). Hence a" -a 0, and (x -a)l(x" -x). Since g(x) has no multiple roots,
(2) follows.

Since g(x) is irreducible of degree n, it has no roots in any field GF(p’), rn < n.
This direely implies (3).

Assume conversely that (2) and (3) hold. From (2) it follows that all roots of
g(x) 0 are in E GF(p")’.

Assume that g has an irreducible factor g(x) of degree rn < n. The roots of gx(x) lie
in GF(p’) which is generated over Zo by any one of these roots. Hence GF(p")_ E
and m ln. Consequently mlm for one of the maximal divisors m of n, and all roots of
g(x) lie in GF(p"). But then (g(x), x’-x) is divisible by g(x) contradicting (3).
Thus g(x) must be irreducible.

In computing the number of operations required to test a given polynomial for
primality we count, here and elsewhere in this article, in terms of arithmetical
operations of Zp. To obtain a bit-operations count, we should multiply our results by
B p)--the number of bit operations required to multiply or divide two numbers of log p
bits. As is well known, B(p) can be taken to be O(log p. log log p).

In order to shorten subsequent formulas we introduce the following
Notation"

L(n) log.n log log n.

The computation of (g(x), x" -x) is executed by computing x" modulo g(x). As
is well known, x" can be calculated by at most 2. log p" multiplications mod g(x).
Since we compute mod g(x) we never deal with polynomials of degree greater than 2n.

It is shown in [4] that multiplying two n-degree polynomials with coefficients in any
finite field can be done by O(n log n log logn)=O(nL(n)) field operations.
Consequently division and finding remainder can be done in O(nL(n)) operations, see
[1, p. 288]. Thus the basic step of computing r(x).s(x)modg(x), where
deg (r), deg (s)-< n 1, uses O(nL(n)) operations. The computation of x" uses
O(n2L(n) log p) operations.

To test (3) we need k-<log n computations of the above type so that the total
number of operations is O(n 2 log nL(n) log p).

The search for an irreducible polynomial of degree n is based on the following
result which is a weaker form, sufficient for our purposes, of Theorem 3.3.6 [2]. We give
a proof not utilizing generating functions.

LEMMA 2. Denote by rn(n) the number o) different monic polynomials in Zp[x] o/"
degree n which are irreducible. Then

(4)
p, pn/2 log n -< rn (n

n n

276 MICHAEL O. RABIN

1 m(n) 1
()

2n- p" n

Note that pn is the number of all monic polynomials of degree n.

Proof. Let gl(x), , gt(x), re(n), be all the pairwise different irreducible monic
polynomials of degree n. Any element a E GF(p) which is of degree n over Zp
satisfies exactly one equation gi (x) 0 and each such equation has exactly n such roots.
if H E is the set of elements of degree n over Zp, then c(H)/n m(n).

An element a E is in H if it is not in any proper maximal subfield GF(p") c E,
where mi is a maximal divisor of n (see the notation in Lemma 1). The cardinality of
such a subfield is at most p"/2 and the number of these maximal subfields is smaller than
log n. Thus p _pn/2 log n <-c(H) from which (4) and (5) follow.

In [2] Berlekamp remarks that Theorem 3.3.6 means that a randomly chosen
polynomial of degree n will be irreducible with probability nearly l/n, without
suggesting to base an algorithm on this fact. In the general spirit of the present paper, we
solve the problem of finding an irreducible polynomial by randomization.

The algorithm for finding an irreducible polynomial proceeds as follows. Choose a
polynomial (1) randomly and test for irreducibility; continue until an irreducible
polynomial of degree n is found. Lemma 2 ensures that the expected number of
polynomials to be tried before an irreducible one is found is n. Thus the expected
number of operations (in Zo) for finding an irreducible polynomial of degree n is
O(n 3 log nL(n) log p).

The root-finding algorithm for GF(q) assumes that the arithmetic of this field is
given, so that the question of finding an irreducible polynomial actually does not arise.
In the factorization of a polynomial of degree n we may need computations in fields
GF(p "’), 1 <- <- l, such that ni --< n. The count of all operations, including the
precomputation of the g,, (x), will use the following.

LEMMA 3. Let ni, 1 <= <= l, satisfy , n _ n. The expected number of operations used
forfinding irreducible polynomials hi(x), deg (hi) ni, 1 <- <- l, is O(n 3 log nL(n) log p).

Proof.
3 2log niL(ni) log p ==. n log nL(n) log p Y’. ni

log nL(n) log p.

2. Root-finding in 17F(p"). Let E GF(q) be a fixed finite field, and f(x) E[x]
be a polynomial of degree m. We wish to find one (or all) of the roots a E of f(x) O.
We give a probabilistic algorithm for this problem, which is a generalization of the
algorithm given in Berlekamp [3] for prime fields Zo, to arbitrary finite fields E. Our
proof for the validity of the general algorithm of course applies also to the special case of
Z, which is given essentially without proof in [3].

Assume for the time being that q p" is odd. We shall indicate later how to treat
the important case q 2".

Form the g.c.d.

[(x)=(l(x),x--l).

If fl(x)= 1 then f(x) has no roots in E. In general

fl(X) (X 01)" (X Ok), k m,

where the ai are all the pairwise different roots in E of f(x)= O.

PROBABILISTIC ALGORITHMS IN FINITE FIELDS 277

Now

(6)
xq-l- 1 (x u 1)(x + 1), d q____l.

2

The next natural step is to try (fl(x), x- 1). If some of the ci satisfy a- 1 0 while
others satisfy a + 1 0, then this g.c.d, will be a true divisor of fl (x), and we will have
further advanced towards the goal of finding a linear factor x a, i.e. a root, of f(x). In
general we are not guaranteed that the g.c.d, will be different from 1 orf(x). However,
this advantageous situation can be created by randomization.

Call a, t E, a # 0, t 0, of different type if a # t a, where d (q 1)/2.
THEOREM 4. Let a, c2 E, a a2.

(7)
q- 1
2

c({313 E, a + 3 and a_ + 8 are of different type}).

Proof. The elements a + 3 and a2 + 8 are of different type if and only if neither is
zero and

a+8a (a + 8’a---/ - 1; hence
\a2 + 8] -1.

The equation xa=-i has exactly d =(q-l)/2 solutions in E. Consider the 1-1
mapping b(8) (a + 8)/(aa + 8). As 8 ranges over E-{-aa}, <(8) ranges over E-{1}.
Thus for exactly (q- 1)/2 values of 8, qb(8)a =-1. This implies (7).

COrOLLAR 5. Consider for 8 E the g.c.d, fs(x) (f(x), (x + 8)a 1). We have

(8) 1/2 <= Pr(810 < deg fs(x)< deg fl).

Proof. The common roots of f(x) and (x + 8)a 1 are those ai(f(ai) 0) for which
(ai + 8)a 1 0. By Theorem 4, with probability 1/2, a + 8 has this property while a + 8
does not, or vice-versa. This entails (8). Actually the probability is nearly 1-, where
deg f k, but we cannot prove this.

Root-finding algorithm. Given f(x) of degree m, compute f(x). Choose 8 E
randomly and compute f(x). If 0 < deg f < deg f then let f(x)= f(x) or f2(x)=fl/f,
according as to whether deg f8 -< 1/2 degf or not. Iff 1 or f fl choose another 8 and
repeat the previous step. By Corollary 5, the expected number of choices of 8 E until
we find f_(x) is less than 2.

Since the degree is at least halved in each step, after at most log m steps we find a
linear factor x- ai of f(x), i.e. a root.

The number of (field -E) arithmetical operations required for finding f(x) and
f(x) is O(n. mL(m)log p), where E GF(pn). Since degf2-<1/2m, it follows that the
number of operations for finding f3(x) is at most half the number of operations for
finding f; and similarly for f4 etc. Thus the total number of E-operations used for
finding a root of f(x) is still just O(n mL(m) log p).

In terms of operations in Z,, each E-operation requires O(nL(n)) operations with
residues modulo p. Thus the total (expected) number of Z,-operations for root-finding
is

(9) O(n mL(m)L(n) log p).

3. Factorization of polynomials. Let f(x) Zo[x] be a polynomial of degree n
which we want to factor into its irreducible factors. We may assume that f’(x) (the
derivative) is not zero. For otherwise f(x) (g(x))ok where g’(x) 0 and this g is readily

278 MICHAEL O. RABIN

found. For example, x 2" + ax" + b (x + ax + b)p. By calculating (f(x), f’(x)) h(x),
and f/h, we have reduced the problem to factoring a polynomial with no repeated
factors. Calculate

gm (X) (f(X), X ’" X), 1 <= m <-- n.

Since GF(pm) consists exactly of all the elements of degrees i, i[m, over Zp, we have
that gin(X) is the product of all irreducible factors h(x)[f(x) of degrees ilm.

Choose the gm 1 of lowest index m. If deg (gin)= l, then

gin(X) hi(x)"" hk(x), k m l,

and each hi(x) is irreducible of degree m. All roots of gin(X) are in GF(pm). Find a root
of gin(X)= 0. This root is a root of a unique hi(x).

To find this hi(x) form the powers

(10) 1, a,’’’,a

These elements of GF(pm) are m-component vectors with coordinates in Z. Solve the
system of linear eqttations

m--1(ll) bo+ba+" +bm_la +a =0,

where the bi, 0_-< _-< m- 1, are the unknowns and the coordinates of the a are the
coefficients. Now, hi(x) x + bm_lX m-1 + + bo.

Another way for computing hi(x) was suggested .by M. Ben-Or. Note that hi(x) is
irreducible of degree m. Since &() s

cp is an automorphism of GF(pm) over the field
Zo, the conjugates of a are

(12)

The polynomial hi(x) is now obtained by the calculation in GF(pm) of

(13) hi(x) (x Olo)(X -o1) (x --am-l).

Using either one of the above methods, one irreducible factor of gm (x) (and of f(x))
is found. Next we find a root/3 of gm(x)/hi(x) and another factor hi(x) of gin(x), and so
on.

Proceeding to factor the other gi(x), we choose gr(X) 1 with the lowest index
m < r. If mXr then gr(x) is the product of irreducible factors of degree r. If mlr then
gmlg,, and gr/gm is the product of such factors. Factor gr(x) or g/gm into its irreducible
factors of degree r by one of the above methods.

In general, let m < m2 < < mt -< n be the indices for which gin, 1. After i- 1
steps we found Dl(X), , Di-l(X), where Di(x) is the product of all irreducible factors
of degree m. of f(x), and each Di(x) is factored. (Note that Di(x) 1 is possible despite
gmi 1. For example, f(x) may have irreducible factors of degrees 2 and 3, but no
irreducible factors of degree 6. In this case D2(x) 1, D3(x) 1, D6(x) 1, and
g6(x) D2(x)D3(x).) Now,

(14) Di(x)=gm,(x)/ 1-I Oi(x).
mi
<mi

If Dg(x) 1 and mg < deg D(x), then factor it by the above method. If mi deg D(x)
then D(x) is already irreducible of degree mi, and f(x) has exactly one irreducible factor
of this degree.

4. Counting operations. Let us now count the number of Zp-operations required to
factor a polynomial f(x) Zp[x of degree n. The cost of getting rid of multiple factors of

PROBABILISTIC ALGORITHMS IN FINITE FIELDS 279

f(x) and of discovering the factors Dg(x) defined in 3 is majorized by the cost of
factoring the D(x), so that we confine ourselves to estimating the latter cost.

We have f(x) Dl(X) D(x), where deg Di di.
Each Di(x)= hgl(X) hik,(X), where deg hii m, and hi is irreducible. The

algorithm of 3 seeks kg roots 3,..., k, of Dg(x)=0, one for each factor h(x),
so that hii() 0. Using the operation count (9) for root-finding, where n m because

GF(p’), 1 <= <- ki), and deg D di, we get O(m2idL(d)L(m) log p) for finding
one root, say/3. We then find hi(x) by (11) or (13). Next we find a root of Di(x)/hgl(X),
so that we are sure that the root belongs to a h0 h. Overestimating by not using the
fact that deg (Di/hi) d m etc., we get O(km2d L(di)L(mg) log p) for total number
of Zp-operations to find the relevant roots of D(x). Since km d and m <= d we get

(15) O(dL(d)2 log p)

as a bound on these operations for Di(x). Since n Y. d we obtain by summation from
(15), in the manner of deriving Lemma 3,

(16) O(n3L(n)2 log p)

as a bound on cost of finding all the necessary roots of all the Dg(x).
The first method for finding the h,(x), once a root for each h,(x) is given, employs

O(mZL(m)) Z-operations to calculate the sequence (10) of powers of the given root.
The solution in Z of the system (11) of m linear equations in m unknowns uses O(m 3
operations which majorizes the previous term. Summing over all the h,(x) and
overestimating we get O(rt 3) Z,-operations for finding all the hii(x), 1 <= <= t, 1 <-

We now estimate the operations used in Ben-Or’s method for computing the hii(x)
from the roots. Using the notation of (12) and (13), so that the root is a and
deg (hi(x)) mi, we use O(mi log p) GF(p")-muRiplications to perform the mi raisings
to exponent p. Counting Zv-operations, we get

(17) O(miZ(mi) log p)

operations for computing the sequence (12).
The formation of the product (13) is a computation of the polynomial h (x) from its

given roots a0, al," ’, a,-l. Using the result of [1, p. 299], and taking into account
that in a finite field we require O(mL(m)) (instead of O(m log m) operations to
multiply two polynomials of degree m, we get that

(18) O((miL(mi))2 log m)

operations of Z, are used to form each h0. Since Di(x) has ki factor h,(x), 1 <- f <= ki, and
deg Di miki, we get from (17), (18) the upper estimate

(19) O((nL(n))2(log n + log p))

for the Zo-operations used in Ben-Or’s method to find all the irreducible factors hii(x),
1 -< -< t, 1 -</" -< ki, of f(x), once a root of each factor was computed.

5. Summary of results and extensions. The root-finding method of 2 is not
applicable to polynomials f(x) GF(2")[x]. However, a small modification does work.
Instead of x-1-1 we use the polynomial

Tr(x) x + x2 +. _}_x 2"--’.
For c GF(2")= E we have T(ce)2= T(ce) so that every a is a root of T(x)= 0 or of
T(x) 1. Also T(c +/3)= T(a)+ T(/3).

280 MICHAEL O. RABIN

THEOREM 6. ff a # O2, O1) O2 E E, then

2n-1 c({alT(&) # T(aa2)}).

Proof. T(6a x) T(tSa2) iff T(6(a + t2)) 7 0 i.e. 1. Now a + t2 7 0 SO that
fl t$.(al + a2) runs with 6 through all/3 E E. In particular, for appropriate values of 6,
all the 2"-1 roots of T(x)= 1 are obtained. This proves the theorem.

Based on Theorem 6, we have a probabilistic root-finding algorithm for poly-
nomials f E[x which is completely analogous than the algorithm in 2.

The factorization algorithms for polynomials f(x) Zp[x given in 3 immediately
generalizes to polynomials with coefficients in a general finite field E GF(q). The
operations-count are the same, with E-operations replacing Zp-operations.

We summarize our results as follows.
1. Finding irreducible polynomials. The expected number of steps for finding an

irreducible polynomial g(x)eZo[x], of degree n is O(n3 log nL(n)logp). Any such
polynomial enables us to compute in GF(p").

2. Root-finding. The expected number of Zo-operations used to find a root in
E GF(p") of a polynomial f(x) E[x] of degree m is O(n2mL(m)L(n) log p).

If the arithmetic of GF(p") is directly wired into circuitry so that an O-arithmetical
operation is counted as one operation, then the number of operations for root-finding is
O(n mL(m) log p).

3. Factorization into irreducible factors. The total number of Z-operations for
factoring a polynomial [E Zo[x] of degree n is

O(n 3 log nL(n) log p)+ O(n3L(n)2 log p)+ O(n3).
Here are included the computations of the necessary irreducible polynomials gi(x)
needed for the arithmetics of the relevant fields GF(p’). The last term represents the
operations used to solve linear equations under the first method.

If we assume that the arithmetics of all fields GF(p"’), m <= n, are performed by
wired circuitry then it is preferable to use the second method for computing the factors
from the roots, based on (12) and 13). From (16) and (19) it follows, since each GF(p
operation is counted as one operation, that the number of operations used for factoring
a polynomial of degree n into irreducible factors is

O(n2L(n) log p)+ O(nL(n)(log n + log p)).

The first term majorizes the second term, but we display the latter as well since it reflects
the structure of the algorithm.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] E. R. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[3],Factoring polynomials over large finite fields, Math. Comput., 24 (1970), pp. 713-735.
[4] A. SCHONHAGE, Schneile Multiplikation yon Polynomen uber K6rpern der Charakteristic 2, Acta

Informatica, 7 (1977), pp. 395-398.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

(C) 1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0006 $01.00/0

A THEORETICAL ANALYSIS OF VARIOUS HEURISTICS FOR THE
GRAPH ISOMORPHISM PROBLEM*

D. G. CORNEILS" AND D. G. KIRKPATRICK

Abstract. The graph isomorphism problem has received considerable attention due to the many practical
applications of the problem and its unresolved complexity status. To deal with practical instances of the
problem, a great deal of effort has gone into the development of seemingly quite effective heuristic algorithms
Typically, these algorithms exploit various vertex properties which are invariant under isomorphism.
Empirically, these heuristics have been analyzed extensively; however, very little theoretical analysis has
been done on their intrinsic value.

In this paper we show that most commonly used vertex invariants are theoretically ineffective in the sense
that any pair of graphs may be uniquely represented by a pair of graphs where the vertex invariant fails to give
any information whatsoever about isomorphism or nonisomorphism. As a by-product of these results, new
restricted families of graphs are shown to be isomorphism complete (i.e., the isomorphism problem on these
graphs is polynomial-time equivalent to the general isomorphism problem).

Key words, graph isomorphism, heuristic algorithms, isomorphism complete problems, regular high girth
graphs, automorphism partition

1. Introduction. Given two graphs GI(V1, E1) and Ge(V2, tT,2), a one-to-one
mapping r of V1 onto V2 is called an isomorphism iff (x, y) 17,1 : (o-x, ry) E2Vx, y
V1. If an isomorphism exists between two graphs then the graphs are isomorphic
(denoted G1 -G2) and the problem of determining whether two given graphs are
isomorphic is termed the graph isomorphism problem.

In the past decade the graph isomorphism problem has received a great deal of
attention in both the practical and theoretical computing literature. The development
of computer algorithms for the graph isomorphism problem has been stimulated by
such diverse applications as chemical identification [43], scene analysis [2] and con-
struction and enumeration of combinatorial configurations [18]. Although these
algorithms do not guarantee a solution in a reasonable amount of time, they seem to
work well in many practical situations. For surveys and annotated bibliographies of
these algorithms and other recent results on graph isomorphism see [39], [16], [11].

The theoretical attention stems from the persistent difficulty in characterizing the
computational complexity of the isomorphism problem. Recent developments have
shown that many combinatorial problems for which there are no known polynomial
time algorithms are either NP-complete or NP-hard [13], [1], [27]. In order to discuss
the complexity of the graph isomorphism problem, it is convenient to formulate it as a
language acceptance problem; namely, the given graphs G1 and G2 are encoded as a
string (over some alphabet) which is to be accepted if and only if the two encoded graphs
are isomorphic. This formulation of the graph isomorphism problem, while certainly in
NP, has not been shown to be in P or NP-complete. Since the problem is not known to
be NP-complete, it is of interest to ask whether the problem belongs to co-NP (i.e., does
the complement problem of accepting a string if and only if the two graphs are

* Received by the editors May 5, 1978 and in revised form April 2, 1979.
5" Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A7. This

research was conducted while the author was on leave at the University of British Columbia.
Department of Computer Science, University of British Columbia, Vancouver, British Columbia,

Canada V6T 1W5. This research was conducted while the author was at Simon Fraser University.
We use the term NP-hard to denote those problems for which the existence of a polynomial algorithm

would imply that P NP.

281

282 D. G. CORNEIL AND D. G. KIRKPATRICK

nonisomorphic belong to NP?). As pointed out by Cook and Reckhow [14] and Pratt
[38] an affirmative answer to this for any problem which is not known to be NP-
complete would lend support to the conjecture that the problem is, in fact, not
NP-complete.

Since it is possible that the graph isomorphism problem is neither in P nor
NP-complete it is of interest to demonstrate polynomial-time equivalent problems.
Such problems will be called isomorphism complete (see 4 for a survey of known
isomorphism complete problems). If any isomorphism complete problem were shown
to be in P or to be NP-complete then all other isomorphism complete problems also
would be in P or NP-complete. In particular, it is worthwhile to examine isomorphism
problems on restricted families of graphs and to determine whether these problems are
isomorphism complete. If the isomorphism problem on a restricted family of graphs is
isomorphism complete, then this family of graphs will be referred to as an isomorphism
complete family. This approach of finding restricted yet equivalent problems parallels
similar efforts in the study of NP-complete problems 121]. Ideally, this approach would
yield a restricted family of graphs for which the complexity of the isomorphism problem
can be analyzed more easily. Any attempt at establishing lower bounds on the
complexity of the general isomorphism problem could then concentrate on such a
family. Furthermore, it is conceivable, that a polynomial isomorphism algorithm which
utilizes properties of the restricted family of graphs could be developed. This approach
might also help identify restricted families of graphs which are not isomorphism
complete and thus hold more promise of admitting a polynomial time isomorphism test.

Most isomorphism complete restricted families of graphs do not seem to lend any
insight into the difficulty of the graph isomorphism problem in the sense that there is
little reason to assume that current practical algorithms would work any better or worse
on these restricted graphs than on general graphs. In 8 we will introduce new families
of isomorphism complete restricted graphs for which current practical algorithms can
be shown to fail.

In an attempt to solve practical instances of seemingly very difficult problems (such
as isomorphism, NP-complete, or NP-hard problems), heuristic algorithms have been
developed. In many cases, these heuristic algorithms work very well; in fact as pointed
out by Karp [27], "one of the great mysteries in the field of combinatorial algorithms is
the baffling success of many heuristic, algorithms". This mystery arises in part from the
current inability to analyze accurately many of these heuristic algorithms. We can
identify two main types of heuristic algorithms, namely those which work in polynomial
time but only provide an approximation to the correct answer and those which do solve
the problem but do not guarantee a polynomial time bound. In the first case some
valuable theoretical analyses have been done. For some problems (e.g., the bin packing
problem), polynomial algorithms which guarantee a good approximation do exist;
however, in other cases (e.g., the traveling salesman problem and graph coloring),
problems of attaining certain good approximations are known to be NP-cornplete (see
[20] and [28] for surveys of this work). Unfortunately, this approach is designed for
optimization problems and does not apply directly to the graph isomorphism problem.

For heuristics of the second type the analyses have been less successful. One very
common technique [29], [37] is to examine, either empirically or theoretically, an
algorithm’s behavior on input data drawn randomly from a given distribution (usually
uniform). This approach is very misleading for the graph isomorphism problem since it
has been shown empirically that a refinement algorithm (similar to the one presented in
3) usually solves isomorphism problems on random graphs in O(n 2) operations,

where n is the number of nodes in each graph [15]. This empirical observation has been

GRAPH ISOMORPHISM PROBLEM 283

supported by the proof of Babai and Erd6s [4] that a similar simple linear time
algorithm will obtain a canonical ordering for almost all graphs. However, for many
isomorphism problems dealing with graphs derived from combinatorial configurations,
all known heuristic algorithms require a prohibitive amount of time and some interes-
ting problems of moderate size remain unsolved. Another common technique is to test
an algorithm on a small set of carefully chosen examples. Although this approach may
establish isolated weaknesses of the particular algorithm, one cannot draw any
conclusions about the overall value of the algorithm. To this end, Mathon [34] has
compiled a list of pairs of graphs for whieh the graph isomorphism problem is seemingly
very difficult.

In order to motivate the type of theoretical analysis which we will employ for
heuristic graph isomorphism algorithms, we will briefly examine the typical approaches
used in these algorithms (see 3). First we present the terminology and definitions
employed in the rest of the paper.

2. Terminology and definitions. The definitions and terminology used in this paper
are compatible with those of Harary [24]. Throughout the paper, G(V, E) refers to a
graph with vertex set V or Ve (of cardinality n) and edge set E or Ee (of cardinality tn).
Pn, Cn and K, respectively denote the path, cycle and complete graph on n vertices. Kp,q
denotes the complete bipartite graph with cell sizes p and q. Unless otherwise stated, all
graphs are assumed to be undirected and loopless.

The complement (V, F) of the graph G(V, E) has F {(x, y)[x # y ^ (x, y) E}.
We now define the operations of union and composition applied to two given graphs
GI(V1, E) and G2(V2, E2). In the union, G1 G2, the vertex set is V1 V2 and the
edge set is EILIE2. The composition GI[G2] has vertex set VI V2 with (Xl, X2)
adjacent to (yl, y2) whenever [(Xl, yl) El] or [Xl yl and (x2, y2) E2].

The distance between any two points x, y in a’graph G, de(x, y) is the number of
edges in a shortest chain between them. If there is no chain between x and y then
do(x, y)= c. A graph G is compact if de(x, y)= 1 or 2 for any two vertices x, y and
d(x, y) 1 or 2 for any two vertices x, y. T(G), the girth of a cyclic graph, is the length
of the smallest cycle in G. If G is acyclic, then y(G)= c.

For any vertex x, F(x) denotes {y[(x, y)6 E}. The degree of vertex x, deg (x)=
]F(x)l; the maximum degree of all vertices in G is denoted by A(G). If all vertices have
the same degree k then the graph is regular ofdegree k or k-regular. A graph G is called
strongly regular if it is regular of degree k, 0< k < n- 1, and if any two adjacent
(nonadjacent) vertices are adjacent to exactly A (respectively z) other vertices. The
four integers (n, k, A, z) are the parameters of a strongly regular graph.

An embedding of a graph GI(V1, El) into a graph G2(V2, E2) is an injection
&" V - V2 for which (x, y) E (&x, &) E2. The embedding is said to be induced if
(x, y)EE1 (bx, by) EE2. The vertex &, V2 is said to be covered (under &) by the
vertex x V.

Given two graphs H(W, F) and G(V, E) where wI- h lvl, we assign to each
node x V a vector EH(X)--(el, e2,’’’ ,eh) where e=the number of induced
embeddings of H in G such that node x is covered by node of H. Graph G is
H-regular if En(x)= En(y) Vx, y e V. Furthermore G is c-subgraph regular if it is
H-regular for all H(W, F) with]W] =<c. Clearly G is c-subgraph regular iff 0 is
c-subgraph regular since En(x) for x G En(x) for x G.

A one-to-one mapping tr of V onto V is an autotnorphism of G iff (x, y) E
(trx, cry) E Vx, y V. If there exists an automorphism mapping x onto y then x and y
are similar, denoted x -y. A graph is transitive if x---y Vx, y V, it is rigid if x 4-y

284 D. G. CORNEIL AND D. G. KIRKPATRICK

’q’x, y V, x y. The automorphism partition ofG (denoted AP(G)) is the partition of V
induced by the equivalence relation -.

A balanced incomplete block design (BIBD) with parameters (v, b, r, k, ,) is an
incidence system with v distinct objects and b blocks where each object belongs to r
blocks, each block contains k objects and every pair of objects appears together in
exactly A blocks. A BIBD graph may be formed from a BIBD by representing the
blocks and objects by nodes and the incidence relation by an undirected edge.

3. Heuristic graph isomorphism algorith.ms. Most heuristic graph isomorphism
algorithms are based on graph invariants (or g-invariants), namely properties or
parameters of a graph which must be preserved under isomorphism. Formally, an
integer valued function I on graphs is a g-invariant if G1- 62 = I(G1)= I(G2). A
g-invariant I is complete if G1 G2 :> I(Gx) I(G2), (otherwise itis incomplete), that is
it constitutes both a necessary and sufficient condition for isomorphism. Clearly, we can
relax our definition to allow functions I which take values in a*, where a is any finite
alphabet. Thus the conjunction of a set of invariants can be viewed as a single invariant.

In practice, most heuristics used for the graph isomorphism problem are derived
from heuristics for the automorphism partitioning problem. Such a derivation is given
theoretical justification by the fact that the automorphism partitioning problem is
isomorphism complete (this was proved by Karp; see [39] for a proof). Heuristics for the
automorphism partitioning problem are usually designed to exploit various properties
of vertices that must be preserved under automorphism. Formally, a vertex invariant is
a function which labels the vertices of an arbitrary graph with integers so that similar
vertices are assigned the same label. If we denote i(G) by i then i: V and
/x, y V, x y i(x) i(y). As with graph invariants, it is sufficient that the range
of i(G) be a*, where a is any finite alphabet. Examples of simple v-invariants include
the degree or the number of triangles c6ntaining the specified vertex. More complex
v-invariants may be formed by the conjunction of several simpler v-invariants. Further
examples of commonly used v-invariants are presented in 5.

The sense in which g-invariants are derived from v-invariants is made precise as
follows: if is a v-invariant and I(G) denotes the multiset {i(x)lx V} then I is called
the derived graph invariant (or derived g-invariant) of i. The eigenvalue spectrum of a
graph’s adjacency matrix is an example of a nonderived g-invariant. Throughout this
paper, we will be concerned primarily with derived g-invariants.

Let be some complete v-invariant. An algorithm evaluates if, given an arbitrary
graph G and a vertex x Va, it computes ia(x). An algorithm verifies if, given an
arbitrary graph G, vertex x Ga and integer k, it decides whether i(x) k. Motivation
for the study of complete v-invariants stems from the fact that if any complete
v-invariant can be evaluated (respectively, verified) in time bounded by sbme poly-
nomial in the size of G, then the automorphism partitioning problem, and hence the
graph isomorphism problem, would belong to P (respectively, co-NP). No such
complete v-invariants are known. In fact, many v-invariants are known to be incomplete
in the sense that for such a v-invariant i, there exists a graph G and dissimilar vertices
x, y Va for which ia(x) ia(y). Such a graph is said to demonstrate the incomplete-
ness of i.

Many v-invariants (and their derived g-invariants) although known to be
incomplete, are nevertheless of practical value. For example, if few graphs demonstrat-
ing the incompleteness are known, one is tempted to employ the v-invariant in the hope
that one of these graphs will not arise in practice. Furthermore, although an incomplete
v-invariant cannot guarantee producing the automorphism partition, it may produce

GRAPH ISOMORPHISM PROBLEM 285

some nontrivial partition of V; the automorphism partition will be a refinement
(possibly trivial) of this partition. Any nontrivial partition of V will reduce from n! the
number of V- V mappings which could be an automorphism. Once V has been
partitioned, it is standard practice to employ a refinement procedure in the hope of
producing a further refinement of V. If the resulting partition is fine enough, it is feasible
to use a backtracking algorithm to determine the automorphism partition. This
refinement operation is used extensively in practical algorithms and warrants a more
detailed examination. The following pseudo PL/I algorithm outlines a typical
refinement procedure.

Refinement procedure. Given an initial partitioning V1, V2, Vl(1 < < n)

do while i’#
i’oi
to each x V assign the list Lx (a l, a2,’’ ’, ai) where

a]{y]y V ^ (x, y) E}] (1 -<_] _-< i)
do j 1 to

lexicographically order the lists corresponding to
the vertices in cell V. Assume there are
different lists
i’i’+l-1
refine cell V into new cells

end
end
Hopcroft [25] has shown that an equivalent procedure has a time bound of

O(m log n). (For a formal description and analysis of the Hopcroft algorithm see [23].)
As an example of this procedure consider the graph in Fig. 1 with the initial

partition being V itself. After h iterations of themain loop in the refinement procedure
the partition is (2)(3, n)(4, n 1),. , (h + 1, n h + 2)(h + 2, h + 3,.. , n h + 1)(1).

5

4

n-2
Fo.

If the input partition to the refinement procedure is V itself, then as the example
indicates, the procedure initially calculates the degree partition and endeavors to refine
it. If the graph is regular, then the refinement procedure will not be able to make any
refinement unless the input partition is nontrivial. On the other hand, if the graph is a
tree, then the refinement procedure will always refine V into the automorphism
partition 15].

One further tactic which is always used in automorphism partitioning (and graph
isomorphism) algorithms is to apply the particular v-invariant to both the given graph G

286 D. G. CORNEIL AND D. G. KIRKPATRICK

and its compliment G. This acknowledges the fact that the automorphism partition of G
is identical to the automorphism partition of G and yet an invariant may fail to
distinguish between two dissimilar vertices in G and succeed in G. On the other hand, if
the v-invariant satisfies i(x)=i(y), and i(x)=i(y), Vx, y V, where G is
nontransitive and regular then not only is incomplete, it provides absolutely no
information about the automorphism partition of at least one nontransitive graph G. If
a given v-invariant is strongly incomplete in this sense for a broad class of graphs we may
be justifiably pessimistic about its use as a heuristic for automorphism partitioning. This
leads to our notion of v-invariants and derived g-invariants being universally
incomplete.

For a given v-invariant we define Sg to be {GIG is nontransitive and regular, and
i(x) i(y) and i,(x)= i,(y) Vx, y V}.

A v-invariant is universally incomplete if there exists a polynomial time bounded
graph transformation T such that for any graph G, Ti(G)Si and furthermore
G1 G2 z> T/(G1) T/(G2) for any G1, G2 (that is G is uniquely represented by a graph
which demonstrates ,the strong incompleteness of i). As a corollary of universal
incompleteness we establish the isomorphism completeness of the family Si.

We now extend the concept of’universal incompleteness to derived g-invariants. If
is a v-invariant, let

Pg ={<G, G’)IG, G’Sg, Ival=[v,l, IEal=IE, and ia(x)=i,(y)

and id(x)= id’(y), Vx Va, Vy Va,}.

If I is the derived g-invariant of i, then I is universally incomplete if there exists a
polynomial time bounded transformation Tx taking an arbitrary pair of graphs <G,, G2>
into a unique pair <G, G>e Pi. It should be noted that being universally incomplete
does not imply that the derived g-invariant of is universally incomplete since
(T/(G1), T/(G2)> might not be a member of Pi. In fact it is possible for the derived
g-invariant of a universally incomplete v-invariant to be complete.

In 5 we shall discuss commonly used v-invariants and in later sections show that
all of these v-invariants (and their derived g-invariants), both individually and collec-
tively, are universally incomplete. As a consequence of this, we shall establish new
isomorphism complete restricted families of graphs. Furthermore, we will show that the
automorphism partitioning problem on these restricted families of graphs is also
isomorphism complete. (This may not follow in general; consider for example rigid or
transitive graphs.) In the next section we present some known isomorphism complete
problems.

4. Known isomorphism complete problems. Presently known isomorphism
complete problems (see also [6]) fall into the following three classes: automorphism
problems, isomorphism complete restricted families of graphs and isomorphism prob-
lems on nongraph structures. As mentioned previously the general automorphism
partitioning problem is isomorphism complete. Babai [3] and Mathon [35] have
independently established that determining the order of a graph’s automorphism group
is also isomorphism complete.

Examples of complete restricted families of graphs include digraphs, labeled
graphs, bipartite graphs, line graphs (see [24]), chordal graphs [7], transitively orient-
able graphs [7], acyclic rooted digraphs [1] and regular graphs [5], [36]. The question of
whether c-regular graph isomorphism (for some fixed c) is isomorphism complete is still
an open problem; this and other related issues will be discussed in 7. As mentioned in

1, there is little reason to assume that current practical algorithms would work any

GRAPH ISOMORPHISM PROBLEM 287

better or worse on these restricted graphs (with the possible exceptions of bipartite and
regular graphs) than on general graphs. For some restricted families of graphs (e.g.,
planar graphs [26], graphs with distinct eigenvalues [3], transitive series parallel
digraphs [33] and interval graphs [8]) the isomorphism problem is known to be
polynomial. Isomorphism problems on other structures such as semigroups [5], finite
automata [5], and finitely presented algebras [32] are known to be isomorphism
complete. Finally, the problem of determining whether a regular graph is self-comple-
mentary is also isomorphism complete [12].

5. Commonly used vertex invariants. As pointed out in 3, most heuristic
algorithms for the graph isomorphism and automorphism partitioning problems utilize
v-invariants. We now present the v-invariants which are commonly used in practice.
Typically, these v-invariants are applied to both the given graph(s) and the comple-
ment(s) and are used in conjunction with a refinement procedure (see 3). For a survey
of practical algorithms see [39].

The degree v-invariant is automatically determined (and refined) by a standard
refinement procedure. This v-invariant is a special case of the general subgraph
embedding v-invariant which involves the different ways of embedding a particular
graph H in the given graph G, where h, the order of H is less than the order of G. Each
node x of G is assigned anH-vector EH(X) (el, e2, eh) where ei the number of
embeddings ofH where x is covered by node of H. For example, the degree of a node x
in G is one half the number of embeddings of K2 into G such that x is covered by a node
of K2. In particular [18], [9] and [22] have shown that this invariant based on small
complete and void graphs together with the refinement procedure works very well for
strongly regular and BIBD graphs. Other commonly used embedding v-invariants
specify H as a path or cycle. In general, we may consider using an embedding
v-invariant based on all subgraphs up to a fixed size c. Schmidt and Druffel [42] use a
v-invariant based on the distance matrix of the given graph. Under this scheme each
vertex x is assigned a distance vector (d, dE," ", dn-l, d) where di --the number of
vertices distance from x. In ’ 6-9 we will show that both individually and collectively
all these v-invariants and the associated derived g-invariants are universally
incomplete.

6. Transformations. We now introduce the three types of transformations which
will be used to show that the various v-invariants are universally incomplete. In 9, we
will also prove that it is sufficient to use these transformations to show that the
corresponding derived g-invariants are also universally incomplete. For each trans-
formation various properties will be stated. Throughout this and subsequent sections,
we will assume that for all given graphs each connected component has maximum
degree-> 3. If this is not the case, then minor modifications are required.

The first transformation involves node replacement. In the general case node
x Vo will be replaced by a graph R where R has deg (x) connector nodes. The
deg (x) edges incident with x are arbitrarily assigned to the deg (x) connector nodes in
R. In constructing such a node replacement graph R, one must in general assure that
the group of automorphisms which stabilize the set of connector nodes induces the
symmetric group on the set. We will use the node replacement transformation in the
restricted situation where G is k-regular thereby permitting the same replacement
graph to be used for each node in G.

NODE (R,k): The node replacement transformation. If A(G’) (where G’=
NODE (R, k)[G]) is to equal A(G) then each connector node in R must have degree -<

288 D. G. CORNEIL AND D. G. KIRKPATRICK

k- 1 and each nonconnector node must have degree-< k. One obvious candidate for
such a replacement graph is Kk. The transformation NODE has been studied by various
researchers (see [36] and [10]) in an attempt to determine whether c-regular graph
isomorphism (for some constant c) is isomorphism complete; further details are given in
7.

As an example of the node replacing transformation, one way of transforming a
k-regular multigraph G into a k-regular graph G’ is by setting G’= NODE (Kk, k)[G].
The general node replacing transformation can be used to transform an arbitrary
multigraph into a general graph and thereby illustrate that multigraph isomorphism is
isomorphism complete. The following properties hold for G’=NODE (K, k)[G]
where G is a k-regular graph.

NR1. The transformation NODE (K, k) can be computed in polynomial time.
NR2. G’ uniquely represents G.
Proof. This can be shown by demonstrating how G may be reconstructed from G’.

Since every k-clique in G’ corresponds to a vertex in G, G may be immediately
reconstructed by shlinking these cliques.

NR3. G’ has nk nodes, is regular of degree k and is nontransitive if G is
nontransitive.

NR4. AP (G) is polynomially recoverable from AP (G’).
Proof. Given node x G, let the vertices in the clique replacing x be denoted xy

where y F(x). Thus in G’, (xy, wz) E’ iff either (i) x w or (ii) x z and y w. The
result follows from the observation that Xw

The second transformation replaces each edge of the given graph G by a specified
graph R. As with the NODE transformation, the edge replacement transformation
could be extended to allow each edge e of G to be replaced by a specific graph Re.

EDGE (R, e,/3): The edge replacing transformation. The replacement graph R
has two connector nodes c and/. Each edge (x, y) in the given graph is replaced by R
where the remaining edges incident with x are now incident with c (or B) and the
remaining edges incident with y are now incident with (or c).

In constrticting such a replacement graph R one must in general assure that ce /3.
Otherwise, the graph resulting from the transformation may not be uniquely defined. If
a---/3, then it doesn’t matter whether x is paired with ce or /; thus G’=
EDGE (R, c,/3)[G] is uniquely defined. To illustrate this transformation we shall
consider the generalized edge replacement transformation where each edge e in G is
replaced by an individual Re. This transformation will be used to transform G, a graph
with labeled edges onto an unlabeled graph G’. Assume the edges are labeled E/
(1 -<_ / -<__ m) and replace an edge with label E with the graph given in Fig. 2.

Graphs with labeled vertices can be handled in a similar fashion. As a consequence,
labeled graph isomorphism is known to be isomorphism complete.

a cycle of length
/+2

FIG. 2

GRAPH ISOMORPHISM PROBLEM 289

Returning to the uniform edge replacement transformation, the following proper-
ties hold for G’ EDGE (R, a,/3)[G] where a ---/3.

ER1. G’ can be computed in time polynomial in n and the size of R.
ER2. If R is connected, then G’ uniquely represents G.
Proof. We first observe that node x e Va, with dega, (x) -> 3 corresponds to a node

x Va iff the number of disjoint embeddings of R in G’ such that a (or/3) covers
x =deg, (x). Since each connected component in G has at least one vertex with
degree => 3, we are able to recover the nodes of G from G’. 71

ER3. G’ has m. (IVRI-2)+ n nodes and is nontransitive if G is nontransitive.
Furthermore, if degn (a)=degn (/3)= 1, then A(G’)=max(A(G),A(R)).

ER4. If R is connected and a and/3 are the only nodes of R with degree 1, then
AP (G) is polynomially recoverable from AP (G’).

Proof. Since a---/3 in R we see that if x---y in G’ and x and y correspond to
vertices in G then x---y in G. 71

The final transformation is based on the graph operation of composition GI[G2]
defined in 2. In our usage of this operation, we will always set G1 to C5 (see Fig. 3).

FIG. 3

COMP (Cs): The composition transformation. The following properties hold for
G’=COMP(Cs)[G]"

CO1. The transformation COMP (C5) can be computed in polynomial time.
CO2. G’ uniquely represents G.
Proof. We prove this by reconstructing G by noting that two vertices x, y G’ lie in

the same copy of G iff
CO3. G’ is compact with order 5n. Furthermore, if G is k-regular and nontran-

sitive, then G’ is (2n + k)-regular and nontransitive.
Proof. The compactness of G’ can be established by considering any two nonad-

jacent vertices x, y in G’. If x and y belong to the same copy of G, then clearly
d,(x, y)= 2 by following edges to a neighboring copy of G. If x and y belong to
different copies of G, then there exists a unique copy of G which is adjacent to both of
these copies, thereby establishing that d,(x, y)= 2. To show that G’ also has the
compactness property, we note that COMP (Cs)[G]-COMP(Cs)[G] and use the
above argument.

CO4. AP (G) is polynomially recoverable from AP (G’).
These three transformations are now used to develop new transformations for

establishing that various v-invariants are universally incomplete. In 9 it will be shown
that these new transformations will also prove the universal incompleteness of the
associated derived g-invariants.

290 D. G. CORNEIL AND D. G. KI.RKPATRICK

7. The production of nontransitive regular graphs. In order to show a v-invariant
to be universally incomplete, we must be able to transform any given graph G into
G’ Si where G’ has various properties including nontransitivity and regularity. In this
section we develop a transformation which given any graph G produces a nontransitive
regular graph G’. The problem of transforming any given graph G into a regular graph
G’ has received considerable attention. Booth [5] constructs a graph G’ which is
m-regular whereas Miller [36] constructs a G’ with regularity A(G) if A(G) is odd and
A(G) + 1 if A(G) is even. In the following, we will show how to produce a nontransitive
A(G)-regular graph regardless of the parity of A(G). To make the given graph
nontransitive we simply add a copy of K1.3. The resulting graph uniquely represents G
and is nontransitive. The A(G)-regularity is accomplished by applying the following
transformation, DEG, to this nontransitive graph. Providing k -> A(G), DEG constructs
a G’ which is k-regular.

DEG (k): The degree transformation.
(i) Form two disjoint copies of G denoted G1 and G2. If x VG then the

correspondi’ng vertices in VG1 and V are denoted X and x2 respectively.
(ii) For each x V add k-deg (x) multiple edges of the type given in Fig. 4

between x and x2. This new graph, G (possibly a multigraph) is k-regular.
(iii) Set G’= NODE (Kk, k)[r].

X1 X2

k- 1 edges
FIG. 4

For the graph G in Fig. 5 and k 3, the results of steps (ii) and (iii) are illustrated in
Figs. 6 and 7 respectively.

FIG. 5

Provided k => A(G), the following properties hold for G’= DEG (k)[G]:
DE1. The transformation DEG can be computed in polynomial time.
DE2. G’ uniquely represents G.
Proof. This follows from using property NR3 to retrieve (. The retrieval of G is

then straightforward, fi
DE3. G’ is nontransitive, k-regular and has order 2k(n + nk- 2m).
DE4. AP (G) is polynomially recoverable from AP (G’).
As mentioned in 4, the question of whether c-regular graph isomorphism is

isomorphism complete is unresolved. In particular is the cubic graph isomorphism

GRAPH ISOMORPHISM PROBLEM 291

FIG. 6

Gl

62

FIG. 7

problem isomorphism complete? (Obviously 2-regular isomorphismP.) Further-
more, is k-regular graph isomorphism equivalent to (k-1)-regular graph iso-
morphism? One approach to this problem is to use NODE, the node replacement
transformation described in the preceding section. Miller [36] has shown that for k : 5,
no appropriate replacement graph exists. For k 5, Carter [10] has constructed a valid
replacement graph thereby showing that 5-regular isomorphism is equivalent to
4-regular isomorphism. A related problem concerns the placement of the isomorphism
of arbitrary irregular graphs into this hierarchy. Our transformation DEG shows that an
arbitrary graph G may be uniquely represented by a A(G)-regtdar graph G’. If one were
able to produce a G’ with lower regularity for z(G)> 3 then as a consequence, the
isomorphism completeness of the k-regular graph isomorphism problem would be
established.

292 O. G. CORNEIL AND D. G. KIRKPATRICK

8. The universal incompleteness of various vertex invariants and new iso-
morphism complete problems. The transformation DEG may be used to represent an
arbitrary graph G by a nontransitive k-regular (k -> A(G)) graph G’. We now turn our
attention to showing that various v-invariants are universally incomplete. In particular
for v-invariant and a given graph G, we want to construct a nontransitive regular graph
G’ where i,(x) i,(y) and id,(x) id,(y) ’x, y V,. The first v-invariant we examine
is the seemingly powerful (albeit expensive) subgraph embedding v-invariant. Recall
that each vertex x G is assigned a vector En(x) (el, e2," eh) where h IH[and
ei the number of embeddings of H in G such that vertex x is covered by vertex of H.
Graph G is H-regular if En(x) F_,n(y) Vx, y G and a graph is c-subgraph regular if it
is H-regular for all H where IHI-<-c. We now show that a v-invariant based on the
H-vectors for any or all H with V] --< an arbitrary constant c is universally incomplete.

First we introduce the GIRTH transformation which is used to construct a graph
G’ which is k-regular with given girth g.

GIRTH (g, k): The girth transformation. This transformation is a special case of
the edge replacement transformation EDGE. In particular we need to specify an edge
replacement graph R (with connector nodes a,/g) for such k and g. The existence of
k-regular graphs with girth => g for arbitrary k and g will be discussed subsequently; for
now we assume that we have a connected k-regular graph 3 with girth-> g. Choose an
arbitrary nonbridge edge (x, y) of 3 and remove it. Take two copies 31, 32 of this graph
and denote the x, y vertices as xl, y 1, x2, y2. Frm R by adding the edges (y 1, y2), (a, xl)
and (fl, x2) where a and/3 are new vertices: (See Fig. 8.) Clearly a ft.

FIG. 8

This graph R will replace every edge in a nontransitive regular graph
formed by the transformation DEG(k). Thus GIRTH (g,k)[G] is defined to be
EDGE (R, a, fl)[DEG (k)[G]] where k _-> A(G). Before stating the properties of G’=
GIRTH (g, k)[G] we discuss the existence and construction of connected graphs with
specified girth and regularity. Erd6s [19] has shown that f(k, g), the minimum number
of nodes required for a k-regular graph to have girth-> g satisfies:

f(k, g) < 41(k -1)e’-l -1 } f’Z (k,g).

This bound is quite tight, since Kfirteszi [30] has shown that

k(k-1)r-2
f(k, g) >= if g 2r + 1,

k-2

2(k--1)r--2
f(k, g) >= if g 2r.

k-2

Erd6s’ proof of the f’(k, g) upper bound for f(k, g) can be altered in a straightfor-
ward manner to produce an algorithm for constructing and thus R. The graph

GRAPH ISOMORPHISM PROBLEM 293

G’=GIRTH (g, k)[G] (i.e., =EDGE (R, a, fl)[DEG(k)[G]] where k_->A(G)) has
the following properties:

GI1. The transformation GIRTH can be computed in polynomial time.
GI2. G’ uniquely represents G.
Proof. This follows immediately from properties ER2 and DE2.
GI3. G’ is nontransitive, k-regular and has order 2k(n +nk-2m).[k.f’(k, g)+

1]. Furthermore 3’(G’) __>- g.
GI4. AP (G) is polynomially recoverable from AP(G’).
It remains to be shown that the c-subgraph embedding v-invariant is universally

incomplete for any or all subgraphs of order -< c. Sachs [40], [41 has studied the number
of embeddings of forests in regular graphs of high girth. This work has been extended in
[31 to determine the number of embeddings of forests in regular high girth graphs with
the added constraint that a particular vertex is covered by the forest. The following
theorem which is an immediate consequence of Theorem 5.6 in [31] motivates the
GIRTH transformation.

THEOREM 1. If G is rgular, then G is (3"(G)- 1)-subgraph regular.
We now establish the universal incompleteness of the c-subgraph embedding

v-invariant.
LEMMA 1. For any constant c, the c-subgraph" embedding v-invariant is universally

incomplete.
Proof. The universal incompleteness of this invariant follows from consideration of

the transformation

G’= GIRTH (c + 2,k)[G].

Provided k->A(G) this transformation establishes that the vertex invariant is uni-
versally incomplete from properties GI1, GI2, GI3 and Theorem 1.

We now examine the distance v-invariant.
LEMMA 2. The distance v-invariant is universally incomplete.
Proof. Consider the transformation G’= COMP (Gs)[DEG (k)[G]] where k

A(G). The universal incompleteness of the distance v-invariant follows from properties
CO1, CO2, CO3, DE1, DE2 and DE3.

Note that both G’ and (3’ are at least 2n-connected. Repeated compositions with
C5 can make the connectivity arbitrarily high.

Having shown that individually the embedding and distance v-invariants are
universally incomplete, it remains to establish that together they are also universally
incomplete. First we prove the following"

LEMMA 3. If G is c-subgraph regular, then C5[G] is also c-subgraph regular.
Proof. We wish to show that En(x)=En(y) Vx, y Cs[G] and for all H with

]Vnl--< c. From the automorphisms on Cs[G] we may assume that x and y belong to the
same copy of G denoted G. Any embedding of H in Cs[G] has a subset HI of H
embedded in (and a subset HE, the rest of H, embedded outside (. (HE may be the null
graph.) The number of ways of embedding HE outside G is independent of the
particular embedding of H1 inside (. This follows from the construction of Cs[G] and
the c-subgraph r.egularity of G. Since Vnll-<-c and (is c-subgraph regular, End(x)=
End(y) Vx, y G. Thus En(x) En(y) Vx, y Cs[G]. 71

To prove that collectively the two v-invariants are universally incomplete we will
use the following transformation"

O’= COMP (Cs)[GIRTH (c + 2, k)[O]].

294 D. G. CORNEIL AND D. G. KIRKPATRICK

THFOREM 2. The v-invariant consisting of the conjunction of the distance v-
invariant and the c-subgraph embedding v-invariant for any constant c is universally
incomplete.

Proof. This follows from using the properties of the preceding transformation and
Lemmas 1, 2 and 3. 71

As a consequence of this theorem and various previous properties we have the
following corollaries.

COlOI.IAr 1. For any constant c, the compact c-subgraph regular graph iso-
morphism problem is isomorphism complete.

COlOLtAg 2. For any constant c, the problem of determining the automorphism
partitioning of a compact c-subgraph regular graph is isomorphism complete.

We now turn our attention to the various derived g-invariants and show that they
are universally incomplete.

9. The universal incompleteness of the associated derived g-invariants. We now
show that the transformations used to establish the universal incompleteness of the
various vertex invariants also establish the universal incompleteness of the correspond-
ing graph invariants. Before applying these transformations to arbitrary 61 and G2 we
must transform G1 and G2 into nontransitive graphs with the same numbers of nodes
and edges. This is accomplished by the following transformation.

STAND (N, M): The standardizing transformation. This transformation maps the
a’pair of graphs G1 and G2 onto the pair G1, 2 both with N nodes and M edges,

provided N and M are large enough with respect to n l, m l, n2 and m2. The
transformation is outlined by describing its effect on a single given graph G. G’ is

produced from G by forming the union of G with a cycle of size n, another cycle of size
n + m andM- 2(n + m) copies of K2 and N + n + 3m 2M copies of K1. The following
four properties hold for (G, G)= STAND (N, M)[Ga, G2]. In each property the pair
of graphs (G, G’) refers either to the pair (G1, G) or (G2, G,).

ST1. The transformation STAND can be computed in polynomial time.
ST2. G’ uniquely represents G.
ST3. A(G’)= A(G) and G’ is nontransitive.
ST4. AP (G) is polynomially recoverable from AP (G’).
Having produced graphs G and G, both nontransitive and with N nodes and M

edges, we are in a position to demonstrate that previously introduced transformations
will establish the universal incompleteness of the various derived g-invariants. Instead
of individually examining each v-invariant discussed in 7 and 8, we will concentrate
on the v-invariant formed by the conjunction of these v-invariants. In particular we will
show that the derived g-invariant corresponding to the conjunction of the distance and
c-subgraph embedding (for any constant c) v-invariants is universally incomplete.
Similar results will obviously hold for the various individual derived g-invariants.

THEOrEM 3. The derived g-invariant corresponding to the confunction o]: the
distance and c-subgraph embedding (]:or any constant c) v-invariants is universally
incomplete.

Proof. Given Ga and G2 we produce G] and G by the transformation
STAND (N, M)[G1, G2]. Let G’= COMP (C.s)[GIRTH (c +2, k)[Gl]], i= 1, 2. If N
and M are sufficiently large with respect to nl, n2, ml and m2 and k_->

max (A(G), A(G2)) then both G7 and G{ are compact and c-subgraph regular. It
remains to show that their subgraph regularities are identical. This.is established by the
following two lemmas. The first is another consequence of Theorem 5.6 in [3 1].

GRAPH ISOMORPHISM PROBLEM 295

LEMMA 4. If G is k-regular and y(G) >IVHI then for any x VH and y V, the
number of ways ofembeddingHin G such that x covers y depends only on H, k and

LEMMA 5. Given two graphs Hand G with w, l < v l. For any v VH, y V, if
the number o]ways ofembeddingHin G with x covering y depends only on H, x and
then the same property holds for Cs[G].

The proof of Lemma 5 is very similar to that of Lemma 3 and is omitted. Together
the above lemmas show that G and G"z are indistinguishable on the basis of embed-
dings of sUbgraphs of order less than or equal to c. Thus, the derived g-invariant is
universally incomplete

10. Concluding remarks. In the preceding sections we have shown that many
seemingly powerful invariants are universally incomplete. Thus any heuristic iso-
morphism or automorphism partition algorithm based on any or all of these invariants
together with the refinement procedure, must fail to give any information regarding
isomorphism or the automorphism partition for a very broad class of graphs. As an
outcome of these results, it was shown that for any constant c, the compact c-subgraph
regular isomorphism problem is isomorphism complete. These results seem to indicate
the sterility of heuristics which attempt to gain global graph information (namely
isomorphism or automorphism.properties) from local graph properties. The compact
c-subgraph regular graphs unlike other known incomplete families, do lend some
insight into the difficulty of the graph isomorphism problem insofar as most commonly
used heuristic isomorphism algorithms fail utterly on these graphs.

Although the basic refinement procedure presented in 3 ,is the most commonly
used such procedure, considerable effort has been spent on the development of more
powerful refining algorithms. One such attempt [17] is to examine individually each
node x which belongs to a "final" cell of order-> 2. This is done by assigning a unique
label to x (i.e., forcing x y Vy V, y x) and using the refinement procedure to try to
construct the automorphism partition of Gx, the graph with x assigned to a unique cell.
Clearly, if x y then the outcome of the refinement procedure applied to G is identical
to the outcome when applied to Gr. If the outcomes are not the same, and x and y
belonged to the same "final" cell in the original partition then this cell can be refined
further. In some cases (e.g., strongly regular graphs), this approach is known tO fail [15].
See [15] for other refinement procedures which are useful for difficult graphs of this
type.

For these various strengthened refinement procedures, it is natural to modify our
definitions of universally incomplete invariants to encompass these procedures. One
would then like to show that the various invariants considered in this paper are still
universally incomplete under these strengthened definitions. It is interesting to note
that our transformations do not succeed in this task since the strengthened refinement
procedure outlined in the previous paragraph will succeed in partitioning some of the
nontransitive compact c-subgraph regular graphs produced by our transformations.
Since strongly regular graphs are known to be impervious to this refining technique, one
would like to strengthen the definitions of universal incompleteness by replacing the
regularity requirement by a strongly regular requirement. If any v-invariant could be
shown to be universally incomplete under this strengthened definition, one would have
established that strongly regular graph isomorphism is isomorphism complete. Since
strongly regular graphs form counter-examples to many conjectures (and algorithms) in
the graph isomorphism area, such a result would attract great interest. A similar
comment applies to BIBD graph isomorphism. Another intriguing open problem is to
determine whether k-regular graph isomorphism is equivalent to (k 1)-regular graph

296 D. G. CORNEIL AND 19. G. KIRKPATRICK

isomorphism for k 5. In particular is 4-regular isomorphism equivalent with 3-regular
isomorphism? It is interesting to note that for all of these open questions, the general
techniques of node and/or edge replacement may be shown to fail.

Other open questions suggested by this paper include the following: Find the
minimum value of r such that G being r-subgraph regular implies that G is transitive.
What if r = n 1 ? Also if G is Kt-regular and Kt-regular for all does that imply that G
is transitive? If G is Kt-regular and K/-regular for <_-c, is G c-subgraph regular?

Acknowledgment. The authors wish to thank the Natural Sciences and Engineer-
ing Research Council of Canada for financial assistance.

REFERENCES

A, V. AHO, J. E. HOt’CROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. P. AMBLER, H. G. BARROW, C. M. BROWN, R. M. BURSTALL AND R. J. POPPLESTONE, A
versatile computer-controlled assembly system, Proc. of Third International Joint Conf. on Artificial
Intelligence Stanford (1973), pp. 298-307.

[3] L. BA3AI, On the isomorphism problem, Proc. FCT Conf., Poznan-Kornak (1977).
[4]. L, BABAI AND P. ERDSS, Random graph isomorphism, to be submitted.
[5] K. S. BOOTH, Isomorphism testingfor graphs, semigroups, andfinite automata are polynomial equivalent

problems, this Journal, 7 (1978), pp. 273-279.
[6] K. S. BOOTH AND C. J. COLBOURN, Problems polynomially equivalent to graph isomorphism, TR

CS-77-D4, Dept. of Computer Science, University of Waterloo (1979).
[7] K. S. BOOTH AND G. S. LUEKER, Linear algorithms to recognize interval graphs and test]:or consecutive

ones property, Proc. 7th Annual ACM Syrup. on Theory of Computing (1975), pp. 255-265.
[8] ---------, Testing for the consecutive ones property, interval graphs, and graph planarity using PO-tree

algorithms, J. Comput. System Sci., 13 (1976), pp. 335-379.
[9] F. C. BUSSEMAKER AND J. J. SEIDEL, Symmetric Hadamard matrices oforder 36, Tech. Rep. Dept. of

Mathematics, Technological University of Eindhoven (1970).
[10] L. CARTER, A four-gadget, SIGACT News 9 (1977), p. 36.
[11] C. J. COLBOURN, A bibliography of the graph isomorphism problem, TR 123/78, Dept. of Computer

Science, Univ. of Toronto, 1978.
12] C. J. COLBOURN AND M. J. COLBOURN, Isomorphism problems involving self-complementary graphs

and tournaments, Proc. 8th Manitoba Conference on Numerical Computing (1978), to appear.
13] S. A, COOK, The complexity oftheorem-proving procedures, Proc. 3rd Annual ACM Symp. on Theory of

Computing (1971), pp. 151-158.
[14] S. A. COOK AND R. A. RECKHOW, On the lengths of proofs in the propositional calculus, Proc. 6th

Annual ACM Symp. on Theory of Computing (1974), pp. 135-148.
[15] D. G. CORNEIL, Graph isomorphism, Ph.D. thesis, Univ. of Toronto (1968).
16] --------, Recent results on the graph isomorphism problem, Proc. 8th Manitoba Conference on Numerical

Computing (1978), to appear.
17] D. G. CORNEIL AND C. C. GOTLIEB, An efficient algorithm for graph isomorphism, J. Assoc. Comput.

Mach., 17 (1970), pp. 51-64.
[18] D. G. CORNEIL AND R. A. MATHON, Algorithmic techniques for the generation and analysis ofstrongly

regular graphs and other combinatorial configurations, Ann. Discrete Math. 2 (1978), pp. 1-32.
19] P. ERDOS AND H. SACHS, Reguliire Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss.

Z. Univ. Halle (12), 3 (1963), pp. 251-258.
[20] M. R. GAREY AND D. S. JOHNSON, Approximation algorithms]:or combinatorial problems: An

annotated bibliography, Algorithms and Complexity, New Directions and Recent Results, J. F.
Traub, ed., Academic Press, New York, 1976, pp. 41-52.

[21 M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some simplified NP-complete graph problems,
Theor. Comput. Sci., (1976), pp. 237-267.

[22] P. B. GIBBONS, R. A. MATHON AND D. G. CORNEAL, Computing techniques]:or the construction and
analysis of block designs, Utilitas Math., 11 (1977), pp. 161-192.

[23] D. CRIES, Describing an algorithm by Hopcroft, Acta Informat., 2 (1973), pp. 97-109.
[24] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.

GRAPH ISOMORPHISM PROBLEM 297

[25] J. HOPCROFT, An n log n algorithm]’or minimizing states in a finite automaton, Theory of Machines and
Computations, Z. Kohavi and A. Paz, eds., Academic Press, New York, 1971, pp. 189-196.

[26] J. E. HOPCROFT AND J. K. WONG, Linear time algorithm]’or isomorphism ofplanar graphs, Extended
abstract, Proc. 6th Annual ACM Symp. on Theory of Computing (1974), pp. 172-184.

[27] R. M. KARP, On the computational complexity ol combinatorial problems, Networks, 5 (1975), pp.
45-68.

[28] --------, The]ast approximate solution o] hard combinatorial problems, Proc. 6th S-E Conf. Combina-
torics, Graph Theory and Computing (1975), pp. 15-31.

[29 ., Probabilistic analysis ofsome combinatorial search algorithms, Algorithms and Complexity, New
Directions and Recent Results, J. F. Traub, ed., Academic Press, New York, 1976, pp. 1-19.

[30] F. K.RTESZI, Pianinite ciclici come risoluzioni di un certo problema de minimo, Boll. Un. Mat. Ital. (3),
15 (1960), pp. 522-528.

[31] D. G. KIRKPATRICK AND D. G. CORNEIL, Forest embeddings in regular graphs of large girth, J,
Combinatorial Theory Ser. B (1979), to appear.

[32] D. KOZEN, Complexity of finitely presented algebras, Proc. 9th Annual ACM Symp. on Theory of
Computing (1977), pp. 164-177.

[33] E. LAWLER, Graphical algorithms and their complexity, Math. Centrum Tracts, 81 (1976), pp. 3-32.
[34] R. A. MATHON, Sample graphs for isomorphism testing, Proc. 9th S-E Conf. Combinatorics, Graph

Theory and Computing (1978).
[35] A note on the graph isomorphism counting problem, submitted.
[36] G. L. MILLER, Graph isomorphism, general remarks, Proc. 9th Annual ACM Symp. on Theory of

Computing (1977), pp. 143-150, J. Comput. System Sci., to appear.
[37] L. POSA, Hamiltonian circuits in random graphs, Discrete Math., 14 (1976), pp. 359-364.
[38] V. R. PRATT, Every prime has a succinct certificate, this Journal, 4 (1975), pp. 214-220.
[39] R. C. READ AND D. G. CORNEIL, The graph isomorphism disease, J. Graph Theory, (1977), pp.

339-363.
[40] H. SACHS, Abzh’hlung yon Wiildern eines gegebenen Typs in reguliiren und bireguliiren Graphen L Publ.

Math. Debrecen., 11 (1964), pp. 74-84.
[41 ,Abziihlung yon Wiildern eines gegebenen Typs in reguliiren und bireguliiren Graphen II, Ibid., 12

(1965), pp. 7-24.
[42] D. C. SCHMDT AND L. E. DRUFFEL, A fast backtracking algorithm to test directed graphs for

isomorphism using distance matrices, J. Assoc. Comput. Mach., 23 (1976), pp. 433-445.
[43] E. H. SUSSENGUTH JR., A graph-theoretic algorithm]:or matching chemical structures, J. Chem. Doc., 5

(1965), pp. 36-43.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0902-0007 $01.00/0

OPTIMAL MERGING OF 3 ELEMENTS WITH n ELEMENTS*

F. K. HWANG"

Abstract. Suppose we are given two disjoint linearly-ordered subsets Am and B, of a linearly-ordered set
S. The problem is to determine the linear ordering of their union (i.e., to "merge" Am and B,) by means of a
sequence of pairwise comparisons between an element of Am and an element of B,. An algorithm to merge
Am and B, is called M-optimal if it minimizes the maximum number of comparisons required where the
maximum is taken over all possible ordering of Am U B,. Let fm (k) denote the largest n such that Am and B,
can be merged in k comparisons by an M-optimal algorithm. The determination of f3(k) has been an open
problem for a long time. In this paper we give a constructive proof that

f3(1)=O, f3(2)=1, f3(3)=, f3(4)=2,

f3(5) 3, f3(6) 4, f3(7) 6, f3(8) 8,

and for ->_ 3,

where [x] denotes the integral part of x.

f3(3r)=[2-21-2,
h(3r + 1) [1---22r-3]-- 2,

f3(3r+2)=[17’2r-6]-1"7

1. Introduction. Suppose we are given two disjoint linearly-ordered subsets Am
and B, of a linearly-ordered set S, say

Am {al < a2 <" < am},

B.={ba<bz<’"" < b.}.

The problem is to determine the linear ordering of their union (i.e., to mergeAm and B,)
by means of a sequence of pairwise comparisons between an element of Am and an
element of B,. Given any algorithm g to solve this problem, which we refer to as the
(m, n) problem, let Kg(m, n) denote the maximum of comparisons required considering
all possible orderings of Am LI B. An algorithm g is said to be M-optimal if Kg(m, n)
K(m, n), where K(m, n) minx Kx (m, n) where x ranges over all possible algorithms g.

The determination of K(m, n) for general m and n is still an open problem. The
several special classes of the (m, n) problem for which K(m, n) are known are (see
[I], [23, [3]):

(i) m=land2.
(ii) m +4=>n ->m.
In particular, the (3, n) problem has been mentioned as an open problem in [1] and

[3]. The purpose of this paper is to settle the (3, n) problem.
Let fro(k) denote the largest n such that the (m, n) problem can be done in k

comparisons. Then for fixed m, K(m, n) is known for every n if and only if fm (k) is
known for every k. It has been determined in the literature [1], [2], [3] that

and

fl(k) 2k-- 1

-[2r-1]-]-llf2(k)
for k 2r- 1,
for k 2r.

where Ix denotes the largest integer not exceeding x. In this paper, we give the values of

* Received by the editors March 29, 1978, and in revised form January 10, 1979.
f Bell Laboratories, Murray Hill, New Jersey 07974.

298

OPTIMAL MERGING 299

f3(k) as follows:

and for r _-> 3,

f3(1)=O, f3(2)=1, f3(3)=1, f3(4)=2,

f3(5)=3, f3(6)=4, f3(7)=6, f3(8)=8,

f3(3r)=[2r-2]-2,
f3(3r + 1)= [1--z72-3]- 2,

f3(3r +2) [17 2r--6] 1.
7

A table for fz(k) and f3(k) for k -<_ 18 is given in the following:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f2(k) 0 1 2 3 5 8 12
f3(k) 0 1 1 2 3 4 6

15 16 17 18
18 26 37 53 76 108 154 218 309 437 620
8 10 13 17 22 28 37 47 59 75 96

2. An algorithm for the (3, fa(k)) problem. At a given stage of the merging
process, a certain number of comparisons have been made and partial knowledge on the
relations between ai’s and bj’s has been accumulated. We use a diagraph, called a
configuration, to characterize the known relations at the current stage. In a configura-
tion, each node represents an element and a link x --> y indicates the relation that x is less
than y. We also require that the configuration be minimal in the sense that no link can
be omitted without reducing our knowledge of the relations. A configuration X is said
to dominate a configuration Y if every relation in X is implied by a relation in Y. Note
that X dominates Y implies that the number of comparisons required to do X cannot
exceed the number required to do Y.

We present a merging algorithm in the form/t of a rooted binary tree where each
node is associated with a configuration. The root of the tree is associated with the
configuration before any comparison is made. Every internal node is also associated
with a comparison and its two outlinks represent the two possible outcomes. The two
outlinks lead to two nodes each associated with a new configuration absorbing the
outcome of the comparison just made. A terminal node is usually associated with a
configuration which can be readily analyzed. We indicate the number of comparisons
required to merge an ai (or a group of ai) under that ai (or that group) in the
configuration and verify it in a later analysis. The sum of these indicated numbers plus
the number of comparisons already taken to reach that configuration should not exceed
k for an algorithm for the (3, f3(k)) problem.

A few conventions are adopted to facilitate the presentation of a configuration.
First of all, we replace the links between elements of B, (A3) by undirected edges ,,m,,

since these elements are always ordered in a row from left to right and no confusion can
arise. Secondly, as n can be very large, to save space, elements of B, do not appear in
the configuration unless they are linked to some element of A3. Consequently, it is
necessary to label the elements of B, which do appear in the configuration. On the other
hand, the elements of .4 3 appear in every configuration (ordered in a row), hence need
no labeling. Thirdly, the two nodes involved in the current comparison are denoted by
solid circles while all other nodes are denoted by empty circles.

The values of f3(k) for k _-< 7 are known (see [3]). It is also easy to verify that the
(3, 8) problem can be done in eight comparisons and the (3, 10) problem in nine. For
k _-> 10, we present the algorithm in three parts depending on the residue classes of
k mod 3 and using induction on k. We first study the case k 3r -> 12. For r 4, the
algorithm is illustrated in Fig. 1.

300 F.K. HWANG

22

11 22

A

/ \
11 22

/
8 11 22

7
B

8 11 22

/ \
8 11 12 22 12 22

7 9

C D

FIG. 1. k=12.

Analysis for the terminal nodes in Fig. 1. A. The merging problem is not affected if
the direction of every link is reversed. Therefore, a configuration can be considered
either in its own form or the reverse form. In that sense configuration A dominates the
configuration to its right.

B, C, D. These are easily checked by using the definitions f(k), f2(k) and f3(k).
For k 3r _-> 15, the algorithm is given in Fig. 2.

Definitions of symbols used in Fig. 2.

co f3(3r) 2 +f2(2r 3) +f2(2r 7) + 1 [2-2]- 2,

6’1 [f3(3r)+112 [43 2r-3- 4]7
=2- 2r-2 [38"2-2-6]C2 "" +f3(3r-4)+ 1

7

c3 f3(3r)- 2r-4 + 1 [l--fi52r-4],

{74 2’-a + 2r-2 +f2(2r- 3)+ 1 [2’-2],

6’5 4 d" 2r-3 [’72r-3],

176 5 "+" 2r-4 [175"32r-4],

c =c =2r-,
C, C 2r-1 + 2r’2 3 2r-2.

OPTIMAL MERGING 301

CO

cl CoCl CO

c C CO

ca c c2 Co c c c2 Co

c3 c4 Cl (7 Co C C C2 CO C C4 C2 Ca CO C4 C C3 C0

C1 C2 C3 CO c ca Co

r+ r-4

r-2 2r-2
C

C5 Cl C4 C2 C3 Co C5 Cl C4 C2 C3 Co C 5 C2 C3 CO C C C C

r-1 r-1 r-3 r+l r-3 r-3

c5 c6 CI C4 C2 3 CO C6 1 C4 C2 C3 CO 5 C2 C6 C3 CO C C CO

r-2 r-1 r-3 2r-3 r-3 r+lr-4 r-3 r+l 2r-7

G H J K

FIG. 2. k 3r >_- 15.

302 F.K. HWANG

It is clear that

C0C,3 ’C,6C2C5C,4C1 C, t4 Ct3
Analysis for the terminal nodes in Fig. 2.

A. Configuration A dominates the configuration to its right.
B. al" c’3 1 =fl(r- 1). aa and a3" c.-Cl- 1 _-< [2’-3]-<_ [Z2r-2] 1 =fa(2r--2).
C. al" c -c 1 =fl(r-2).

Co

Co

A

, c c cO
o

2 CO

/ 2r+2 r-3

B

3 1 c Cl c 170

2r

C r-2
c3 c4 Cl c2 Co Cl c2 Co

c4 c c5 c2 Co c5 c2

r+l r-3 r-2 r+l

CO

-2r-5

E F

FIG. 3. k =3r+ _-> 10.

OPTIMAL MERGING 303

D. Configuration D certainly dominates the configuration D’ obtained from D by
deleting the link Cl -+ a2. Since c2- c 1 f3(3r-4), D’, hence D, can be done in 3r-4
comparisons.

E. a3: Co-c3=fx(r-4). a2:Co-C1=<[(43 2-3-4)/7]<-2-l=f1(r). al: Co
[-42r-Z] 2 -< 2r+ 1 f(r + 1).

F. a3" c3-c2-1 _-< [2-4]__--<2r-3-- 1 =fl(r--3). a2" c4--Cl ----< [2-3] _--< 2-1-- 1
fl(r-- 1). al" c 1 -fx(r- 1).

G. This is similar to F.
H. Ignoring the link Cl - a2, then since c4-c’6 1 =f2(2r- 3), al and a2 together

can be merged in 2r-3 comparisons.
I. a2: c5-c4- 1 =fl(r-3).
J. a2: C6--C5-- 1 =fl(r-4).
K. a2 and a3: C3--C6--1=fa(3r)--2r-4--(2r-+2-E+f2(2r--3)+l+2r-3+

2r-4) f2(2r-- 7).
Next we study the case k 3r / 1 _-> 10. The algorithm is given in Fig. 3.
Definitions of symbols used in Fig. 3.

It is clear that

Co f3(3r + 1)= 2r-2 + 2r-3 +f3(3r)= [--Z72r-3]--2,
Cl f3(3r) + 1 [-4-2r-2]-- 1,

C2 C q- 2r-2 [--Q2 r-2] 1,

c3 f.(2r) + 1 [2r-1],
Ca C3 q- 2r-2 [t2r-2],
C5 C4 + 2-3 [’8q22r-3].

C0C2C5Cl C4C3.

Analysis for the terminal nodes in Fig. 3.
A. a, a2 and a3: c-1 =f3(3r).
B. a3: Co-c2=f(r-3). al and a2: Co=[1---772r-3]--2<=[2r]--i =f2(2r+2).
C. a3: c2-c-1 =f(r-2). al and a2: c3-1 =f2(2r).
D. a2: c4--c3--1=fl(r--2), al" C4-1=[-42r-2]--l <--2+1-l=f1(r+l).
E. a2" Cs--C4--1=fl(r--3). al" C5--1=[-2r--3]--l<=2r+1--l=fl(r+1).
F. a2 and a3" c2-c5-1-<[t2-3]- 1_-<[a2’-3]- 1=f2(2r-5). al" c2-1=

[2r-2] 2 -< 2’+1 1 f(r + 1).
Note that comparison 3, or comparisons 3 and 4 together, can be taken before

comparison 2 without affecting the results.
Finally, we study the case k 3r + 2 => 11. The algorithm is given’in Fig. 4.
Definitions of symbols used in Fig. 4.

co=f3(3r+2)=2f2(2r)+ 1=[17"2r-6]7
-1,

C1-- [c0+i]2 [2r-1]
C2 2r,
C3 C2 q- 2r-1 3 2r-1.

304 F.K. HWANG

C Co

A
c_ c co

2r
B

Co
0

c Co

c2 c Co

/ \
C2 C C3 CO C3 Co

r-1
2r 3r-

C D

FIG. 4. k =3r+2->_11.

Analysis for the terminal nodes in Fig. 4.
A. Configuration A is symmetric to the configuration to its right.
B. al: c2- 1 2r- 1 =fl(r). a2 and a3: Co-Ca =f2(2r).
C. al: c3-c2- 1 2r-l- 1 =fl(r- 1).
D. al, a2 and a3: c0-c3 [(13 2-1-6)/7] 1 -<[(17.2-1-6)/7] 1

f3(3r- 1).

3. Optimality ot the algorithm. To prove the optimality of the algorithm, we have
to show that given a (3, f3(k) + 1) problem, then regardless of which comparison ai vs. b
we start with, the problem cannot be done in k comparisons. Since there are too many
choices of ai vs. b/to be dealt with, we use the following scheme to simplify things. We
first classify all the possible choices into three categories depending on which ai,

1, 2, 3, the comparison involves. Then we deal with each category by using the
following lemma.

LZMMA 0. Suppose we can show forfixed ai, neither of the following two cases can be
done in k comparisons: (i) The first comparison is a vs. bx and results in ai-> bx.

(ii) The first comparison is a vs. bx-1 and results in a <--

Then any algorithm whose first comparison involves a cannot be done in k comparisons.
Proof. Suppose an algorithm starts with the first comparison a vs. by. If y _>-x,

consider the outcome that a --> by. Then the resultant configuration is dominated by the
configuration stated in (i) of Lemma 0. If y <- x 1, consider the outcome that ai <--

Then the resultant configuration is dominated by the configuration stated in (ii) of
Lemma 0. In either case, at least one outcome will result in more than k comparisons,
hence the Lemma.

The proof of the optimality of the algorithm will again be illustrated as a rooted tree
(but no longer a binary tree). There will be two types of nodes in the tree: a configuration
node shows the configuration after the current comparison, and an index node indexes
the history of comparisons before a configuration node is reached. The index used is the
ordered sequence of a’s the comparisons have been involved including the current one.
We also indicate the outcomes of the previous comparisons by using a (_ai) to denote the
outcome that a - bx (ai bx) for some bx. Thus the tree starts with a configuration node
showing the configuration before any comparison is made. Then it branches into three

OPrIMAL MERGING 305

index nodes labeled by al, a2 and a3 respectively. Each index node, say, the one labeled
by ai, now branches into two configuration nodes showing the configurations obtained
after the comparison aibx and the comparison aibx-1 respectively. Each
configuration node then branches into three more index nodes and the branching
process goes on. If the configuration associated with a configuration node can be readily
analyzed, that node becomes a terminal node with no more branching from it. Again we
indicate the least numbers of comparisons needed to merge such ai or a group of ai’s
under the a’s. The sum of these numbers plus the number of comparisons already taken
to reach that configuration should exceed k in our proof. The following lemmas are
crucial for our analysis.

LEMMA 1. Suppose that a configuration contains the two links a b, and ai+l by
]:or some and y >= x 1. Then the configuration can be replaced by two subconfigurations,
one induced by the nodes (al, , ai) and (bl, b2, , b,-1), and the other by the nodes
(ai,’’’, a3) and (by, by+l,’’ ’).

Proof. The decomposition is possible since the two subproblems are completely
independent.

Sometimes Lemma 1 does not apply directly to a configuration unless an additional
link is added. We use a broken link to indicate that the configuration we wish to consider
is the one when the broken link is added (and any link now carrying redundant
information should be removed). Since it is obvious that the new configuration
dominates the original one, it suffices to show that the new configuration cannot be done
in a designated number of comparisons.

For many terminal nodes, an application of Lemma 1 to the configurations in there
splits the configurations into several subconfigurations each of which can be considered
as the starting configuration of a (1, t) problem or a (2, t) problem for some number t.
Therefore we need only use the definitions of/l(t) and/2(t) to determine how many
comparisons are needed for these subconfigurations. As t, fl(t) and/2(t) are all explicit,
checking is straightforward and can be verified by the reader. We will give analysis only
for those subconfigurations whose numbers of comparisons cannot be determined by
just knowing]el(t) and/2(t). To be more specific, if N(x, y) denotes the number of
comparisons required to do the configuration of the following type, then our analysis
usually is to determine N(x, y) for some given x and y. The following two lemmas play a
crucial role in that kind of analysis.

y-x y

a a2

FIG. 5. An N(x, y) configuration.

LEMMA 2. N(2t, 2 1 + 2t) > s + + 1 for s, >= O.
Proof. Suppose s 0. Then N(2t, 2t) is the number of comparisons required for the

(2,2t) problem. Since /2(t+ 1)<2, Lemma 2 follows immediately. Therefore we
assume s > 0. The proof of Lemma 2 is given in Fig. 6(a) and 6(b) for the two cases 0
and > 0 respectively.

LEMMA 3. For k >- + q + 1 and 2 >- q >-_ O, define
g(k, t, q) 2t-2 + 2t-3 +. + 2+1 + 2k-t-x + 2k-t-2 +. + 2+ +fE(2q + 3)+ 1.

306 F.K. HWANG

/
2,_1+12"-12,

s

0

0

2"-1 2’

s+l
(Induction)

2s- 2’

O
s+l

(a) =0

22-1

0

2’-1
2"-1+2’ 2 2’-1 2’-1+2"

t+l
s+t+l

(Induction)

2"- 1+2’
0

2"-
/

2" + 2t-I

2’ + 2’-t 2’ + 2’-1

+2’ +2

s+l
s+t+l

(Induction)

(b) t>0

FIG. 6. Proof]:or Lemma 2.

Then

N(x,y)>k /f x->2’-x+2q and y >- g(k, t, q).

Proof. Since the configuration corresponding to N(2t-1 + 2q, g(k, t, q)) dominates
the configuration corresponding to N(x, y), it suffices to prove

N(2’-1 + 2q, g(k, t, q)) > k.

The proof is given by the tree in Fig. 7.
Definitions of symbols used in Fig. 7

co=g(k,t,q),

cl=g(k,t,q)-2t-l-2q,

C2 2k-t-1 --2t-2.C3 Co

OPTIMAL MERGING 307

/
cz+l c Co

k-t

Cl

al a2

C2 Cl Co

k
A

Co

C C3+ Co

k
B

c3 c3+ Co

k-+l t-1

C

FIG. 7. Prooffor Lemma 3.

Analysis for the labeled terminal nodes"
A. Since

and

Co-c2=g(k-l,t,q)

=2t-1 2q.CO C1

Configuration A needs at least k comparisons by induction.
B. Forq<t-2,

c3 g(k, t, q)- 2’-2= g(k 1, t- 1, q)

and

C3- C 2t-2 + 2q.

Configuration B needs at least k comparisons by induction.
For q 2, consider the outcome a < c + 1. Then a2 needs comparisons and a

needs k- comparisons to merge by using Lemma 1 and the fact

c 2k-t-a + 2k-t-2 +. + 2t-1 +f2(2t- 1)+ 1- 2t-a- 2t-2

2k-t-a + 2k-t-2 +’" + 2’-a +[2’-2]>fx(k-t 1)+ 1.

C. For q<=k-t-2,

c3=g(k,t,q)-2’-2

>-2k-’- + 2k-’-2 +" + 2q+a +f2(2q + 3)+ 1 -2

2k-t +[2*]>-f(k-t)+ 1.

For q >-k-t- 1,

c3=g(k,t,q)-2-9

_>-f2(2q +3)+ 1-2q

[a2q+l]- 2q =>2q+l >=fl(k-t)+ 1.

308 F.K. HWANG

[2r r-3

C.s + +C8c3 c7 + cs c9 c7
c6+ c3 c7+ C3+1 Cl C3 CO Cs C3 Co C 3@ Co c c9+ Co

r-1 r-3 2r-lr-3 2r-1 r-3 2r-4 2r-1 r-3 2r r-4
J K L

FIG. 8. Prooffor k 3 >= 9.

OPTIMAL MERGING 309

We are now ready to prove the optimality of the algorithm. The optimality of the
algorithm for k _-< 7 is well documented in [3]. Therefore, we will only be concerned with
the case k _-> 8. Again, the proof is separated into three parts depending on the residue
classes of k mod 3. We also define fl (r) 1 for negative r to avoid separate discussions
for certain special cases. We first study the case K 3r _-> 9. The proof is illustrated in
Fig. 8.

Definitions of symbols used in Fig. 8.

Co f3(ar) + 1 [2-2] 1,

Co- 1] [a2_3]C1"--
2

c2 Co- 2-2 [2-2] 1,

c3=c+f2(2r-2)+l 11.2-3-1,

C4 C1 q" 2-2 [-2r-3],
C5 2r-l,

c6 c + 2-2 3 2-2,

Co
C7 co-f,(r-4)- 1 [176_52r_4] 1

for r 3,
for r _>- 4,

Cs 2r-1 + 2r-2 +fz(2r-- 3)+ 1 [-2r-2],
C7

C9 C7--fx(r-- 5)- 1 [3__32r_5] 1
for r 3, 4,
for r _-> 5.

Analysis for the labeled nodes in Fig. 8. (It is understood that Lemma 3 is to be applied
in each case and we just verify the conditions of Lemma 3 in the following.)

A. If the next comparison involves aa, future comparisons are same as (except a
comparison of al with c5 or c5+1 should be ignored) and analysis is analogous to
the 23 case. If the next comparison involves a2, comparison is same as and
analysis is analogous to the tEa2 case. If the next comparison involves a 1, we
consider the two cases a < c6 + 1 and a > c6. In the former case, a needs r 1
more comparisons while a2 and a3 together needs 2r- 1 comparisons. In the
latter case, assume al >C. Then the problem is reduced to a (3, c0-cl)
(3,[2r-3]--1) which needs 3r-2 more comparisons since /3(3r-3)=
[2r-a] 2 by induction.

B. For r 3, c9 Co. Therefore the cases 23_a3 and a2aaal_a3 cannot occur.
C. C8--Cl=[2r-a]>--2r-2+2r-a, c8=[--2r-E]=g(2r-l,r-l,r-3).
D. Trivially true for r 3, 4. For r _-> 5, c0- Ca [79-2 r-a] -> 2r-3 q- 2r-5, Co- Ca

[2r-2] g(2r-4, r- 2, r-5).
E. If the next comparison involves a3, consider the two cases a3 <c9q-1 and

a3 > c9. Analysis is analogous to J and K. If the next comparison involves aE,

comparison is same as and analysis is analogous to the case 23a2. If the next
comparison involves a 1, future comparisons are same as (except a comparison
of a3 with c7 or c7 + 1 should be ignored) and analysis is analogous to the tEtaal
case.

r--3 > [2r+lF. c7-cl >-2-1+2 ,c7=]=g(2r, r,r-3).
[_2r-3] > 2r-2 + 2r-3 2G. c8 c c8 c=c8 =g(2r-l,r-l,r-3)-

2r-X=g(2r-2, r-l,r-3).

310 F.K. HWANG

H. Since c7 >- C9, H needs at least as many comparisons as L.
I. For r 4, c9 Co. Therefore a2a3al_a3_a3 cannot occur.
J. C7--C3>=2r-4+2r-5, c7-c8=co-Cs--2r-4=g(2r-4, r-2, r-5)-2r-4=

g(2r--5, r--3, r--5).
K. Since c3 >= c8, K needs at least as many comparisons as G.
L. For r>_-4, C9--C1>’2r-1+2r-3, c9>[2+l]=g(2r,
Next we study the case k 3r + 1 _>- 10. The proof is illustrated in Fig. 9.
Definitions of symbols used in Fig. 9.

It is clear that

Co f(3r + 1) + 1 [1---272r-]- 1,

Cl CO-- 2
r-3 [-2r-1] 1,

{CaC2 C --fl(r 4) 1 [32r_4] 1

C3=Cl 2r-3 [9-2r-3]- 1,

C4 cs--fa(r--4)-- 1 { 175
179 r-4I-T-2]- 1

C5 C3 2-3 [-2r-2] 1,

for r 3,
for r_->4,

for r 3,
for r >_- 4,

dl 2r-l,

d2 dl + 2r-3 5 2r-3,

d3 d2 +jgl(r- 4) + 1 { d211 2-4

d4 d3 +fl(r 5) + 1 { d323.2-s
45 r--3d5 dl +/2(2r 4) + 1 IT2],

d6 d1+2r-1 2 r,
dT-’d6+2r-2=5 2r-2,
d8 d7+2-3= 11 2r-3,

d9 d8 +fl (r 4) + 1 { d8 for r 3,
23.2’- fort->4,

el 2(= d6),

e2 f2(2r) + 1 [2r-1],
F69,’ r--3-1e3 co--2r-2 2r-3 /2(2r--4)-- 1 tT ,

e4 dl +f2(2r 1) [2r-],
es c--/2(2r-- 5)- 1 [a2r-]-- [73-2-]-- 1,

e6 Co--f2(2r-- 4)-- 1 [2r-2].

for r= 3,
for r _>- 4,

for r 3, 4,
for r_->5,

CO C C2 C3 e6 > > > >=c4 e5 c5 d9 > > >e4 e3 e2

--> d8 -> d7 d6 el _-> ds --> d4 -> d3 d2 ->- da.

OFTIMAL MERGING 311

Symmetric to a
el + Co c5 Co

Dominated by 42 3a3
dl d+lc5 Co d c5 Co e2+l e2e2+lc5 Co c5c5 c1+1 Co

2r /+1 r-1 r+l 2r-1 2r+l r-1 2r+2 r-2

dd5 33+|Co dl e4 cs Co clc+lco

SeeFig. 9(b) 2r r-1 2r l.’"’/ 2r r-1 2r+l r-2

dd6+le 5 d6 e4 c5 Co d 55+1Co 55+1Co d 4c5c+1Co dt

2r-2 See Fig. 9(c) 2r-1 r-1 r+l 2r r-2

A3

a a

BI CI

a a2 23 a

d6+l c5 e+l c2+1 c2+1 Co
d e4 c5 c+lCo d e4e*+c5 c+lco dcsc5+lc+lco d e4 cs Co de4 c2 c+l

-2 -1 -2 -1 +1 2-4 2-3 2 r-3

D E

(a)

FIG. 9. Prooffor k 3r + => 10.

312 F.K. HWA

ds+
d cs Co

C a2)aaa_a 3a_ a3a_a a3

d5+1c5+1 ds+l c+l
dl d2 d2+ cs Co d2 ds+tl c5 Co dlds+l csc dld5+ e3 c5 Co dl d5 d: c: co

r-2 2r 2r-1 r-1 r-1 2r-1 r-1 r-1 2r r-2

A F A5 F2

G 3l-alla2 3l-alla3

ds+ ds+l ds+l c+l d5+l c+l
d d3d3+lcs Co d3d5+ lc5 Co d e3+l c5 Co d e3 5 Co d d 5c5+1 d

r-3 2r 2r-2 r-1 r-2 2r-1 r-2 r-1 2r-lr-2

H As H2

ds + cs d5 + ds+l c5+1 d5+1 c+l
ds d,,d,,+Ics Co d4 ds+l cs+l Co d e3+l Co d e3 cs Co ds d5 c5 cz+l d c! c

r-4 2r r-3 r-1 2r-3 r-1 r-3 2r- r-3 2r-2 r-2

J As J2

FIG. 9. Prooffor k 3r + _-> 10.

OPTIMAL MERGING 313

d

d6 d7+1 e4 5 Co d e4 cs Co d6 e4 cs es es+l Co d6 eses+lco d c+lc d ct+lc

2 2 2r 2 2r- 3 See Fig. 9(b) 2r- 2

A3 C

3i2lld2 d3dld2dldld3d3d,

dTda+le4 Co ds c5 Co d7e4 c5eses+lco d7ese5+lCo Sameas dTe4cxct+lc

r-2 2r-2 2r-3 r-1 2r-3 2r-2 r-2

A3 C

ds d9 dg+ c5 Co d9 c5 c3 c3+ Co

r-3 2r-2

ds c5 e6 e6 + lco

2r-4 r-1 2r-4 r-1

\dseze6+lco Same as ds lc+lco

r-2 2r-3 2r-3 r-2

As M

(c)

FIG. 9. Prooffor k 3r + _-> 10.

314 F.K. HWANG

a3aa2a3a3

/ c+ c2+

(d)

FIG. 9. Proof]or k 3r + ->_ 10.

OPTIMAL MERGING 315

Analysis for labeled nodes in Fig. 9.
2r-2 r-3A. Co c5 +2

--A7. Co- d4 [276-72r-5]- 1 _--> [a2r-2] g(2r 1, r 1, r 3) for r _-> 4.

(Configuration A7 does not occur when r 3, see G.)

c-d3 { l72r-4 (for r 3)
(for r -> 4)

_-> [2-2] g(2r 1, r 1, r 3).

--’-A4. Co-d2 [2-3] 1 _-> [-2-2] g(2r- 1, r- 1, r- 3).

Ax. co-dl=Co-d2>=g(2r-l,r-l,r-3).

As. Co- e3 [-2-2] g(2r- 2, r- 1, r- 3).

A2. Co- e2 _-> Co- e3 g(2r 2, r 1, r 3).

3
CO- d9 [_52r_4]_ 1

(for r 3)
(forr>=4)

=> [2r-2] g(2r- 3, r- 1, r-3).

--A3. Co- e4 [aq-!2r-3] => [/qa2r-2] g(2r 3, r 1, r 3).

B. es-e4=>[73-2-1]_->2-3+2-a.

[15 2r-1-2] [592r-3]roB1. es dl > >= g(2r- 2, r- 2, r-4).
7

roB2. es-d6=es-d1-2-1>-_g(2r-2, r-2, r-4)-2r-1=g(2r-3, r-2, r-4).

roB3. e5 d7 e5- d6- 2r-2 g(2r- 3, r- 2, r-4)- 2-2 g(2r- 4, r- 2, r-4).

Co c e4 [-2-2r-3] 2r-2 + 2r-3.

--C. Cl-dl [2r-3] 1 >- [-2r-2] g(2r- 1, r- 1, r-3).

mC2. Cl d6 Cl -dl 2-1 _-> g(2r 1, r 1, r 3) 2r- g(2r 2, r 1, r 3).

mC3. cl-dT=c1-d6-2-2>-g(2r-2, r-l,r-3)-2r-2=g(2r-3, r-l,r-3).

--C4. c1-d8=c1-d7-2-3>=g(2r-3, r-l,r-3)-2r-3=g(2r-4, r-l,r-3).

D. For r= 3, {72=171 Therefore it suffices to consider the case a3c2 only.
Namely, configuration D does not occur when r 3. For r _-> 4,

172- 175 2r-3 + 2r-4.

[-2r-4] > [-2r-4] g(2r-4, r 2, r-4).172 e4

E. For r 3, E2 and E3 are covered by K. For E, N(c2- e4, c2- dl) N(3, 9) _->

N(2, 9) N(2, 2 + 23- 1) > 5 from Lemma 2. The proof for r 4 is illustrated in Fig. 10.

316 F.K. HWANG

21 26 28 29

17 21 26 27 28 29 16 21 26 28 29 21 22 26 28 29 25 26 28 29 21 27 28 29

4 J LLE2 43 8

/ -- N(2, 21-1 +2)>2 27-21=22+2
(7,3,1)

16 21 26 27 28 29 20 21 26 28 29 16 21 22 26 28 29 16 25 26 28 29 16 21 27 28 29

/ [[._E 33

/

g(6, 3, 1)

20 21 22 23 26 27 28 29 22 26 27 28 29 20 21 26 28 29 20 25 26 28 29 20 21 27 28 29

2
"-a ’-3 6

N(22, 21 +22)>4 27-21 22+2
27-20>6 g(5, 3, 1)

FIG. 10. Prooffor E with k 13.

OPTIMAL MERGING 317

For r => 5,

(72 C4 [-2r-4] 2r-2 + 2r-4.

--El. cz-dl [---Z72r-4]-- 1 => [V2r-a] g(2r-- 1, r-- 1, r-4).

---E2. c2-d6=c2-dx-2r-a>-g(2r-l,r-l,r-4)-2-X=g(2r-2, r-l,r-4).

--E3. c2 d7 c2 d6 2r-2 => g(2r 2, r 1, r 4) 2r-2 g(2r 3, r 1, r 4).

F. For r 3 and 4, ds-d 2r-2.

---.Fa. e3 -dl 2-x + 2-2 1. Therefore N(ds -dl, e3 dl) > (r 1) + (r 2) + 1
2r-2 by Lemma 2.

--F2. c-dl=2+2r-2-1. Therefore N(ds-dl, cl-dx)>r+(r-2)+l=2r-1 by
Lemma 2.

For r _- 5,

d5 dl [!qZ2r-3] -->-- 2r-2 + 2r-5.

--F1. e3 dl [’4q!2r-3] g(2r- 2, r- 1, r- 5).

--F2. c da [2r-3] 1 _-> [2r-3] g(2r 1, r 1, r- 5).

G. For r 3, d3 d2. Therefore it suffices to consider the case a --> d3 + 1 only.
H. For r 3 and 4, the analysis is similar to F. For r _-> 5,

d5 dz d5 dx 2r-3 >- 2r-3 + 2r-s.
--H1. e3-d2=e3-dl-2-3>=g(2r-2, r-l,r-5)-2-3=g(2r-3, r-2, r-5).

---H2. cx d2 Cl dl 2-3 -> g(2r- 1, r- 1, r--, 5) 2r-3 g(2r- 2, r- 2, r- 5).

I. For r 4, d4 d3. Therefore it suffices to consider the case a --> d4 + 1 only.
J. For r 4, the analysis is similar to F. For r >-5,

d5 d3 d5 d2- 2-4 => 2r-4 + 2-s.
mJ1. ea-d3=e3-dz-2-4>=g(2r-3, r-2, r-5)-2r-4=g(2r-4, r-3, r-5).

--:-.J2. c-d3=c-d2-2-4>=g(2r-2, r-2, r-5)-2-4=g(2r-3, r-3, r-5)

K. For r 3, the configuration is the following one:

8 10 11 14

FG. 10’. Configuration K.for r- 3.

Add a broken link a > b11, then it is easy to check that ax needs two comparisons to
merge while a2 and a3 together needs four. Since five comparisons have already been
used, the sum is 11 > 3r + 1 10.

K’. For r 4, the configuration is the following one"

22 23 28 29

FIG. 11. Configuration K’ for 4.

318 F.K. HWANG

Seven comparisons have been made and the number of possible orderings of the 29
elements is reduced to 55. However, any further comparison, with one exception, will
partition the number of 55 into two numbers with one greater than 32, hence at least six
more comparisons, the only exception is when we compare a2 with b2s. Consider the
case b2s + a2. Then the new configuration is the following one:

22 25 28 29

FIG. 12. A configuration.

However, when we do the (3, 5) problem and compare a2 with b3, regardless of
which one is greater, we obtain a configuration equivalent to the above one. Since we
know that the (3, 5) problem needs seven comparisons, the above configuration needs
six more comparisons.

L. For r => 4.

M. For r_->5,

C5 e4 [75-2 r-2 => 2r-3 + 2-5,

c5 d7 [78-2-2] 1 >_- [2-3] g(2r 5, r 2, r 5).

C3 d9 [-2r-4] 1 .=> [a2r-3] f2(2r- 5) + 1.

For r=4, d9=c5 23. Therefore configuration M without the broken link is the
following one:

23 28 29

FIG. 13. Configuration Mfor =4.

which needs six comparisons since it is equivalent to the (3, 4) problem.
M’. Similar to M for r => 5.
N. For r>-5,

cs- ds [79-2r-3] 1 _--> [!2r-4] fz(2r--6) + 1.

O. For r->5,

C4 d8 [-2r-4] 1 --> [a2-3] =/2(2r 5) + 1.

P. If configuration P can be done in less than 2r- 3 comparisons, then we show
that configuration As can be done in less than 2r 2 comparisons, a contradiction to our
analysis of As. For configuration As, we first compare a3 with c + 1. If a3 -+ c, + 1, then
we obtain configuration P which, by assumption, needs less than 2r 3 configurations. If
c + 1 + a3, then since

Co-C1-1 =/x(r- 3), co-d1 <-fl(r- 1),

a3 can be merged in r-3 and a2 in r-1 comparisons. In any case, configuration A8
needs at most 2r- 3 comparisons.

OPTIMAL MERGING 319

Co

c + Co

Dominated
byi2

c c+ Co c2+I Co

r+l
2r+ 3r+2

c2 c2+ Co

/

2r+2

FIG. 14. Prooffor k 3 + 2 >= 8.

Finally, we study the case k 3r + 2 -> 8. The proof is given in Fig. 14. Definitions
of symbols used in Fig. 14"

co= f3(3r + 2)+ l 17.2r-6
7’

for r -> 3,

t71 [!q22
for r 2,
for r _-> 3,

c2 f3(3r + 1) + 1 [L22r-3]- 1.

Analysis for the labeled terminal nodes are straightforward and omitted.

4. Some concluding remarks. Manacher [4], [5] recently gives an algorithm to sort
n elements which beats the Ford and Johnson sorting algorithm over infinite many
values of n. The Manacher sorting algorithm makes use of optimal merging results,
typically when one subset to be merged is very small. Therefore, the knowledge of f, (k)
for small m is likely to help making further improvement over the Manacher sorting
algorithm.

With the formulas of f3(k) now available, we can venture to make some conjecture
about the general f, (k). Noting that

fl(r)
fl(r- 1)

f2(2r) 17 f2(2r + 1) 24----- 1.42, ----- 1.41,
f2(2r- 1) 12 f2(2r) 17

f3(3r) 43 fa(3r + 1) 107
--"- 1.26" ’- 1.24,

f3(3r- 1) 34 f3(3r) 86
f3(3r + 2)
f3(3r + 1)

136
1.27,

107

320 F.K. HWANG

we conjecture

Since we know

using the conjecture, we obtain

&(k)

f,,,(2m)=m+l

f,,(k)(m + 1)2k/"-2.

Checking with known results for m 1, 2, 3, we note

fl(k) rE(k) fa(k)
2 2k-1 - 2,

3 2k/’:-
1.6,

4 2k/4"2
1.5.

Therefore the statistic n 2 (k+l)/m-2 is not a particularly good estimate of fro(k).
On the other hand, we note that the numbers f2(2r + 2) differ very little from the

numbers f3(3r + 2). In fact,

1 _-> f2(2r + 2) f3(3r + 2) _-> O.

Furthermore, since f4(6) 3 f3(5), fa(10) 8 f3(8), and the strongly suspected rela-
tion f,,(mr + i)--- 2f,.(m(r- 1)+ i), we anticipate the numbers f4(4r + 2) will look very
much like the numbers f3(3r + 2) and f2(2r + 2). The same can be said for the numbers
fs(5r + 2). Although we cannot conclude anything in general, it is possible that a set of
numbers similar to f2(2r + 2) will keep turning up in f, (k) for every m. If that turns out to
be true, then using this set of numbers as base plus using the conjecture f,(k)/f,,(k-
1)---21/’, we can come up with a very good estimate for the general f,,(k). Another
interesting relation is observed from the following facts"

fx(r + 1) -fx(r) 2, f2(2r + 1) -f2(2r) 2r-, f3(3r + 1) -f3(3r) 3.2-3.
Whether this neat expression exists for f,,(mr + 1)-f,(mr) for all m, or it is purely a
coincidental event for these particular values of m is too early to conclude.

REFERENCES

[1] R. L. GRAHAM, On sorting by comparisons, Proc. of Atlas Symposium, 2 (1971), pp. 263-269.
[2] F. K. HWANG AND S. LIN, An optimal algorithm]’or merging an ordered set of length two with another

ordered set, Acta Information, 1, 2 (1971), pp. 145-158.
[3] D. E. KNUTH, The Art of Computer Programming, vol. 3, Sorting and Searching, Addison-Wesley,

Reading; MA, 1973.
[4] G. K. MANACHER, The Ford-Johnson sorting algorithm is not optimal, to appear.
[5] ------, Nontrivial improvements to the Hwang-Lin algorithm, to appear.

SlAM J. COMPUT.
Vol. 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0008 $01.00/0

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS*

V. YA. PAN

Abstract. A new technique of trilinear operations of aggregating, uniting and canceling is introduced and
applied to constructing fast linear noncommutative algorithms for matrix multiplication. The result is an
asymptotic improvement of Strassen’s famous algorithms for matrix operations.

Key words. Fast algorithms, complexity of computation, arithmetic complexity, linear algebraic prob-
lems, matrix multiplication, bilinear forms, trilinear form

1. Introduction. Probably the most exciting result in algebraic complexity theory
was obtained by V. Strassen in 1968 (see [23]). He discc;vered that matrix multiplication
(MM), matrix inversion (MI), evaluation of determinant (ED) and solving linear system
of equations (SLS) can be done by O(N) arithmetic operations (where N is the size of
the problem that is the order of the square matrices involved, and a loga 7 2.807),
rather than by O(N3) operations, required in classical methods. Strassen’s algorithms
reduce these four problerr;s to a problem of constructing a fast linear algorithm for
multiplying two 2 2 matrices. It seemed surprising that fast algorithms for all these and
for some other important problems like the transitive closure problem in graph theory,
see e.g. 1], of any large size could be immediately constructed if a fast linear algorithm
of a certain type (we will use the notation LA for such algorithms) for multiplying two
matrices of a specific size was given. Even a small improvement of such a linear
algorithm for matrix multiplication (e.g., reducing the complexity of LA in comparison
with Strassen’s algorithm by even 1 for any size N 2) would automatically result in
asymptotic improvement of the algorithms for the above-mentioned problems MM,
MI, ED, SLS, etc. The attempts to find such an improvement of linear algorithms for
matrix multiplication were numerous before and particularly after the publication of
Strassen’s paper. Despite several bright ideas suggested and despite the progress in
understanding the problem (see [3]-[13], [16], [19], [21], [22], [24]-[30], for surveys
see [2]-[8] and also Remarks 1-3 and 14 in the present paper) no algorithms were
constructed such that they would give an asymptotic improvement of Strassen’s
method. In this paper a new technique for LA transformations from a trivial one with
the complexity n 3 to fast ones is presented. The transformations are the chains of
elementary ones which will be called trilinear operations. Each LA can be written as a
chain of these elementary operations of two to four kinds. Such a representation makes
the ways of constructing fast LA more comprehensive. Trilinear operations of uniting
terms reduce the complexity of LA. Thus the main objective will be in increasing the
number of unitings in the chains. Though the exploration of this technique has just been
started (not counting a short period in 1972, see [19], its power has already been
demonstrated in this paper. LA which are asymptotically faster than Strassen’s are
described in 7-14. By using these algorithms and the previously mentioned reduc-
tion of the other problems to constructing LA, all the problems MM, MI, ED, SLS, etc.
of the size N can be solved by O(N2"78), rather than by O(N287), arithmetic
operations.

It is well known (see [19], [24]) that any LA can be written in either a bilinear, or
trilinear version and both are equivalent. However, in this paper, all the new fast LA are
presented in the trilinear version which seems more appropriate for them. The bilinear
version and some auxiliary techniques are exposed in the next section. The trilinear

* Received by the editors February 1, 1979, and in revised form May 18, 1979.

" Mathematical Sciences Department, IBM Thomas F. Watson Research Center, Yorktown Heights,
New York 10598.

321

322 v. YA. PAN

version and an example of fast LA from [19] are described in 3 where also a simple
example demonstrating the technique of trilinear aggregating and uniting terms is
introduced and studied. An LA from [19] is analyzed and generalized as a model. In 4
the procedure of constructing such an LA is generalized and more formally defined (in

5). Then in 4-6 the lower and upper bounds on the complexity of LA resulting from
such a procedure are established. They are nonlinear and are proved to be optimal for
this procedure. A modification of the latter resulting in a slightly faster LA is also
described in 6. The LA presented in 6 give nonasymptotic improvements over
Strassen’s method. In 7-13 the technique is further developed. Then we combine
aggregating and uniting terms with canceling terms. The result is an asymptotic
improvement of Strassen’s algorithms. The technique of an asymptotically fast LA and
the estimates of its complexity are presented in 7-10. In 11 such an LA (which is
faster than Strassen’s) is formally presented as a chain of identities and without any
reference to the technique of aggregating, uniting and canceling terms. Thus 11 is
independent from others. So are the asymptotically fast algorithms for the problems
MM, IM, ED, SLE, etc. which are immediate from the LA described in 11. The only
necessary reference is the not very difficult and now well-known theorem about a
reduction of the mentioned problems to constructing LA represented in the trilinear
form (the latter reduction is reintroduced in 2 and 3; see Theorem 1 and the
equivalency of formulae (1) and (2) there). In 12 we reintroduce operations of
aggregating and uniting, so that they both can be considered from one general point of
view. We also show that any decomposition of any trilinear form can be obtained as a
chain of aggregatings and inverse operations (disaggregatings). Then in 13 we apply
thesegeneralized aggregatings to construct even faster LA. In 14 the main theorem is
stated, the complexity of presented algorithms is illustrated by tables and the technique
used is summarized. In 15 some open problems are listed. The last section contains
Acknowledgements.

The author pursued two objectives in this paper: to make the construction of fast
LA comprehensible not only for mathematicians, and, on the other hand, to mark a line
for a possible extension and generalization of the technique used. Thus a less formal or
simplified exposition sometimes will precede proofs and formal description. The reader
who is not mathematically minded certainly may skip part of the material, particularly,
the whole 5 and most parts of 4 and 12 (except formulae (3), (4), and (7)). In the
extreme case he may do with just introductory sections 1-3, Algorithms 1, 2, 2a, and 3,
theorems and tables of 14. On the other hand, the reader who is more interested in the
technique used can find some exercises in 6, 10, and 13.

2. Some notation, definitions, and auxiliary techniques. Let integers n and M be
given. Let A, B, C denote n n matrices, aii, bib Cii denote their entries, such that

A Ilaill, B IIb,ll, C -Ilci;ll,
Let L(A), L(B), L(C) denote linear forms of the entries of the matrices A, B, C. LetM
triplets of linear forms L(A), L](B), L3q(C) be given, such that

n-1

L A E o ’. aij,
i,j =0

n-1

L(B) Y ’iibib
i,]=o

n--1

L(C): Y "Yci,
i,] =0

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 323

Suppose that for any pair of matrices A, B and for any pair of integers (k,/), such that
0 -< k, =< n 1 the following system of identities hold:

(1)

pq Lq(A)L(B), q 1, 2,..., M,
b’l

qE aksbsl E YkP, E TkILq(A)LEq(B),
s=O q=l q=l

k,/=0, 1,...,n-1.

Then if the entries of the matrices A and B are given, (1) describes an algorithm for
computing C AB which is called a linear noncommutative algorithm for multiplying
two n n matrices A and B, n is called the size of the problem, M is called the
complexity of the algorithm. We will use a notation LA for the latter.

Remark 1. The definitions and the technique presented in this paper can be easily
generalized for the problem of multiplying n p by p m matrices with any n, p, m and
in many cases for the problem of the evaluation of a set of bilinear forms or (which is the
same) of a trilinear form (see [5], [19], [24]). Note that the size of the problem MM is
always determined by a trilSlet (m, n, p) of integers. It is easy to observe (see 19 or 13])
that the complexity of the optimal LA for a problem MM is invariant to all six possible
permutations in a triplet (m, n, p), e.g. substituting the problem of multiplying m n by
n p matrices for,the problem of multiplying p rn by rn n matrices. The described
LA LA(n) can be turned into LA(m, n, p) for nonsquare matrix multiplications.

Strassen’s fast algorithms for MM, MI, ED, SLS are based on two following
theorems:

THEOREM 1. (V. Strassen [23]). Let a positive integer n and a linear, non-
commutative algorithm LA for multiplying two n n matrices be given such that its
complexity is equal to M. Then algorithm for solving the problems MM, MI, ED, SLS by
only O(Nlg"M) arithmetic operations can be constructed for any N. Here N is the size of
square matrices involved in the problems MM, MI, ED, SLS.

Remark 2. The converse theorems expressing the lower bounds on the complexity
of the problems MM and MI through the lower bounds on the complexity of LA also
hold (see the theorems for MM without divisions in [28] and in the general case in [19],
[25]).

THEOREM 2 (V. Strassen [23]). There exists a linear noncommutative algorithm LA
for multiplying two 2 2 matrices whose complexity is equal to 7.

Remark 3. The bound 7 on M M(2) for the size n 2 is sharp since m(2)-> 7
always; see [29]. Moreover, LA for the size n 2 whose complexity M(2) is equal to
7 is unique up to within a linear transformation (see [19], [10], [13]). A further
asymptotic speed-up could be achieved by constructing a fast LA for n 3 such that
M M(3)=< 21. Yet this problem turned out to be very difficult (if solvable). Thus the
more promising way (as it seemed, at least to the present author) consisted in construc-
ting a fast LA for a greater size of n n matrices. An appropriate value for n as a basis
for a recursion via Theorem 1 can be easily chosen if a formula for a numberM M(n)
of multiplications used in LA for any n has been obtained. Of course, an asymptotically
fast algorithm can be constructed via an analogous recursion if a fast enough algorithm
for multiplication of two nonsquare matrices of any particular sizes has been designed
(see [19] or [13]).

3. Linear algorithms for matrix multiplication as decompositions of a given
trilinear form. The evaluation of a set of bilinear forms in M multiplications and
decomposing a trilinear form as a sum of M terms are two equivalent lroblems [19],
[24]. In particular, the evaluation of the product of n /7 by /7 m matrices and

324 v. Y,. PAN

decomposing the trace of the product of three matrices (n p one by p m one by m n
one) are two equivalent problems [19]. Here is the decomposition in the case n p m,
presented in general form’

n-1 M(n)
2 3(2) E aijbjcgi E L(A)Lq(B)Lq(C).

i,/’,k =0 q=l

It is easy to verify that (1) and (2) are equivalent. In the sequel we can and will study
LA in the form (2) rather than in the form (1). In a sense, (1) seems even simpler than
(2). However, some LA can be better expressed in (2) than in (1). Consider the
following example from [19].

Notation. For the sake of simplicity, in the sequel n is always even and positive,
n 2s, s => 1, and all sub-indices of a, b, and c are always considered modulo n, that is
fl+n,m+n film where stands for a, b, and c.

ALGORITHM 1.

(aii + ak+l,i+l)(bik + bi+ld+l)(Cki "3t- Cj+l,k+l)
i+j+k is even

n-1

ak+l,i+l (bk + bi.l,j+l)Cki
i,k =0]:i+]+k is even

n-1

i,] 0 k +]+k is even

n-1

k,]=O i:i+j+k is even
(ai + ak+l,i+l)bikC]+l,k+l

, aibjkCki.
i,],k

It is easy to verify (see the next section) that for any n Algorithm 1 is an LA whose
complexity is equal to n3/2 + 3n 2.

Algorithm 1 is faster than the classical one, but not faster than Strassen’s. Yet it will
be used as a model for improving Strassen’s. Now we will analyze the construction of
Algorithm 1.

DEF:NrrONS. Any product of three nonzero linear forms is a term. If a trilinear
form T is written as a sum of M terms, then this gives a decomposition R R (T) of a
given form T whose complexity (norm)IIRII is equal toM M(R). In this case R is said
to consist of or to include exactly M terms and have a complexity (a norm) M IIRII.
Each LA is a decomposition of a given trilinear form i.i.kaibikCki as a sum ofM terms,
where M IILAII is the complexity of the LA.

Remark 4. It is obvious that (unlike the rank of the tensor of a trilinear form; see
[24]) norm IIR (T)II is not determined just by a given trilinear form T. Strassen’s LA and
Algorithm 1 give nontrivial examples.

DEFNn:ON. An LA determined by the trivial decomposition that is given by the
identity

’, aiibikCti ., aiibikCki
i,j,k i,j,k

is called trivial and denoted LA(0). IILA(0)I]-- n 3.
In the sequel we seek chains of transformations from the slow LA(0) into a

fast LA.

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 325

Notation and definitions. Each term aiibktCmp where s is any number and 0_<-

i,], k, l, m, p-<_ n-1, is called elementary. Each elementary term is either a desirable
one, iff it is a term aiibikCki of LA(0), or an undesirable one otherwise. The q given
elementary terms ai,i,bk,t,cm,p,, r 1,..., q have a resemblence, if at least one of the
following three chains of equalities holds for all r, r 1, , q"

aid,

bk,l, bkl,

Crnrp, Crop.

If , of these equalities hold where 0 =< , -< 3, then the given q terms are said to have
, resemblences or just to be ,-resemble terms. 2-resemble terms will be also called kin.
The set of q kin terms will also be called a q-family.

It is obvious that the sum of 2-resemble or 3-resemble terms is always identically
either a term, or zero. Thus we can immediately reduce the complexity of a trilinear
form if the latter includes a sum of ,-resemble terms where , 2. This simple trick will
be called uniting of terms. It has been used in Algorithm 1. Generalizing this idea we
could partition all the terms of any LA into groups (families) of v-resemble terms where
,-> 2 and then measure the complexity of this LA by the number of such groups.
Unfortunately, this trick cannot be directly applied to LA(0) since LA(0) includes no
2-resemble and no 3-resemble terms. However, such terms can be created by forming
terms (aggregates) (a + ak+.i+.)(bik + bi+ld+l)(Cki q" C]+l,k+l) for each triplet i, A k such
that +j + k is even.

DEFINITION. A term (aii + akxx)(bk + bxi)(Cki + Cxk) is called an aggregate of two
desirable terms aibkCki and akxibixCik, or a 2-aggregate.

It is easy to notice 2-aggregates among the terms of Algorithm 1 if we write
i=i+l,h=j+l,k=k+l.

Now Algorithm 1 follows immediately from the obvious identity whose left and
right parts are summed for all i, j, k such that +/’ + k is even.

(aii + a+,+)(b + bi+l,i+l)(Cki + Ci+l,k+l)

ak+.i+(bk + bi+l,i+l)Cki + aiibi+l,i+l(Cki + Ci+l,k+l) + (aii + ak+.i+)bikCi+.k+

+ aiibikcki + ak+l,i+lbi+l.i+lCi+l,k+l.

For each i,], k the aggregate on the left is decomposed as a sum of two desirable
terms and six trivial ones. The latter should cancel all the unnecessary products if the
aggregate is expanded, in the sequel such trivial terms will be called correction terms.
After summing for i,], k we notice that the sum of n3/2 aggregates is decomposed into
the sum of all n desirable terms and of 3n correction terms. Then we notice that all the
correction terms can be partitioned into 3n families of kin terms. By uniting the terms
within each family we obtain the desired decomposition of LA(0) as a sum of n3/2 + 3n
terms.

4. Short and full 2-procedures. In this and in the three subsequent sections we will
define 2-procedures which generalize the construction of Algorithm 1 and are based on
the following simple identities:

aiibikCki + akxiibililCixkl (aii + aklil)(bik + bixix)(Cki + Cixkx)
(3)

akil(bii + bik)Cki aiibiix(Cilkl + Cki)

(aki + ai)bikCi,,

326 v. YA. PAN

aki(bid -t- bik)ki-- akilCki . (bilh d- bk);
i,],k k,i

(4) aiibid(Cfik + cki) aiibixh , (Chk + Cki);
i,],k i,] k

(aki + ai)bikCk , bkCk , (akit + ai]).
i,j,k],k

Here ix ix(i), jx =/’l(j), kl kx(k) are considered given functions of i, j, k (respec-
tively) e.g., il + 1,/’1 =/" + 1, k k + 1 for Algorithm 1. "Commuting" of symbols
under the signs Y in (4) is purely for notational convenience.

Let T(ijk) denote the term aijbikCki of LA(0), T(ijk), T (ijk), m 1, 2, 3 denote
four terms in the right part of (3). Following the construction and definitions of the
previous section we will say that (3) describes aggregating a pair of terms, namely,
substituting T(ijk)-,=x T"(ijk) for the sum T(ijk)+T(iljlkl). Condition (4)
describes uniting the correction terms which are kin and belong to the same family of
terms. Let n3/2 pairs 6f terms of LA(0) be aggregated by applying (3) and all terms in
the left parts of these (3) be all different. Then we obtain LA by summing all left parts
and all right parts of these identities. Applying (4) to unite 2-resemble (kin) terms of the
latter algorithm we obtain a new LA having the

3n 2IILAII =<--+ an
complexity. Now we are going to formalize this procedure. In the sequel the following
notation will be used.

Notation. [SI is the cardinality of a given set S; S(1), S(2), S(3) are three sets: of all
integers i, of all pairs of integers (ij) and of all triplets of integers (ilk), such that in all
three cases each integer is modulo n.

Now we will define a 2-procedure as a chain of transformations of LA’s, starting
with forming 2-aggregates from pairs of 0-resemble terms of LA(0). Then we unite kin
terms within each family. Equations (3) and (4) are the basic identities for a 2-
procedure.

DEFINITION OF 2-PROCEDURE. Define a subset S
_

S(3), and partition it into pairs
of triplets (ir]’rk r) and (klill), r= 1, 2,..., [$1/2, such that tl il(ir), 11 -"fl(fr), kl
kl(kr), r= 1,2,..., 1S[/2, ix, h, kx are simple functions on S(1), and m(irl’rkr)
(krir]rx) is a mapping from a subset S ={(irl’rkr), r= 1,..., 1S1/2} of S onto another.
subset S2={(krirjrl), r= 1,..., 1SI/2} of s, such that S2=m(S1),
S1LI S2 S. Construct LA from LA(0) by decomposing 2-aggregates according to (3)
for all Isl/2 pairs of desirable terms T(irl’rk r) and T(k rirjrl) for each integer r-< [$1/2.
Transform LA into another LA (which will be denoted LA(1)) by applying (4) to unite
kin terms of LA within their families. If (as in Algorithm 1) S =S(3), then a
2-procedure is said to be full. Otherwise, it is said to be short.

LEMMA 1. For any LA(1) constructed by a full 2-procedure thefollowing inequalities
hold"

3 3
n 9 2 n 2<- IILA(1)II <- _--:--+ an

Proof.

(ilk)$(3)
T(ijk)= Y T(ijk)+ Y T(ijk)= Y. (T(ijk)+T(kl, il,

ijk)S ijk)S ijk)S

since S [..J S2 S S(3), S S2 is empty (since Is l- [s=l- Isl/2), s=- m(S1),
(kxixh) m(ijk). Now the right inequality has been proven by applications of (3) and
(4). The left inequality is proven in the next section.

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 327

5. Lower bound on the complexity of LA resulting from a full 2-procedure. Except
for the lower bound itself, the technique and the results of these sections are not
referred to in the sequel. Each 2-procedure is determined by the choice of two sets:
S
_
S(3) and S c S and by a mapping re(i/k) (k:il/l). A set S and a mapping rn can

be defined by a partition of a chosen set S. This construction will be used for establishing
the desirable lower bound. It could also be used to generalize 2-procedures.

Notation and definitions. S is an abstract set; IS] =pq, p, q are integers. A
correspondence between pq elements of S and the squares of a p x q table is said to be a
p q representation of S (there are (pq)! different ones). Assuming a p q represen-
tation of S given, a point of S is denoted (g, h) iff it corresponds with the square (g, h) of
the table. The representation determines two partitions of S into p row-subsets S,
S2, Sp and q column-subsets S1, S2,’’" Sq, such that Is Vl q, [Srl P, V

1,..., p, r 1,..., q. Also the representation determines the following mappings"

mr(S V) mr(v, r) (v, 1) from S v to S and

mv(Sr) too(v, r)= (1, r) from Sr to S,

where v 1,. ., p, r 1,. ., q. If

_
S(3), then P(,), P2(), P3() are the pro-

jections of onto the coordinate planes (ki), (if), (jk).
Now in a way similar to the proof of the right inequality of Lemma 1 given in 4 we

obtain the following result.

LEMMA 2. For any LA(1) constructed by a full 2-procedure
3

n
IILA(1)I[--+ [PI(S)I +]ez(sl)l + [P3(S’)I.

Now the desired lower bound n3/2 +n2 on [[LA(1)[[follows immediately from
Lemma 2 and from the next lemma.

3. IP (S I + IP=(S I + IP (S I >_--n 2 for any partition of S S(3) by 2
(n3/2) representation, such that m2(i]k)= (l(k), ?(i), (j)), l(k), ?(i), j’(f) are simple
functions on S(1).

Sketch of the proof ofLemma 3. We will use a duality between S and S2. If a pair
(koio) P:(S), then all the triplets (io]ko), f 0, 1,. , n 1 do not belong to S 1", thus
they belong to 1 S2, and P.2(S2) (ioj), j 0, 1,. ., n 1, P3(S2) (jko), j
0, 1,... ,n-1. Similar properties hold if a pair (ki)_Pl(S). Thus the minimum
of]PI(S)I + IP2(S)I + IP3(S)I is achieved if S S\S and if S
S(p,q)t_JS(q,r)US(r,p), S(p,q)={(ijk)’i<-q,j arbitrary, k<=p}, S(q,r)=
{(ilk)" arbitrary, j <-r, k <-p}, S(r, p)={(ijk)" <=q, j <=r, k arbitrary}. Then p =q r,
since m2(S) S, and therefore, p q r n/2-1, since

6. Optimal full 2-procedure. Further improvement of LA by applying a short
2-procedure. In this section two examples of optimal full 2-procedure are exhibited
such that the resulting LA have the complexity IILAI[n3/2 +n2.

Notation. (S, $2) and ($1, $2, $3) are the Cartesian products of sets S, $2 and
S, $2, $3. E c S(1) and O S(1) are two subsets of S(1) consisting of all even and of all
odd integers modulo n. P2 is S(2)\(O, O) (E, E) CI (E, O) CI (O, E), ,(fg) is S(1), if
(fg)(E,E) and it is E, if (fg) S(2)\(E, E) (O, O) L3 (E, O) t3 (O, E). S=
(E,E,E)LJ(E,E, O)[.J(E, O,E)LJ(O,E,E), (k,i,f)=(k+l,i+l,]+l) (here S=
S(3)). Here and hereafter all indices i,], k are modulo n, e.g. (i+n,], k)=(i]k),
T(i,] + n, k)= T(ifk) etc.

Now with this choice of S we apply the full 2-procedure and obtain a desirable LA
such that [[LA[[n3/2 +n2.

328 v. ,. PN
For each triplet (ifk)S the terms T(ijk) and T(klifl) T(k + 1, + 1, j+ 1) are

aggregated by applying (3), all the left parts and separately all the right parts of these
identities (3) for (ifk) $1 are summed and all terms in the right part of the resulting
identity are partitioned into groups of kin terms. The latter are united by applying (4). It
is easy to verify that this gives an LA whose complexity is n3/2 +n2 (optimal within the
class of all LA obtained from LA(0) by this procedure). Here is a formal presentation of
this LA.

ALGORITHM 2.

TO , (aij "+" ak+l,i+l)(bjk -1- bi+l,j+l)(Cki "[- +1,k+1),
(i,j,k)aS

T= Y, ak+l,i+l , (bik+bi+,i+)cgi,
(k,i)P j13(ki)

T , aiibi+l,j+l (cij -1 Ci+l,k+l),
(i,i)P kP(ij)

T3 k) , (aii + ak+ 1,i+ 1)bikCi+ 1,k + 1,
(.i PiP(.ik)

n-1

T

_
T T2 T3= . aiibikCki.

j,i,k =0

Exercise 1. Let (kl, i,/’1) m(i, f, k) (k + s, + s, f + s), where n 2s. Let S be
equal to the set of all triplets of integers modulo n such that at least two integers in each
triplet are less than s. Repeat the above described procedure to construct another LA of
the complexity n3/2 +]n 2. What will substitute for P, J51(.fg)?

By virtue of Lemma 1, we must change or modify the procedure of constructing LA
from LA(0) to reduce IILAII further. Here is an example of such a modification via a
short 2-procedure, rather than full one. It results in a slight improvement of Algorithm
2.

Let all the terms of LA(0), but the terms T(i, + 1, + 2), (T(i + 1, + 2, i),
T(i + 2, i, + 1), 0, 1, , n 1, be aggregated by applying (3) and then be summed.
In other words, let R=R(T) be a decomposition of a trilinear form TO as the sum
,(Ok)gT(ijk) where Sl\, o consists of all the triplets (i, + 1, + 2), (i + 1, +
2, i), (i + 2, i, i+ 1) where icE. Then IIRI[= n3/2-3n/2, rather than n3/2, but 3n
terms T(ijk) are missed in the sum of the left parts of (3). Yet this can be fixed by a
special uniting procedure (different from (4)), since each missed term belongs to a
family of kin terms in the decompositions of T, T2 or T3. Here is this modified version
2a of algorithm 2 whose complexity is equal to n3/2 3n/2 +n for any even n.

TO E (aii+ ak+.i+)(bik + bi+l,i+l)(Cki + Cj+l,k+l),
ijk)g

T= , ak+l,i+l[..E (bik+bi+l,i+l)tYijk--ti,k+lbi+l,k]Cki,
(ki)P jP(k, i)

T2= aiibi+l,i+[v (ki d" J+l,k+l)O’ijk (]’i+lCi+l’i](ij)P k (i j)

T3= [. (aii+ak+,i+l)O’ijk--tk,i+lak+,j]bkC+l,k+l,
(jk P iP(j,k)

n-1

T

_
T1_ T2_ T3= aobjkCki.

i,j,k =0

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 329

Here

O’ijk 1 i+2,kti+l,j (i+l,jti_l,k (i-2,ji-l,k,

/0 if m,
(lm / 1 if l=m.

Exercise 2. Reduce by 3n/2 the complexity of the LA constructed in Exercise I by
excluding 3n/2 elements from S 1.

7. Short 3-procedure for constructing fast LA. A 3-procedure can be easily
derived from a 2-procedure. Indeed, we define an aggregate of 3 desirable terms, or just
a 3-aggregate, similar to a 2-aggregate, that is, hereafter (aii + ahl + ak2i2)(bi + bi +
bi212)(cki+cih +c]2k2) is called the aggregate of three terms T(i.ik), T(fki) and
T(k2i2]2), or just a 3-aggregate, for any choice of triplets (ijk), (fki) and (k2i2j2). Now
let a subset S of the set of all n 3 desirable terms be partitioned into triplets of terms, and
let the aggregates of all triplets be summed and expanded. Then let the desirable terms
not belonging to S be added, and let them and the terms in the expansion be united
within their families. As a result we have a 3-procedure which is called short if the
original subset S of terms includes less than n 3 terms.

Now we present a concrete short 3-procedure resulting in an LA such that

IlLA]l=(n3-4n)/3+6n 2. We start with rewriting the original trilinear from F=
,i,[k=O"l T(ifk) as a sum of eight forms:

F =F(0, 0, 0)+F(0, 0, 1) +F(0, 1, 0)+F(1, 0, 0)

+F(1, 1, 1)+F(1, 1, 0)+F(1, 0, 1)+F(0, 1, 1),

where

F(a,, y)= (T(i+as, j+fls, k+ys)+T(j+ys, k+as, i+s)
(i,j,k)Sl(s)

s-1

+T(k+s,i+ys, j+as))+ Y’, T(i+as, i+s,i+ys),
i=0

each of a,/3, 3’ is either 0, or 1, n 2s, and Sl(s) is a subset of S(3), characterized by the
following property" IS(s)l-(s-s)/3, and therefore, IIf(,/3, 3")ll-s 3 for any 0-1
triplet (c,/3, 3/), or equivalently, since Ilfll- n 3 8s 3, the presented decompositions of

F(a,/3, 3") include no common terms for different triplets (a, fl, 3’).
We will define Sl(s) in 10 by formula (5). Now we will focus on the following

decomposition of F(0, 0, 0).
s--1

F(O, O, O)= aiibiicii
i=0

+ (ai+aj +ai)(bi +bki+bii)(ci+cii+Cik)+R(O, O, O)
(ijk)Sl(s)

where Sl(s) is a subset of S(3) which will be defined in the sequel, R(0, 0, 0) is a sum of
correction terms which should cancel all the cross-point products except desirable
terms. The latter arise when the 3-aggregates in this decomposition are expanded.

Notice that the given decomposition represents a short 3-procedure (without
uniting yet) applied to all terms of F(0, 0, 0) except the terms T(iii), O, 1, ,s 1.
In this 3-procedure ix i2,]" =jl =]’2, k kl k2. It is easy to verify that (i, j, k) and

(], k, i), or (i,/’, k) and (k, i, j), or (], k, i) and (k, i, j) coincide only if j k. Therefore,

330 v. YA. PAN

each 3-aggregate in the decomposition of F(0, 0, 0) is the aggregate of 3 different terms.
It is obvious that we can choose a subset Sl(s) of S(3) such that ISl(s)[(s 3 s)/3, and
each pair of different aggregates is derived from 6 different terms of F(0, 0, 0) (one of
such subsets is determined in the sequel by formula (5)). Thus we have a decomposition
of F(0, 0, 0) consisting of (sa-s)/3 aggregates, of s terms T(iii), and of correction
terms.

8. Two groups of correction terms for 3-procedure. We seek to reduce the number
of correction terms. We will write their sum using the following formulae.

R(0, 0, 0)= RI(0, 0, 0)+RE(0, 0, 0),

R ’(0, 0, 0)= (aqbkiC]k + aikbiiCki + akibikCq),
(ijk)Sl(s)

R2(0, 0, 0)
(ijk)S(s)

[aqbq(Cki + Cq + Cjk 4. aikbik (Cki 4. Ci] 4. Cjk

+ akibki(Cki + Ci 4- Ck) + ai(bk + bki)Ci + ak(bki 4- bi)Cik

+ a(b +b)c

+ (aik + aki)bici + (ai + aki)bkCk + (aii + aik)bkiCki].

RE(0, 0, 0) consists of correction terms (which are analogous to correction terms of
Algorithms 1, 2 and 2a). It is easy to verify that altogether with the terms T(iii) for
i=0, 1,... ,s-t they form only 3S2 families of kin terms. Unfortunately,
IIRI(0, 0, 0)]1- s3- s, and there are no kin terms among the terms of R 1(0, 0, 0). We
should seek another trick, besides uniting. We will find it via defining 3-procedures
applied to the terms of eight forms F(a, fl, y)’(each defined by a 0-1 triplet a,/3, y), such
that all the terms of R (c,/3, y) will cancel themselves out. This can be considered the
crucial step in our construction.

9. Table representation for aggregates, desirable and correction terms. Trilinear
canceling. In order to make our canceling procedure more observable, we will represent
each 3-aggregate as a 3 3 table by writing

as

(aq + aik + aki)(bk + bki 4- bii)(Cki + cii + Ck)

aii + aik 4- aki \.
bik + bki + bii
Cki 4- Cij 4- Cjk

Thus the table represents a 3-aggregate derived from three desirable terms. Each
term is the product of three entries of the same column of the table. We will say that such
a table defines the 3-aggregate and is defined if a 3-aggregate is given. Now assume that
some of the pluses in the table are substituted by minuses. Then the table defines a
3-aggregate with minuses, that is a product

(+aii 4- aik + aki)(=t=bik 4- bki =t= bq)(=i=Cki 5= Cii "+" Cik).

We will require that there always be even number of minuses in each column of the table
(either no, or two minuses). This guarantees that three columns of the table define a
3-aggregate derived from 3 desirable terms (each with the sign plus).

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 331

Now we will generalize this representation of 3-aggregates even further, so that it
could define 3-procedure for the terms of all F(a, , 3/). Hereafter we will denote

i=i(1)=i+s; f =f(1)=f+s,k=k(1)=k+s;i(O)=i;f(O)=j;k(O)=k,
where

i,/’, k =0, 1,...,s-1.

We see that (a) is defined by and a, (/3) is defined by and/3, , k (3’) is defined by k
and 3". For each F(a, ,) we will restrict ourselves to 3-procedures in which each
3-aggregate is defined by a 3 x 3 table of the following kind"

ai()i() ai(v)() a()i(v)

Ck(v)i(a) Ci()j(v) + C](a)k()

While summing the aggregates for each of 8 triplets a, fl, y, we will assume that again
(i/k) S(s).

Keeping these rules for 3-procedures and considering the case a fl T 0 as a
model for the cases of any 0-1 triplets a, fl, T we obtain the following estimates of the
total numbers" 8(s 3 s)/3 for aggregates and eight (3s2) 24s for different families of
kin terms among the terms T(i(a), i(fl), i(T)), T(i(fl), i(T), i(a)), T(i(T), i(a), i(fl)) and
the terms of R2(a, ,) (the latter denotes the second group of correction terms,
analogous to R2(0, 0, 0)).

As in the tables for the terms of F(0, 0, 0) we will keep the rule for all our tables
that there should always be even number (0 or 2) of minuses in each column of the table.

Now we notice that each 3 3 table also represents three terms of R(a, fl, T).
Namely, each of these three terms is either a product of three diagonal entries

or it is

or it is

(+a i(a)j())(+b k()i(3))(+Ci()k(3),

(.+- a k(13)i(,y))(’’b b j(13)k(,y))(’ff-C i({3)](/)),

(4-ai(,)k()(4-b i(/)](a))(-k’C k(y)i(a)).

Taking this into account we present the following desired distribution of pluses and
minuses in the tables for all F(a, fl, 3"). (See Tables 1-8.)

TABLE 1

F(0, 0, 0)

aii+ ajk + aki

bik + bki "+" bij
Cki + Ci] -1- Cjk

TABLE 2

F(1, 1, 1)

b+ br, r + brf]
c+ c;f + c;-r,]

TABLE 3

F(0, 0, 1)

--aii + ak + aki-

bit, + bki + bs
--Ci @ Ci] at- Cik

TABLE 4

F(1, 1,0)

-aF ai+ +
b[k + bF,?+bi

--Ck7+ C5 +C

332 v. Y,. PAN

TABLE 5

F(0, 1, 0)

ai. aik + ar‘i

bk + bkF+ b
Ck C5 +C

TABLE 6

F(1, O, 1)

Cr‘’f C "1"

TABLE 7
F(1, O, O)

as + air,- aki

bik + br +
Ckf + Cij

TABLE 8

F(O, 1, 1)

aft + a?k
b;-r‘ + bk-+ b5

It remains to notice that each term of/1 Y’...vR 1(O, , ’y) appears in our tables
(and therefore in/ 1) exactly twice: once with plus and another time with minus, it may
be of interest to notice that we could do with just twelve minuses in all eight tables.

10. An estimate for the number of terms (of multiplications) in the algorithm. We
leave as an exercise for a reader to verify our estimates for the numbers of aggregates
and families, or just to check the whole algorithm which is formally presented in the
next section and differs only slightly from the one defined by our tables. The set Sl(s)
can be chosen the same for both algorithms. For example, it can be determined by the
following formulae.

Sl(s)=S(s)t.JS(s), S(s)={(i,f,k),O<=i<-j<k<s-1},
(5)

S(s) {(i, j, k), 0 <- k </’ <=i =<s- 1}.

Counting the number of terms which remain after uniting and canceling we
estimate that we constructed LA such that IILAII 8(s3- s)/3 + 24s2 (n3 4n)/3 + 6n2.

Exercise 3. Construct a fast LA, such that IILAll=(n3-4n)/3+6n 2 by using a
similar procedure and by substituting i* + 1,/’* =/" + 1, k* k + 1 for , /=, k-, and
S* {(i, j, k), i,/’, k are even} for (s).

II. Formal description of an asymptotically fast LA.
ALGORITHM 3,

TO=
(i,i,k)St(s)

(aii + aik + aki)(bik + bki + bii)(Cki + Cii + Cik)

(aii ak + akr)(bir‘ + bki bs) (-c r‘i -[C i]"+ Cik)

(-as. + air‘ + aki)(bjk b.i + bi) (CkF + Cij C]’k

(ai? + aik ai)(--b?k + bkr + bii) (Cki C 5 + Ci)

--(a 5" + a ?r‘- a kr)(-bi + b r‘i + b ?)(c r‘;- c i? + C ?k

--(-ai+ak +ar,;)(b?r‘-bkr+bs)(c., +cff -ci.)
-(ar;- ai + ai)(b;k + brr- bif)(-Ck;+C + c;-)

+ (ar +a+ a?)(b?r, + br‘; + bs-)(cr‘ + c?;- + cr‘)],

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 333

T1= aijbi (s- 2ij)cii + * (Cki ’1" Cjk)
i,]=0 k =0

+ aiib. (s i])ci] - (-ci + C]k)
k=O

+ aribi] (s ,ii)cii iic]7-+ * (CkF-- Cig)
k=O

%" ai]bii (s lij)c. 2" (Cki -4c- C].)
k=O

+arab (S li])C i]’-- * (C"+" C]’k
k=O

+ ai]-b.[(s ii)c?]- l]-[c]i
s_l

k=0

-+- aF]bi] (s (i])c..-- 2" (--Ck("" C].)
k=O

+ afb (s 2ii)CF]"+ * (C .F’t- C "[)
k=0

s-1 s--1

T2= aii * (bgi-k big)cii-aii * (bki + b])ci)-
i,]=O k=0 k=O

+ ar. .,* (bk b.i)Cij -’[- ai] (bkF-- b]k)-- iib]
k=O k=0

s-1] s-1

+ a. 2" (bz b.z) vb c-+ a; 2" (brz bgr)cr
k=O k==O

s-1 s-1 .].}ar; .,* (b.r+ brk)co + arr * (bfr+ brf)c
k=O k=O

T3 2* (ak + ajk)biCi + .,* (akr- ark)- 6ia br,.cr
i,j=o k=0

s-1 s-1

2" (agi a aiy)bi]ci + 2* (ajg agi)biic.
k=O k=O

s-1 s-1

+ _,* (a-akr)brci;-,* (ar+afk)b.cr]-
k --0 k =0

+ .,* (af.i aif) t]7-a.ii bcr+ (afr+a.)brrcr;
k=O k =0

i,i,k =0
aiib]kCik TO T T2 T3,

Here n 2s,]’= + s.] =/’ + s./ k + s. S (s) is determined by (5). 8.q is Kronecker’s
symbol"

1 if p=q.
tp=

0 ifpCq.

334 v. YA. PAN

the symbol _1o* is equivalent with the symbol k= for /" and with the symbol
k =0,k for =/’.
THEORZM 3. For any even n there exists LA having the complexity (n3-4n)/3 +

6n z.
Proof. See Algorithm 3.

rt-1
12. Trilinear aggregating. In the previous sections we decomposed i,j,k=O T(ijk)

as a sum of (n3-4n)/3 3-aggregates and of

T(i + as, + s, + ys) + R2(a, , y)
or,/3, 3, =0

The latter form F* was in turn decomposed as a sum of 6n 2 terms which resulted in a
fast LA. In the next sections we will reduce the number of terms in F* to 29-n2 + n. This
will result in a further speed-up of the algorithms.

In order to find such a decomposition of F*, we need to generalize our definition of
aggregates so that an aggregate could be derived from any set of terms not necessarily
from desirable ones. In particular, we will form aggregates from pairs of 1-resemble
terms. This is a straightforward generalization of the previous definitions so that the
readers may skip all this section except formula (7) unless they are interested in a more
systematic study of aggregatings as a general class of transformations of trilinear forms.
We will see that this class also includes the uniting of terms and the forming of
2-aggregates and 3-aggregates from desirable terms, that is the operations already
studied in this paper. We will establish the relationship between the norms of two
decompositions of a trilinear form before and after the aggregating of its terms. Finally,
we will show that aggregating is a very general kind of transformation of any rilinear
form.

Now we will generalize our definitions of resemblence, aggregates and related
concepts.

DEFINITIONS. A triplet of linear forms L =LI(A), L2-L2(B), L3= L3(C) is a
(nonunique) representation of the term L1LEL3. A set lb of q terms T, T2, , T, has
a resemblence if a representation LI,LE, L is given for each term T, (for rn
1, 2,..., q) and if L L/ L/ for at least one integer such that 1 _-< 3. If
these equalities hold for u.integers i, each between 1 and 3 (here 0 _-< u =< 3), then a given
set]b has u resemblences, and TI, , T are called u-resemble terms (also kin if u 2).
A set of kin terms is a family,. If q triplets L, L2, L3, m 1, 2, , q, of linear forms
are gven, then T(q)=l-[s=lm=lLm is a trilinear aggregate of the set T=
(Tx, , T), T, LLL (or, for the sake of simplicity, is just a q-aggregate). The
substitution of T(q)-t=,+l Tt for ,,= T,, is trilinear aggregating of the set 7. Here
Tt, 1, q3 are all the terms LL2 3pLr such that m, p, r are integers, 1 _-< m, p, r _<- q,

q3
and Tt Ts, if s, Y’.t--1Tt is identically T(q). If is a set with two resemblences, then
the trilinear aggregating of 7" is the trilinear uniting of 7". If T(q) and =1T, are
identically zero, then q-aggregating is q-canceling. The inverse operation to q-aggre-

q3
gating, that is the substitution of __1 T,, for T(q)-t=,+l Tt, is a trilinear q-
disaggregating.

Remark 5. ,-resemblence would have become an inner property of a given set of
terms, not depending on the choice of the representations of the terms, if in this
definition the equalities ce 1L O2L ce qLq had been substituted for the equali-
ties L] L L. Here the coefficients a 1, a 2, , cq are any numbers. We do
not need this invariant definition in the present paper.

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 335

The following obvious lemmas finally show how the aggregating of terms influences
the complexity of their sum.

LEMMA 4. Any linear combination ofq kin (2-resemble) terms is identically either a
term, or zero. For , >-2 the sum of q given ,-resemble terms is identically (1/q 2) T(q).

LEMMA 5.

(6) q L -- r -L
m=l r=l m----1 m=l

where e e (q is a primitive q-root of unity, that is e" 1 if 1 <= m <- q 1 e
q 1. In

particular,]:or q 2,

(7) 2(L - .L +L2L2)=[(L +L)(L’ + L’) + (L’-L2)(L’-L’)].

COROLLARY. Let a trilinear form I include ,-resemble terms T, Tz, Tq. Let
these q terms be aggregated. LetRi Ri(F), O, 1, be the decompositions o]:Fbefore and
after the aggregating of T1 , T. Then

q- 1 <-Ilgo[[-llglll<-q i[, <=2,

IIRolI-IIRlll may be negative if , <= 1, and IIR011 IIRlll i 1 and the aggregating is
determined by (6) or (7).

We will conclude this section with a simple and nonconstructive but very general
result that any decomposition of any given trilinear form as a sum of terms can be
obtained from a trivial decomposition of this form by a chain of aggregatings and
disaggregatings.

Definitions and notation. Let {a,, b, cv} be three given sets of independent
variables. Each product sCabocv where sc is a number is called an elementary term. A
decomposition of a given trilinear form Y.,LI(a)L2m(b)L(c) which consists of only
elementary terms and includes no proportional terms is called trivial (trivial LA is an
example of such a decomposition for the form i,i,kaijbikCki).

The two following lemmas are obvious.
LEMMA 6. Trivial decomposition of a given trilinearform is always unique. It can be

obtained by a chainofdisaggregatings with subsequent aggregatings ofproportional trivial
terms.

LEMMA 7. Any two decompositions ofa given irilinearform can be transformed each
into another by a chain of aggregatings and disaggregatings (compare with [6]-[8]).

Proof. Lemma 6 is immediate from Lemma 7, since for any aggregating and for any
disaggregating the inverse operations are disaggregating and aggregating.

13. Further improvement of LA. In this section we will redecompose the sums T1,
T2 and T3 of the correction terms of Algorithm 3 to reduce even further the total
number of terms. This will be obtained after several aggregatings of pairs either of
1-resemble, or of kin terms. In order to write this process in a more compact and
observable way, the results of each aggregating will be represented in the form of tables
analogous to ones used in 9. Again each table consists of 3 columns. But now each row
(not a column) in the table represents a term, so that each multiple of the term is written
in some column of the table. Unlike 9, the numbers of rows are either 4, or 6 for each
table in this section. We will use arrows to indicate which pairs of ,-resemble terms
should be aggregated. Here 1 <= , <= 2. If u 1, then the aggregating is reduced to a
straightforward application of formula (7). In this section we initially expand each of
T1, T2, T3 as a sum of their elementary correction terms. We will start with presenting

336 v. YA. PAN

(in Tables 9-14) 24 typical elementary correction terms of the trilinear form T from
Algorithm 3.

TABLE 9 TABLE 10

aijbiicii a zFb ;Fc ff
aiibTii], aFbi]c
aFjbi]cij ai[bFicF]-- ai]bijF] a.bfci

TABLE 11 TABLE 12

aijbrjcFi a TfbiCk F
a Fib]Ck a b Fc ,i

--ai]bi]ki a rib .c

TABLE 13 TABLE 14

aiibqC]k aFb z].ciz
aqbCjk azbifc; 5
azbck ai;b.c
-ai;bici -a%.b;

Here i,j, k=0, 1,. ., s- 1, f= i+s, [=j+s, = k +s; i,j, k S(s). Each rowis
defined by a triplet of pairs of indices and represents a trivial term.

In fact eight more tables are required to represent elementary correction terms of
T and T3. However, we do not display these tables here, since they can be obtained
from Tables 11-14 just by cyclic permutations of their columns and the variables a, b, c.
The signs minus are not considered squares of the tables. Each such sign stands in a
certain row of the table and is considered a coefficient of the term represented by this
row (similarly for coefficients and which appear in subsequent tables).

At first, we will display the chains of aggregates generated by the terms presented
in Tables 11-14.

TABLE 15

(aii- ai;) bii Cki

(a a ir) b r. c f
-(ar- ah.) bi] Ck, F
(a].- a.) b]. c;-

TABLE 16

a, (b, + b.) c,,
--ai] (bii + b.)
-a. (b;]. + bi].) C].k

aFf (bFf+ bi])

TABLE 17 TABLE 18

1/2(aii ai) (bq + br) (Cki Ci) -(aii ai;) (bi] + b) (Cik +
1/2(aii--ai) (bii-b.) (Cki-Ci) 1/2(aii+ai-f) (bii+bi) (Cik--Ci.)

1/2(a 7) a .) (b rT + b i].) (C ,-- Ck) --- (a rT- a (bi + b iT) (C] q C].k
1/2(arT-ar) (brf-bi[) (cF.+Ckr) 1/2(ar].+a6.) (br].+bi]-) (C].l--C]k)

TABLE 19

1/2(aii ai].) (bii + b.) (Cki C,i " Cjk + Cj,)
(a;;- a6.) (b;i+ bi].) (C;--Ck-+ C].tZ + C].k)
1/2(aii ai;) (bq b.) (Cki + c
1/2(az;- ah) (br;- hi]) (CF+ CkT)
1/2(aii + ai].) (bii + bs.) (Cik
(az+a.) (b+b) (ci--CFk).

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 337

Similar chains of aggregatings result in representing the elementary correction
terms of T: and of T in two similar tables. Two latter tables (they will be called finalfor
T: and T) obviously coincide with Table 19 up to within cyclic permutations of three
columns of these tables and of the variables a, b, c.

Now it is easy to verify that there are only n: families of kin terms in the
decomposition represented by Table 19. Adding the terms represented by two cyclic
permutations of three columns of Table 19 we increase the number of the families by 3

9_n:times, that is, up to : In this case all the correction terms are represented in these two
tables, and in Tables 9, 10, and 19. Now we will construct a chain of aggregatings of
terms represented in Tables 9 and 10, such that sum of all these terms is finally turned
into a sum of terms belonging to the same n: families. Here is the chain of tables
(Tables 20-23) derived from Tables 9 and 10 by application of our chain of aggregato
ings. The aggregatings are defined by arrows in the tables.

TABLE 20

1/2(ai- ai;) bi (ci- cry.)
1/2 (aii--ai],) br. (ci],-cr],)
1/2(a].- a).) b-]. (cz].- ci])
1/2(aff-a.)bi](c-cii)

TABLE 21

1/2(aii +ai],) bii (cii + cry.) *-I
1/2(aii+ ai],) br. (ci], + cr].)
1/2(at]. + ar.) b-]. (c7+ ci],)
1/2(ar], + a).) bi (cry. + ci)

TABLE 22

1/4(aii ai],) (bii br]) (cij c7] ci]. @ c-j-)
1/4(ai] ai],)(bij + br.) (Cii C" "l- Ci].-- C[’]-)
1/4(ar],- ar.) (br],- bi) (cr].- ci;-- cry. + ci)
1/4(at,.- a.) (br]. + bi],) (cr],- ci], + c. ci)

TABLE 23

1/4(aii + ai],- at].- ar.) (bii bi]-) (Ci] "Jr" C[’1"
1/4(aij + ai], + ar], + ar.) (bii at- bi]) (Ci] "It" C’)
1/4(ai + ai],- aff ar.) (br. bff) (C[]-nt Ci].)
1/4(aii+ai],+ar],+a).) (bo + br].)

We can easily verify that for each of four terms in Table 22 there is a kin term in
Table 19. Now we display our final table (Table 24) for the terms derived by the chains
of aggregatings from elementary correction terms of T3. This final table coincides with
Table 19 up to a cyclic permutation of columns and of the variables a, b, c.

TABLE 24

1/2(aki agi + aik + ai.) (bii bi],) (Cij @ CI")
a

1/2(aki "1- a.i) (bq bi]) (Cij C’’)
1/2(ar + akr) (br;- b.) (cr;- ci;)
1/2(a a) (bi + bit) (ci + cr,.)
1/2(a].- a],k) (br], + bo)

338 v. ,. PA
Comparing Tables 23 and 24 we notice that for each of four terms in the former there is
a kin term in the latter.

Now we will construct chains of aggregations of 8s =4n desirable terms
T(i(o), i(B), i(3")) where a,/, 3’ are all 0-1 triplets. These terms are also included in
T 1, T2, T3. The chains once again will be displayed in tables (Tables 25-30). Arrows
will indicate pairs of terms to be aggregated. We will start with increasing the number of

s--1
desirable terms by 4s 2n, by adding and subtracting the sum 2 i=0 (T(iii)+ T(["[))
to T + T2 + T3 (this is trilinear creating, see the definition in the previous section). Now
let these 6n desirable terms be represented in Tables 25-27 and then aggregated.

TABLE 25 TABLE 26 TABLE 27

aiibiicii aiibii,’.ii aiibiicii
airbricii I.__. aribiicif !2 aiibiFcri
aribircrr aibHcFi arac

arrbr-c rr a Fi-b ri-C {TI__,

TABLE 28

1/2(au + air) (bii + bi) Cii
1/2 (au- ai) (bii- b{i) cii
1/2(art + a) (bT+ bit) crr
1/2(art- aFi) (br-- biF)crr

TABLE 29
1/2(aii if" a(i) bii (Cii "+- Cir)
1/2(aii aFi) bii (cii ci)
1/2(arF+ aiF) biT (CFF+C)
1/2(a;- ar) b;- (c;-- c.)

TABLE 30
1-a2 ii (bi;+ bu) (cri nt- cii)
-aii (bir- bii) (C’{i Cii)
5 art (bri -I- br-) (Ci[" nt- C{’[’)
5art (ba brr) (Ci’--

Each term in Tables 28 and 30 has a kin (2-resemble) term in the last four rows of
Tables 19 and 24 if we write =/" in the latters. Similarly, we could display the final table
for the terms derived by the chains of aggregatings from elementary correction terms of
T2 (this table would be analogous to Tables 19 and 24). Then comparing this table for
=/" and Table 29 we could verify that each term in Table 29 has kin terms among the

9 2terms of oursn families. Only n terms -2T(iii) and -2T(]]-[), i-0, 1,. ., s- 1 have
no kin terms among the terms of our 29-n 2 families. Thus the total number of different
families in our decomposition of T +T2 +T3 equals -}n 2 + n, where n families consist of
terms T(iii) and T(i), 0, 1, , s 1.

This gives the desirable improvement of LA. The complexity of the resulting LA
(which will be denoted algorithm 4) equals (n3-4n)/3 +n2 + n (n 3- n)/3 +n2. We
proved the following theorem.

THEOREM 4. For any even n there exists LA LA(n) whose complexity is (n 3-
n)/3 +-n.

Exercise 4. Modify LA from Exercise 3 to reduce its complexity to (n 3 n)/3 + -n z.

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 339

Exercise 5. Find a formal representation for Algorithm 4 which is similar to the
formal representation of Algorithm 3 in 12 (use the final tables and Table 23).

14. The Main Theorem and illustrating tables.
MAIN THEOREM. There exist algorithms for MM, MI, ED, SLS involving only

O(N) arithmetic operations, where N N is a size of quadratic matrices involved in a
given problem MM, ML, ED, SLS, and /3 log 484721 2.780<1og 27 2.807.

The Main Theorem follows from Theorems 1 and 4 (the latter applied here for
n =48).

Remark 6. Since the proofs of Theorems 1 and 4 are constructive, the same is true
for the Main Theorem.

Here are three tables (Tables 31-33) illustrating the results of this paper.

TABLE 31
M(n) for Algorithms 2, 2a and for the combinations of the

best previously published LA including [21], [22], [25].

The best
Algorithm Alborithm 2a* previously published

10 725 710 721
12 1188 1170 1127
14 1813 1792 1909
16 2624 2600 2401
18 3645 3618 3375
20 4900 4870 5047
22 6413 6380 6972

* For n => 16 the complexity of Algorithm 2a is greater than
the complexity of Algorithm 4.

TABLE 32
M(n) and lognM(n) for

Algorithm 3.

M(n) log M(n)

50 56600 2.7974
52 63024 2.7969
54 69912 2.7964
56 77280 2.7961
58 85144 2.7958
60 93520 2.7955
62 102424 2.7954
64 111872 2.79525
66 121880 2.79517
68 132464 2.79513
70 143640 2.79512
72 155424 2.79515
74 167832 2.7952
76 180880 2.7953
78 194584 2.7954
80 208960 2.7955
82 224024 2.7956
84 239792 2.7958
86 256280 2.7959
88 273504 2.7961
90 291480 2.7963

TABLE 33
M(n) and logn M(n) for Algorithm 4.

M(n) log M(n)*

12 1220 2.8599
18 3396 2.8129
20 4460 2.8050
28 10836 2.7881
36 21372 2.7821
44 37092 2.78029
46 41952 2.78017
48 47216 2.7801419
50 52900 2.78019
52 59020 2.78030
54 65592 2.78046
60 88180 2.78119
80 199440 2.7848
100 378300 2.7889
150 1262000 2.7979
200 2846600 2.8050
220 3767060 2.8063509
222 3868720 2.8075773
240 4867120 2.8095

* Compare with log2 7 2.8073549

Here is a summary of the basic steps which have been done to obtain the Main
Theorem (including the results of [12], [13], [26] etc.).

1. The problems MM, MI, ED, SLS of any size can be reduced to constructing fast
LA (that is LA with a small number of "essential multiplications") for a problemMM of
a particular size. Any algorithm for the problems MM, MI can always be transformed
into LA for MM having roughly the same complexity.

2. A heuristic conclusion" constructing fast LA could be started with studying the
case of LA of a general size n.

3. Another heuristic conclusion’ the trilinear representation is more promising for
constructing fast LA than the bilinear one since the technique of aggregating terms is
easier to apply in the trilinear case.

4. Any LA is a chain of transformations from the trivial one by aggregating and
disaggregating terms.

5. The complexity is reduced if it is possible to aggregate 2-resemble terms (to
unite kin terms).

6. The sets consisting of comparatively small number of aggregates and groups of
2-resemble terms can be created by appropriate aggregating of 0-resemble terms of the
trivial LA.

7. The set of terms arising after appropriate aggregating of n3/2 pairs of 0-
resemble terms of the trivial LA consists of roughly n3/2 aggregates and An 2 groups of
2-resemble terms, such that h =< 3.

8. , >49-
9. Numerous unnecessary terms which probably cannot be partitioned into O(n 2)

groups of 2-resemble terms arise after aggregating triplets of terms of the trivial LA.
However, these terms can be canceled if the triplets of terms and coefficients +/- 1 for a
representation of each term are appropriately chosen. This results in fast LA having the
complexity (na-4n)/3 +6n 2 for any even n.

NEW FAST ALGORITHMS FOR MATRIX OPERATIONS 341

10. The algorithm can be further improved by aggregating 1-resemble terms.
Remark 7. The above listed steps 1-7 have already been considered and applied

for constructing fast LA by Pan in 1972 (see [19]).

15. Open problems (brief discussion). In the previous sections new upper bounds
on the complexity M M(n) of LA have been established. They resulted in asymp-
totically fast algorithms for some important problems. Now two following questions
arise. How far can this or similar techniques be extended? What are the lower bounds
on M(n) and, more generally, on the complexity M(m, n, p) of LA(m, n, p) for matrix
multiplications (see Remark 1 in 2)? An application of the active operation-basic
substitution technique immediately gives lower bounds M(m, n, p) >= (m + n 1)p and,
in particular, for m n =p, M(n)>=2n2-n. An application of this technique to a
version of LA, which can be called a linear one (see e.g., [6]-[8]) to distinguish it from a
bilinear one described in 2 of this paper, and from a trilinear one described in 3,
yields the lower bounds M(m, n, p) >-_ (m 1)(n + 1)+ np, M(n) M(n, n, n)_->2n 2-1
(see [5], [30]). These lower bounds can be slightly improved for (m, n, p)= (2, 2, p),
(m, n, p) (2, 3, 3) (see [1’1], [12], [19]), and for (m, n, p) (2, 3, 4) and m n p 3
(see [19]). Even so, the gap between the best known lower and upper bounds is
enormous. The present author hopes that the technique introduced in this paper will be
extended to the problems of evaluation of different sets of bilinear forms. It would be
also interesting to develop this technique further to speed-up matrix multiplication. For
instance, is it possible to design a faster LA by including aggregating 4-tuples, or
6-tuples, or 9-tuples of 0-resemble desirable terms into our construction? Do there
exist other efficient ways to use aggregating 0-resemble terms for decomposition of a
given trilinear form?

Lately combining the techniques of the present paper and of extension of algebraic
fields (D. Bini, M. Capovani, G. Lotti, F. Romani, S. Winograd) with the reduction of
total to partial MM (A. Sch6nhage) gave the complexity bounded by cN,/3 < 2.6054, c
is an enormous constant, for N NMM (V. Pan).

To further the progress in designing fast matrix multiplication algorithms, perhaps
even in parallel with search for fast LA, the problem should be restated in a more
practical way. Assume that the entries of given matrices are numbers given with a
certain precision p in binary form. Then it ,,’-uld be extremely interesting to find lower
and/or upper bounds on the number of bit operations involved in the evaluation (with
another given precision q) of the product of two given matrices.

16. Acknowledgments. My interest in the algebraic complexity theory and
particularly in the problem of matrix multiplication was encouraged in the fifties and
sixties by Professor V. D. Erokhin (who is not alive now) and by Professor A. G.
Vitushkin (at Moscow State University). My coming back to this field in 1977 became
possible thanks to Dr. S. Winograd at the IBM T. J. Watson Research Center in
Yorktown Heights. I am very grateful to all three of them for this and to the latter also
for very instructive discussions and suggestions resulted in a drastic improvement of the
text of my first draft of this paper.

I wish to thank Dr. N. Pippenger at the IBM Research Center for his helpful
criticism of my terminology, Prof. A. B. Borodin at the University of Toronto for his
helpful comments on the original version of this paper, several people for pointing out
some minor errors in [20], and also Ms. C. Brown who typed the paper.

This technique was introduced for establishing lower bounds on the number of arithmetic operations +
and . for polynomial evaluation in [17] (on the number of multiplications/divisions) and in [18] (on the
number of additions/subtractions). It was rediscovered in the case of +/- in [15] and extended in several
directions in [14], [24], [28].

342 v. YA. PAN

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[3] R.W. BROCKETTAND D. DOBKIN, On the optimal evaluation ofa set ofbilinearforms, Proc. Fifth Ann.
ACM Symp. on Theory of Computing, 1973, pp. 88-95.

[4] ., On the number of multiplications required for matrix multiplication, this Journal, 5 (1976), pp.
624-628.

[5] ., On the optimal 5 (1976), evaluation of a set of bilinear forms, Linear Algebra and Appl. 19
(1978), pp. 207-235.

[6] C. M. FIDUCCIA, Fast matrix multiplication, Proc. Third Ann. ACM Symp. on Theory of Computing,
1971, pp. 45-49.

[7] On obtaining upper bounds on the complexity of matrix multiplication, Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 31-40.

[8] On algebraic complexity of matrix multiplication, Ph.D. Thesis, Brown University, Providence,
RI., 1973.

[9] N. GASTINEL, Sur le calcul des produits de matrices, Numer. Math., 17 (1971), pp. 222-229.
[10] H. F. DEGROOTE, On varieties of optimal algorithms [or the computation o[bilinear mappings II.

Optimal algorithms for 2 2 matrix multiplication, Tech. Rep., Mathematisches Institute, Uni-
versit/it T/ibingen, 1978.

11 J. E. HOPCROFTAND L. R. KERR, Some techniquesforproving certain simple programs optimal, Proc. of
the 1969 Tenth Ann. Symp. on Switching and Automata Theory, 1969, pp. 36-45.

12],On minimizing the number of multiplications necessary]’or matrix multiplication, SIAM J. Appl.
Math., 20 (1971), pp. 30-36.

[13] J. E. HOPCROFTAND J. MUSINSKI, Duality applied to the complexity ofmatrix multiplications and other
bilinear forms, this Journal, 21 (1973), 159-173.

[14] Z. M. KEDEM AND D. G. KIRKPATRICK, Addition requirements for rational functions, this Journal, 6
(1977), pp. 188-199.

[15] D. G. KIRKPATRICK, On the additions necessary to compute certain functions, Proc. 4th Ann. ACM
Symp. on Theory of Computing, 1972, pp. 94-,101.

16] J. D. LADERMAN, A noncommutative algorothm for multiplying 3 3 matrices using 23 multiplications,
Bull. Amer. Math. Soc., 82 (1976), pp. 126-128.

17] V. YA PAN, On some methods ofcomputing polynomial values, Problemy Kibernet., (1962), pp. 21-30.
Transl. Problems of Cybernetics, edited by A. A. Lyapunov., U.S.S.R., (1962), 7, pp. 20-30, U.S.
Department of Commerce.

18] .,Methods for computing polynomials, Ph.D. Thesis, Department of Mechanics and Mathematics,
Moscow State University, 1964. (In Russian.)

19] ., On schemes for the computation ofproducts and inverses of matrices, Russian Math. Surveys, 27
(1972), no. 5, pp. 249-250.

[20] ., Strassen’s algorithm is not optimal, Proceedings of the 19th Annual Symposium on Foundations
of computer science, 1978, 166-176.

[21 R. L. PROBERT, On the composition of matrix multiplication algorithms, Proc. of Sixth Manitoba Conf.
on Num. Math. and Computing, Congressus Numerantium 18, 1977, pp. 357-366.

[22] G. SCHACHTEL, A non-commutative algorithm for mutiplying 5 5 matrices using 103 multiplications,
Information Processing Letters (1978), no. 4, pp. 180-182.

[23] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[24] ., Evaluation ofRational Functions, Complexity of Computer Computations, R. E. Miller and J.

W. Thatcher, eds., Plenum Press, New York, 1972, pp. 1-10.
[25] O. SYKORA, A FastNon-commutative Algorithm forMatrix Multiplication, Lecture Notes in Computer

Science, 53, Springer-Verlag, New York, 1977, pp. 504-512.
[26] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 26 (1973), pp. 184-202.
[27] S. WINOGRAD, A new algorithm for innerproduct, IEEE Trans. Computers, C-17 (1968), pp. 693-694.
[28], On the number of multiplications necessary to compute certain functions, Comm. Pure Appl.

Math., 23 (1970), pp. 165-179.
[29] S. WINOGRAD, On multiplication of2 2 matrices, Linear Algebra and Appl., 4 (1971), pp. 381-388.
[30], to appear.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0009 $01.00/0

ON THE POLYHEDRAL DECISION PROBLEM*

ANDREW C. YAO" AND RONALD L. RIVEST$

Abstract. Computational problems sometimes can be cast in the following form: Given a point x in R,
determine if x lies in some fixed polyhedron. In this paper we give a general lower bound to the complexity of
such problems, showing that 1/2 log2 fs linear comparisons are needed in the worst case, for any polyhedron
with fs s-dimensional faces. For polyhedra with abundant faces, this leads to lower bounds nonlinear in n, the
number of variables.

Key words, adversary strategy, complexity, dimension, edge, face, linear decision tree, lower bound,
polyhedron

1. Introduction. Computational problems sometimes can be cast in the following
form. Given n numbers xl, x2, , Xn, determine if they satisfy some fixed set of linear
inequalities, i.e., if the point x= (x l, x2,..., xn) lies in some "polyhedron". For
example, the problem of verifying a maximum element can be stated as "Given
x l, x,..., xn, determine if x >=xi for all i." As another example, a version of the
minimum spanning tree verification problem is the following: Given a weight function w
on the set of edges in a graph G, determine if w(To) <-_ w(T) for all spanning trees T of G
(To is a fixed spanning tree, and w(T) is the sum of edge weights in T). The aim of this
paper is to establish a general lower bound on this type of problems, in terms.of some
intrinsic characteristics of the polyhedron in question. In contrast to a previous result of
this type (Rabin [5]), the present bound can give values larger than the number of
variables.

2. Definitions and notations. Let R be the space of real n-tuples. A set P in R is
a polyhedron if P ={xlx R, /i(x)-<0, 1, 2,..., m}, where m is an integer, x=
(xl, x, ., x,), and/i(x) l_n c,Txi- ai for some real numbers cij, ai. The polyhedral
decision problemB(P) is to determine whether x s P for any input x. We are interested in
the linear decision tree model [1], [5], [10]. An algorithm is a ternary tree with each
internal node representing a test of the form " Aixi-c: 0", and each leaf containing a
"yes" or "no" answer. For any input, the algorithm proceeds by moving down the tree,
testing and branching according to the test results (<, =, or >), until a leaf is reached. At
that point, the answer to the question "Is x s P?" is supplied by the leaf. The cost of an
algorithm is the height of the tree, i.e., the maximum number of tests made for any
input. The complexity 6f B(P) is the minimum cost of any algorithm, and is denoted by
C(P).

Faces of a polyhedron. Let P {x[li(x) =< 0, 1, 2, , m} be a polyhedron in
To each subset H (maybe) of {1,2,..., rn}, we define a set Fn(P)R" by
Fn(P) {xl/(x) < 0 for each H; li(x) 0 for each i H}. We say that Fn(P) is a face
of dimension s if the smallest affine subspace of R" containing FH(P) has dimension s.
(An ane subspace is the solution to a set of inhomogeneous equations. See, for
example, 16] for more discussions.) The empty face has dimension -1 by convention.
Let s(P) be the set of faces of dimension s of P. Note that no two elements of s(P)

* Received by the editors July 28, 1978, and in revised form May 20, 1979. This research was supported
in part by National Science Foundation under Grants MCS-72-03752 A03, MCS-77-05313, and MCS-75-
14294.

" Computer Science Department, Stanford University, Stanford, California 94305.
$ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139.

343

344 ANDREW C. YAO AND RONALD L. RIVEST

overlap. The set of faces ,s(P) is independent of the choice of li(x). That is, if
e- (xllT(x)-<_ 0, 1, 2, , m’}, the set s(P) constructed using {/ (x)} is the same as
the one constructed using {/i(x)}. For an intrinsic definition of faces, see for example [3],
[8]. A face of dimension 1 is called an edge, as it is part of a line (agreeing with intuition).

Open polyhedra. A nonempty set Q in R is called an open polyhedron if
Q ={xlli(x)<O, i= 1, 2,..., m}. The concepts of faces and set of faces are defined
identically as for polyhedra. More precisely, let P {x[/(x) <_-0, 1, 2,..., m}, then
FH(Q) FH(P), ;s(O) s(P).

3. Lower bounds tor polyhedral decision problems. Let T be a polygon on the
plane. Suppose we are asked to decide if a given point x. is inside T by making a series of
tests of the form "k. x-c: 0". it is easy to see that about log v tests are necessary if T
has v vertices. Our main result is the following generalization.

THEOREM 1. LetP {x[li(x) -<__ 0 for 1, 2," , m} be a polyhedron in R n. Thenfor
each s,

n

COROLLARY.

C(P) >=1/2 log

Theorem 1 relates the complexity of B(P) to certain "static" combinatorial
properties of the polyhedron P. Informally, if a polyhedron P has many edges (or faces),
then the theorem says it is difficult to decide whether a point lies in P. The rest of this
section is devoted to proving Theorem 1. Note that the corollary follows from Theorem

l since(C(P)<__2ce’.n --s/

We will assume in what follows that .P is of dimension n. The following informal
argument demonstrates that this can be done without loss of generality. Suppose that
dim (P)= n’ <n. Let $ _R be the smallest affine subspace of R" containing all of P;
thus dim (S) n’. Now every test hixi-c: 0 in R" either corresponds to a linear test
Y hx-c’: 0 in S (where x’ is, for x e S, x expressed in a basis for $), or else (if
{ R"IE ,xi c} S) the test hixi- c: 0 is useful only for determining if x e $, and
not for telling if x e P under the assumption that x e $. Therefore the complexity of
determining if an x e R" is in P is at least as great as the complexity of determining if an
x e $ is in P. Since dim (S)= dim (P) we are finished with our demonstration.

To prove Theorem 1 we shall adopt the "adversary approach" commonly used in
deriving lower bounds for decision trees. We shall design an adversary strategy
which, for any algorithm, will specify the outcomes for successive queries based on the
results of previous queries. The following lemma is essential to the construction of

LEMMA 1. Let O ={xlp/(x)<0, i= 1, 2,.’., t} be a nonempty open polyhedron,
q(x) ,i=1 hixi c a linearform, 01 O f’) {x[q(x) < 0} and O2 O fq {xlq(x) > 0}. Then
for each s, there exists a j e {1, 2} such that Oj is nonempty, and

Proof of Lemma 1. If O2 , then (2 {x]q(x)=< 0}. Since (2 is an open set, we
must have O

_
{x[q(x)<0}. Therefore, O1 (2, and] 1 satisfies the requirements.

Similarly, for the case O1 we can choose j 2. It remains to prove the lemma when
both O1 and (22 are nonempty. We shall accomplish this by constructing a 1-1 mapping
0 from s(O) into ,s(lQ1)l.Js(O2). This then implies that [,(O)[_<-

/ We can then choose a/’ such that

THE POLYHEDRAL DECISION PROBLEM 345

Now we construct . Let FH(Q) s(O). Define

A1 Fu(Q) tq {xlq(x) < 0},

A2 FH(Q) f] {xlq (x) > 0},

A3 FH Q f’] {xlq(x) 0}.

Case (1). AIUA2=;. In this case fz(Q)_{xlq(x)-O}. Let us write Q1
{xlpi(x) < 0, 1, 2,..., + 1}, with p,+l(X) q(x). Clearly Fn(Q1)
Fu(Q) fq {q(x) 0} FH(Q). Define (FH(Q)) Fn(Q1).

Case (2). A1LI A2 # . Assume that A1 # ; the case A2 # ; can be similarly
treated. Write as before, Ql-{xlp(x)<0, i--1,2,..’ ,t+l} with p,+l(x)=q(x).
Define H’ H LI {t + 1}. Clearly FH,(Q1) FH(Q) tq {xlq(x) < 0} is nonempty and is an
s-dimensional face of Q1.

Define (Fu(Q)) FH,(Q1).
it remains to show that the constructed is an 1-1 mapping. It is easily seen that

@(Fu(Q)) _FH(Q). Since all the Fu(Q) in s(Q) are disjoint, it follows that all the
O(FH(Q)) are disjoint, hence distinct. This completes the proof of Lemma 1. l-!

It would be interesting to know if the same value of] can be used for every value of s
in Lemma 1.

The adversary strategy. The adversary M will specify a way to answer questions
with the help of a sequence of open polyhedra Vo, V1, V2, . Initially, Vo Q where
Q={xl/i(x)<0, i= 1, 2,..., m}. That Q is an open polyhedron (i.e., Q :) is a
consequence of the assumption that P has dimension n (see e.g. [8, Lemma (2.3.10)]).
When the]th query "qj(x)" 0" is asked, M has constructed Vo, V1,’", V-I. The
adversary M will decide the outcome and construct V,. in the following way" Let
O1 V.-1 (’] {xlqj(x) < 0}, and Q2 Vi-1 i"] {x[qi(x) " 0}; by Lemma 1, there is an {1, 2}
such that Q , and I(o)1 _-> 1/21(v,,-x)l; the adversary’s answer to the]th query is
then "qi < 0" if 1, and "q; > 0" if 2; V,. is defined to be Qi.

Analysis of the adversary strategy. Let qi(x)" 0 (f 1, 2,..., t) be the entire
sequence of queries asked by the algorithm faced with outcomes determined by . Let
ejqi(x) < 0 be the results of the queries (e; +/- 1). Then,

(1) Vt={xll(x)<O, i= 1, 2,..., m, eqi(x)<O,]= 1, 2,..., t} ;

and

1 1 1
I(v,)l>--l(v,-)l>=l(v,-)l>-_ _>-l(Vo)l, i.e.,

1
(2) I(v,)l->-1(o)1.
For each x e Vt, the same leaf in the tree T is reached and the algorithm must say "yes,
x 6 P". Since the algorithm only knows that x e {xlejqi(x) < 0,] 1, 2, , t}, we have

{xleq(x) < 0, i 1, 2, , t} P.

As Q is the "largest" open set contained in P, we have

{xleq(x) < 0, j l, 2, , t} O
{xll,(x) < 0, l, 2, , m}.

346 ANDREW C. YAO AND RONALD L. RIVEST

Therefore, (1) can be written as

(3) Vt {xl;q(x) < 0,/" 1, 2, , t).

As there are only linear functions in (3), there can be at most s-dimensional

faces of Vt. Therefore,

(4) (tns
Equations (2) and (4) lead to

() 2’.()l(w,)l.
As the left-hand side of (5) is an increasing function of t, and C(P)>= t, we have

proved Theorem 1. 71

4. Remarks. General discussions on the maximum number of faces that a poly-

hedron can have are given in [31 and [7]. As there can be =(m)n- 1_
edges for certain

polyhedra defined by m inequalities, the corollary to Theorem 1 establishes a lower
bound of order n log m for, say m > n 2, to the corresponding polyhedral decision
problem.

It would be interesting to find a "natural" problem in concrete computational
complexity for which the bound of Theorem 1 yields a nontrivial (i.e., nonlinear) lower
bound. In this regard we mention that, originally, it was hoped that the present
approach would lead to an l)(n 2 log n) lower bound to the complexity of the all-pair
shortest paths problem. That bound would follow if the triangular polyhedron pn) in
R), defined as {xix (Xijl 1 < <f < n)’, Xik > O, Xii d. Xjk " Xik for all 1 < < k < n and
1 <_-/"-< n} (we define xii 0 and xij xji, if i.>j), has at least exp (cn 2 log n) edges1.
However, it has recently been shown by Graham, Yao, and Yao [2] that pn) has less
than exp (cn 2) edges, with the implication that only a cn 2 lower bound can be obtained
in this approach.

One candidate for the application of Theorem 1 is the problem of constructing
optimal alphabetic trees [4], for which the best algorithm known has an O(n log n)
running time. For a start, what is the number of edges in the polyhedron corresponding
to deciding if a complete balanced tree is an optimal alphabetic tree? Another candidate
is the verification problem for minimum spanning trees mentioned in the Introduction.
It seems difficult, however, to obtain a nonlinear bound in this case, since the number of
edges involved is no more than exp (cn log* n) (because the problem can be solved in
O(n log* n) by Tarjan’s result [9]).

See [11] for a proof of this statement. We remark that it was incorrectly stated in [11] that P") has
provably exp (cn log n) edges.

REFERENCES

D.P. DOBKIN, R. J. LIPTON AND S. P. REISS, Excursions into geometry, Computer Science Dept. Tech.
Rep. 71, Yale University, New Haven, CT, 1976.

[2] R. L. GRAHAM, A. C. YAO AND F. F. YAO, Information bounds are weak in the shortest distance
problem, Computer Science Dept. Rep. STAN-CS-78-670, Stanford University, Stanford, CA,
1978, J. Assoc. Comput. Mach., to appear.

THE POLYHEDRAL DECISION PROBLEM 347

[3] B. GRONBAUM, Convex Polytopes, Interscience, New York, 1967.
[4] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[5] M. O. RABIN, Proving simultaneous positivity of linear forms, J. Comput. Systems Sci., 6 (1972), pp.

639-65O.
[6] O. SCHREIER AND E. SPERNER, Modern Algebra and Matrix Theory, translated by M. David and

M. Hausner, Chelsea, New York, 1959.
[7] R. STANLEY, The upper bound conjecture and Cohn-Macaulay rings, Studies in Applied Math., 54

(1975), pp. 135-142.
[8] J. STOER AND C. WITZALL, Convexity and Optimization in Finite Dimension L Springer Verlag, New

York, 1970.
[9] R. E. TARJAN, Applications of path compressions on balanced trees, Computer Science Dept. Rep.

STAN-CS-75-512, Stanford University, Stanford, CA, 1975.
10] A. C. YAO, On the complexity of comparison problems using linear functions, Proc. 16th IEEE Ann.

Symp. on Switching and Automata Theory, Berkeley, CA, 1975, pp. 85-89.
[11 A. C. YAO, D. M. AvIs AND R. L. RIVEST, An II(n log n) lower bound to the shortest paths problem,

Proc. 9th ACM Annual Symposium on Theory of Computing, Boulder, CO, 1977, pp. 11-17.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

(C) 1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0010 $01.00/0

PATH SYSTEMS: CONSTRUCTIONS, SOLUTIONS AND APPLICATIONS*

EITAN M. GURARI" AND OSCAR H. IBARRA

Abstract. We investigate the use of path systems in automata theory and computational complexity. A
new framework is developed which brings together the main constructions of path systems corresponding to
machine models as well as the main algorithms for solving such path systems. Applications to resource-
bounded computation are given.

Key words, path system, computational complexity, resource-bounded computation, Turing machine,
auxiliary pushdown automaton, auxiliary stack automaton, parallel Turing machine, alternating Turing
machine, recursive Turing machine, restricted nondeterminism

1. Introduction. The notion of a path system was first introduced by Cook [4] in
order to prove some results concerning certain types of pushdown machines. The main
theorem in [4] is the following: Any language in LOG(CFL) the class of languages
accepted by nondeterministic two-way multihead pushdown automata operating in
polynomial time 17]) has deterministic tape complexity (log n)2. In another paper [5],
Cook showed that the set SP of codings of solvable path systems is in (=the class of
languages accepted by deterministic polynomial time-bounded Turing machines) and
any language in is log-tape reducible to SP. Thus, SP is log-tape complete for .
Recently, Sudborough [17] has described a path system problem which is log-tape
complete for LOG(CFL).

In this paper, we investigate the use of path systems in automata theory and
computational complexity. We develop a new framework which brings together the
main constructions of path systems corresponding to machine models as well as the
main algorithms for solving such path systems. This new treatment allows us to give
unified proofs of well known results concerning resource-bounded computation as well
as prove new theorems which sharpen and/or generalize these results. Examples of new
theorems are the following:

THEOREM A. Let L(n)->log n and L be a language accepted by an L(n)-tape
bounded nondeterministic (deterministic) auxiliary pushdown automaton [3] whose
pushdown store makes at most R (n > 0 reversals on inputs of length n. Then L can be
accepted by an L(n log (R (n))-tape bounded nondeterministic (deterministic) Turing
machine.

THEOREM B. LetL be a language accepted by a recursive Turing machine 16] M
which makes at most C(n) > 0 recursive calls and has width L(n) >= log n (i.e., the storage
space used per level ofcall is at most L(n)). IfMis deterministic, then L has deterministic
tape complexity minirnurn{L(n + C(n), L(n log (C(n))}. IfMis nondeterministic, then
L has nondeterministic tape complexity L(n)log (C(n)) (respectively, determinstic tape
complexity L(n)[L(n) + log (C(n))]).

2. Parameterized path systems. We first recall the notion of a path system as
defined by Cook [4].

* Received by the editors April 18, 1978 and in revised form April 23, 1979. This research was supported
in part by the National Science Foundation under Grants DCR 75-17090 and MCS 78-01736.

" Department of Computer Science, University of Minnesota, Minneapolis, Minnesota. Now at
Department of Electrical Engineering and Computer Science, University of Wisconsin, Milwaukee, Wiscon-
sin 53201.

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 5545 5.

PATH SYSTEMS 349

DEFINITION. A path system is a 4-tuple G (N, T, S, R), where N is a finite set (of
nodes), T c_ N is a set of terminal nodes, S c_ N is a set of source nodes, and R is a 3-place
relation on N.

The admissible nodes of G are the least set Na such that (i) T
_
Na and (ii) if fl, 3’

are in N,, and (a, , 3’) is in R, then a is in N,,. G is solvable if and only if at least one
admissible node is a source node. Solvability can also be defined in terms of digraphs
and trees (see [4]).

In this paper, we consider a new formulation of a path system which we call
parameterized path system (PPS). A single PPS defines a (possibly infinite) family of
path systems uniformly parameterized in terms of a new set P. A member of the family
can be specified by a tuple (x, a), where x is in P and a (the source node) is in N. Thus, R
is now a relation on P N N N, where P and N are, in general, infinite. (Note that S
is no longer needed.) For convenience, we also add to the definition of a PPS a new
relation R - P N N. The next definition makes these ideas precise.

DEFINITION. A parameterized path system (abbreviated PPS) is a 5-tuple G-
(P, N, T, R 1, RE), where P and N are countable sets of parameters and nodes, respec-
tively, T

_
N is a set of terminal nodes, R and RE are relations with R - P N N and

R2_PxNNN.
We assume without loss of generality that P and N are sets of strings. For ce in

P t.JN, let la[, called the size of a, denote the length of a. We shall only deal with
computable PPS’s in that we assume the existence of the following algorithms:

(1) P(a), N(a), T(a). Given a, P(a), N(a), and T(a) return true or false
depending on whether or not a is in P, N, and T, respectively.

(2) R l(x, a,). Given x in P and a, / in N, Rl(x, a, fl) returns true or false
depending on whether or not (x, a,) is in R 1.

(3) RE(X, a, [3, 3/). Given x in P and a,/, 3/in N, RE(X, a, [3, 3/) returns true or false
depending on whether or not (x, a,/, 3/) is in RE.

(4) Routines needed for generating the elements of N systematically:
(a) FIRST(m). Given a positive integer m, FIRST(m) returns the first node a

in the ordering such that Ice I_-> m..If no such node exists, FIRST(m) returns
some distinguished symbol.

(b) NEXT(o0. Given a in N, NEXT(a) returns the node next to a in the
ordering. If no next node exists, NEXT(a) returns some distinguished
symbol.

We assume that each of the algorithms above can be implemented on a deter-
ministic Turing machine with a two-way read-only input (with end-markers) and one
read-write storage tape. For example, in the case of RE(X, a,/, 3/), the input is of the
form x a fl 3/(: is some delimiter). The "true" or "false" output is indicated by
the machine entering an accepting or nonaccepting state, respectively. The machine
may also have a one-way write-only output tape as for example in the implementations
of FIRST(m) and NEXT(a).

In this paper, we only study PPS’s with the property that P(a), N(a), T(a),
NEXT(a) have space complexity O(1) and Rl(x,a,), gE(x,a,[3, 3/) have space
complexity O(l + log Ixl), where max {lal, Ifll, 13/1}. Similarly, FIRST(m) has space
complexity O(IFIRST(m)I). These bounds are easily verified for all PPS’s (except one)
described in the paper. The proofs (except for one case, shown in Lemma 1, 1) are
therefore omitted.

DEFINITION. Let G (P, N, T, R 1, RE) be a PPS and (x, a) be in P N. A solution
tree for (x, a) is a tree FX (see Fig. 1) with root node a and leaves in T, and has the
following property: If node/1 has a single son 2 then (x,/1, fiE) is in R 1. If node 3/1 has
two sons 3/2 and 3/3 then either (x, 3/1, 3/2, 3/3) is in RE or (x, 3/1, 3/3, 3/2) is in RE.

350 EITAN M. GURARI AND OSCAR H. IBARRA

FIG. 1. A solution tree F:.

Notation. Let G (P, N, T, R 1, R2) be a PPS and (x, a) be in P N. Let F be a
solution tree for (x, a). Then

(a) WlDTH(F)= maximum size of a node in F:;
(b) NODES(FX,)= number of nodes in F:;
(c) LEAVES(F)= number of leaves in F;
(d) DEPTH(FX)= number of levels in F:, where the root a is at level 1.

3. An example. We now give an example to illustrate the formal PPS definition
just given. The example concerns deterministic auxiliary pushdown automata
(DAPA’s) and nondeterministic auxiliary pushdown automata (NAPA’s) [3]. A DAPA
(NAPA) is a deterministic (nondeterministic) Turing machine with an auxiliary push-
down store.

Let M be a DAPA (NAPA). Without loss of generality we may assume that in
every move, M pops the topmost symbol of the pushdown store, pushes exactly one
symbol on top of the pushdown store or rewrites the topmost symbol (possibly by the
same symbol). We shall refer to these moves as popping, pushing and rewriting moves.
We also assume that in any computation, M executes at least one pushing move and the
storage head does not write blanks. Furthermore, we assume thatM accepts by entering
a fixed state f with the input head on the left endmarker, the pushdown store containing
only Z0 the initial pushdown symbol) and the storage head on the leftmost nonblank
symbol of the read-write tape.

A partial configuration (or simply, p-configuration) of M is a 3-tuple of the form
a (Z, i, uqv). a represents the situation in whichM on some input x in Y_,*$ is in state
q, its input head is on the ith position, its storage tape contains uv with the storage head
on the leftmost symbol of v, and the topmost symbol of the pushdown store is Z. For any
p-configuration a, symbol(a) denotes the pushdown symbol of a. We shall construct
from M a PPS G. To motivate the construction, we include the following brief
discussion.

A computation of M on a given input x in Z*$ can be described by a time-space
profile (or simply, profile) which is a graph defined as follows (see Fig. 2): Coordinate
(t, s), t, s => 1, contains the p-configuration a (Z, i, uqv) if and only if just before the tth
move in the computation, the pushdown store had length s and M was in p-configura-
tion a. We say that such an a is at time and distance s and write time(a) and distance
(a) s. The initial and final (i.e., accepting) p-configurations are (Zo, 1, qoB) and
(Zo, 1, fw), respectively, where B is the blank symbol and w is some nonnull storage
string without blanks. Clearly, the input string and the profile fully describe a compu-
tation of M. Let a and fl be p-configurations in the profile. There is a path from a to/ if
time(3) => time(a). The length of the path, denoted by length(a,/), is time(/3) time
(,).

PATH SYSTEMS 351

ao=(Zo, l,qoB
space

/o (Zo, 1, fw)
time FIG. 2. Profile o] an accepting computation.

Let a and/3 be p-configurations in the profile (not necessarily distinct). (a,/3) is
called a pair at distance s (or simply, pair if s is understood) if (i) distance(a)=
distance(/3) s; (ii) there is a path from a to/3; (iii) if a p-configuration y is in the path
from a to/3, then distance(y) => s. If the length of the path from a to fl is greater than 0,
then (a,/3) is called a properpair. In Fig. 2, (ao,/30), (O1, 1), (a2, 2), (O2, 3), (2, 3),
(a4,/34), (a4, fl), (a4, f16), (f14,/3), (f14, f16), (fls,/36), (a, f17) are proper pairs. The pairs
(ao, ao)," (a,/3), (/30,/30), ", (/37,/37) are not proper pairs. A pair (a, a) is called
terminal if (i) length (a, a) 0; (ii) there is a path from c to some p-configuration fl with
distance(/3) < distance(a) and every p-configuration 6 on this path has distance(6)_<-
distance(a); (iii) there is a path from some p-configuration y to c with distance(y)<
distance(a) and every p-configuration 6 on this path has distance(6)_-< distance(a). In
Fig. 2, the only terminal pairs are (o3, a3), (aS, Ce5) and (7, 7)"

We are now ready to define the PPS G corresponding to M. G (P, N, T, R a, RE),
where P *$,N {(a, fl)la and fl are p-configurations of M} [.J {V}, where V is a new
symbol (thus, each (a,/3) in N is a possible pair in the profile of some computation), and
T {(a, a)la is a p-configuration} (each (a, a) in T is a possible terminal pair in the
profile of some computation). R1 and RE are defined as follows"

(1) For every x in P and nonnull storage string w without blanks, let
(x, V, ((Zo, 1, qoB), (Zo, 1, fw))) be in R.

(2) For every x in P and (a,/3), (a’, fl’) in N, let (x, (c, fl), (a’,/3’)) be in R1 if there
exist nonnegative integers t, t2 and a (possibly null) pushdown string y such
that

(i) M on input x in p-configuration a can, in ta pushing and/or rewriting
moves, enter a’ with symbol(a) replaced by the string y symbol(c’);
and

(ii) M on input x in p-configuration/3’ and topmost pushdown string
y symbol(’) can, in t2 popping and/or rewriting moves, enter fl with
y symbol(fl’) replaced by symbol(fl).

In Fig. 2, (x, (ao, flo), (a2, 3)), (X, ((1, 1), (a2, f13)), (X, (Ct4, 6), ((5, a5)),
(x, (a4,/34), (as,/37)), (x, (as, f17), (a5, as)), (x, (as,/37), (f17, f17)) are examples
of triples in R 1. For the case when M is a NAPA, we require tl, t2 <- 1.

(3) For every x in P and (a, fl), (a’,fl’), (a",fl") in N, let (x,(a, fl),
(a’,/3’), (a",/3")) be in R2 if a a’,/3’= a" and/3 =/3". (Thus, R2 allows for
"splitting" of pairs.) In Fig. 2 (x, (a2, f13), (tX., f12), (f12, f13)) is in RE.

The following lemma summarizes the properties of G that we will need in 5.
LEMMA 1. Let M be a NAPA (DAPA) and G (P, N, T, R, RE) be the PPS

corresponding to M as described above. There are positive constants c and c2 with the
following properties (x in Z*$):

352 EITAN M. GURARI AND OSCAR H. IBARRA

(i) IfMis a NAPA, thenMaccepts x within storage space s and time ifand only if
there is a solution tree]’or (x, V) with at most cl nodes and WIDTH at most
c2(s + log Ix I).

(ii) If M is a NAPA, then M accepts x within storage space s and r pushdown
reversals (r odd) if and only if there is a solution tree for (x, V) with at most
(r + 1)/2 leaves terminal nodes) and WIDTH at most c2(s + log Ix[).

(iii) If M is a DAPA, then M accepts x within storage space s and r pushdown
reversals (r odd) if and only if there is a solution tree for (x, V) with at most
2r + 1 nodes and WIDTH at most c2(s + log Ix[).

(iv) R 1, R2, etc. have space complexity O(l + log [x[) forM a NAPA or a DAPA.
Proof. (i) and (ii) are obvious from the construction of G. Now suppose thatM is a

DAPA andM accepts x within storage space s and r pushdown reversals. By (ii) there is
a solution tree F with at most (r + 1)/2 leaves and WIDTH at most c2(s + log [x]). Let
this tree be minimal in the sense that no other solution tree for (x, V) with at most
(r + 1)/2 leaves and WIDTH at most c2(s + log Ix]) has fewer nodes. Then in F there
are no nodes (al,/31), (a2,/32), (a3,/33) such that (ai+l,/3i+1) is the only son of (ai, 8i),

1, 2 (see Fig. 3(a)). Otherwise, F is not minimal since we can delete node (a,
and obtain a smaller solution tree (Fig. 3(b)). The upper bound of 2r + 1 on the number
of nodes of Fz can now easily be shown by induction on r. The converse of (iii) is trivial.

(a) (b)

F. 3

We now prove (iv). We show that the bound holds for R andM aDAPA. All other
cases are obvious. So let x be in P and (a,/), (a’, fl’) be in N. Clearly, (x, (a, fl), (a’, fl’))
is in R if and only if there exist two sequences of p-configurations a0, a 1, , ak and
/,,/,-1, ",/o satisfying

Ca) ao a, , "(b) if k >0 then M on input x in p-configuration ai enters, in one pushing or
rewriting move, p-configuration a+l, 0 < k;

(c) / =/,/o =/’;

PATH SYSTEMS 353

(d) if m > 0 then M on input x in p-configuration/i enters, in one popping or
rewriting move, p-configuration/i/1, 0 =< < m. If the move is popping, then
there exists an integer/" such that

(1) 0-<_/’< k;
(2) distance(/i+l) =distance(a/), i.e., distance(’)-distance(fli/l)

(distance (a’) distance(a)) (distance(aj) distance(a));
(3) symbol(i+l) symbol(aj); and
(4) M on input x in p-configuration ai makes a pushing move.

Let 11 I’l and/2 I/1. Since M does not write blanks on its storage tape,
11 + log Ixl for 0 _-< -_< k and 13i[_-< 12 + log Ix[for 0 _<- j _-< m. It follows that k is no greater
than cl+lgll, where c is a constant which depends only on M. Hence, the sequence
/,, ’,/o corresponds to at most c +glxl popping moves while between any two such
moves there are at most c/:+lgll rewriting moves. Therefore, m <=c +l+21’lxl. Let

max {[(a,/)],](a’,/T)[}. Obviously, _-> max {/1,/2}. Then to determine if
(x, (a,), (a’,/T)) is in R 1, one need only find the first k _-< c/+loglxl for which there exist
m_<-c2(+glxl) and two squences of p-configurations ao,’", ak and ,,...,
satisfying conditions (a)-(d) above. Conditions (a) and (b) can easily be checked by just
simulating k steps of M on input x starting in p-configuration ao. To check conditions
(c) and (d), the value of distance (a’)-distance(a) must first be computed. Then m
moves of M on input x starting in p-configuration/0 are simulated. To find symbol
(3+1) for a p-configuration/+1 which is entered directly after a popping move, M is
simulated on input x starting in p-configuration a0 until a p-configuration a. satisfying
conditions (1)-(4) of (d) is encountered. It follows that R1 has space complexity
O(l + log Ix I).

4. Algorithms for solving PPS’s. In this section, we describe a number of
algorithms for solving PPS’s. From these algorithms, we derive upper bounds on the
space and time complexity for determining the existence of solution trees having
specified properties. The computing models that. we use are:

(1) deterministic auxiliary pushdown automaton (DAPA) [3].
(2) nondeterministic auxiliary pushdown automaton (NAPA) [3].
(3) deterministic auxiliary stack automaton (DASA) [9]--a deterministic Turing

machine (DTM) with an auxiliary stack tape. A stack is like a pushdown store
except that the stack head can go inside the store in a read-only mode.

(4) parallel Turing machine (parallel TM) [11]ma parallel TM M is a nondeter-
ministic Turing machine (NTM) with an associated function h: {states of
M}{ ^, v }. With each partial configuration a (i, uqv) of M, we associate a
Boolean value B in {0, 1}, defined with respect to an input x in +Z*$,
recursively as follows"

(i) B, 1 if a is an accepting configuration (i.e., state(a) is an accepting
state);

(ii) B 0 if a is a rejecting configuration (i.e., state(a) is a rejecting
state);

(iii) If a is not an accepting or rejecting configuration and M in
configuration a on input x can, in one step, enter configurations
1,""", k whose associated Boolean values are defined then

B^... ^B,
B v v Bt,

(iv) Otherwise, B is undefined.

if h (state(a)) ^,

if h (state(a)) v

354 EITAN M. GURARI AND OSCAR H. IBARRA

We assume that accepting and rejecting configurations are halting configurations. M is
said to accept x provided Bo= 1, where a0 initial partial configuration (1, qoB).
Thus, an accepting computation of M on x can be represented by a computation tree
whose nodes are pairs of the form (a, B) satisfying" (a) (ao, 1) is the root; (b) the leaves
are of the form (a, 1) or (a, 0) depending on whether a is an accepting or rejecting
configuration; (c) if (a, B) is not a leaf andM in configuration a on input x can, in one
step, enter configurations/1," ,/k, then (/1, Bo,), , (/3k, Bk) are sons of (a, B)
for some Bt31,... B, in {0, 1} and B Bol A... A Bo, if h(state(a))= A and B
B, v. vB if h (state(a)) v.

The algorithms are of three types: balanced divide-and-conquer (DASA), filial
divide-and-conquer (DAPA, NAPA, DASA, parallel TM) and dynamic programming
(DASA).

4.1. Balanced divide-and-conquer. We begin with the following lemma which is
similar to a result of Lewis, Stearns and Hartmanis [13] concerning derivations in
context-free grammars. (See also [8, Lemma 11.1].)

LZMMA 2. LetP be a binary tree with root a andNODES(F) n >= 2. Then there
is a subtree F, with root (see Fig. 4), such that NODES(F)= m and (1/4)n -< m -<

(3/4)n.

FIG. 4. F, has n nodes. Ft has m nodes, (1/4)n _<-m =< (3/4)n.

Proof. For n < 4, the proof is obvious. So assume that n >= 4 and consider a tree
with NODES(F)= n. Let p be a node in F such that Fo(subtree formed by p) has
NODES(Fo)>=(3/4)n. (Initially, we can take p to be a.) Then one of the following
holds:

(1) p has one son, say y. Then NODES(Fv)>=(1/4)n. (Otherwise, (3/4)n=<
NODES(Fo) NODES(Fv)+ 1, which implies n < 2, a contradiction.)

(2) p has 2 sons. Clearly, at least one of them, say y, has the property that
NODES(F.)>-(1/2)[NODES(F,,) 1]>-(1/2)[(3/4)n- 1]>= (1/4)n (since n >_-4).

In either ease, p has a son 3’ for which NODES(Fv)>-_(1/4)n. If NODES(F)-<
(3/4)n, we are done. Otherwise, the process can be repeated (with p y) until a node
with the desired property is found.

PATH SYSTEMS 35 5

Our first theorem was motivated by similar results concerning the space complexity
of the membership problem for context-free grammars [13], the complexity of recog-
nizing solvable path systems. [4], and the complexity of tape- and time-bounded
auxiliary pushdown machines [7], [14]. A related problem was investigated in [18].

THEOREM 1. Let G (P, N, T, R 1, R2) be a PPS. We can construct a DASA M
which when given x in P, a in Nand positive integer as inputs can determine the existence
o] a solution tree for (x, a) with WIDTH at most l. 1] there exists a solution tree FX with
WIDTH(FX <- and NODES(FX <= n then M uses at most storage space O(l + log Ixl)
and stack space O(l log n).

Proof. Let us assume that there exists a solution tree FX for (x, a) in P N and
NODES(F n. Then, by Lemma 2, there exists a solution tree F (for some 3’ in N)
such that (i) F is a subtree of FX (see Fig. 5) and (ii) m NODES(F) satisfies
(1/4)n<-m<-(3/4)n.

/

F;
FIG. 5. Decomposition ofF into F and

Thus, a solution tree F with n nodes exists if and only if FX can be decomposed
into two trees FX and/ (for some 3" in N) such that FvX satisfies (i) and (ii), and F-x is
the tree with h n m nodes obtained by deleting the subtree Fv from F. Clearly,
(1/4)n <= ff <- (3/4)n. The idea of decomposing a solution tree into two smaller trees will
be used in the recursive procedure that we now describe.

The procedure uses a global stack, S, which is initially empty. (As we shall see, S is,
in general, not a pushdown store.) The recursive procedure uses a procedure C(x, a)
which returns a value of true if a is a terminal or if (x, a, 1) is in R1 for some 1 in the
stack S or if (x, a, 1, fiE) is in RE for some and fiE in S. Otherwise, C(x, a) returns
false. The recursive procedure is defined as follows.

procedure A (x, a, t, l, fl):
IIPUSH(/3) pushes fl on top of S while POP(S) pops the topmost symbol of SII
PUSH(fl)
it C(x, a.) then [POP(S); return ("true")]
it 0 then [POP(S); return ("false")]
lot each 3" in N such that 13"1 _-<l do

356 EITAN M. GURARI AND OSCAR H. IBARRA

if A(x, 3", t- 1, l,) and A(x, a, t- 1, l, 3’) then [POP(S); return ("true")]
end
POP(S)
return ("false")

end
Whenever A(x, a, t, l,/) is called, it determines the existence of a solution tree F: with
WIDTH(F: <= and DEPTH(F: <= t, where T (.J S is used instead of T. To do so, A
first checks whether C(x, a) is true. If this is not the case and > 0 then A cycles through
the 3"s which are in N, 13"1 =< l, and recursively calls A(x, % t- 1, l, :) and A(x, a, t-

F making up F. The parameter/ is1 l, 3") to determine the existence of treesF and -x

used to simplify the discussion below. is a symbol not in N.
Given x in P, a in N and positive integer l, to determine the existence of a solution

tree F with WIDTH(F)NI and NODES(F)Nn, we need only find the first
t-< [10g4/3 n such that A(x, a, t, l, returns the value true. Note that a maximum
depth of recursion [10g4/3 n is sufficient for determining the existence of a solution tree
F with NODES(F,)-< r/. The reason for this is that, by Lemma 2, at the tth level of
recursion, the solution tree has no more than (3/4)’n nodes. Thus, by the time, the
[1094/3 n] th level is reached the solution tree has at most 1 node.

A nonrecursive procedure implementing the procedure A (x, a, t, l, fl) can easily be
written using standard techniques (see, e.g., 1]). The implementation uses a pushdown
store, say O, in which are stored the data used by each call of A which has not yet been
satisfied. However, since x and are global values, they need not be stored in the
pushdown store. The same is true for which measures the depth of recursion. Thus, the
pushdown store O holds pairs of the form (a, 3), a and/3 in N LI {:}, lal, 131 <-- I. We also
note that at any time, the information needed in the global stack S is already contained
in the pushdown store Q. So we can use Q for S. Now, while information is added
(deleted) only on (from) the top of Q, the procedure C(x, a) may need to read
information inside Q. Thus, Q is, in general, a stack. From the preceding discussion, we
see that Q will contain at most O(log n) nodes of size at most l. It follows that the space
needed in Q is at most O(l log n). A storage space of O(l + log]x]) is sufficient to check
Rx, R2, etc. Moreover, the space needed to store the value of the first _-< [10g4/3 n such
that A (x, a, t, l, #) returns "true" is at most log [10g4/3 n). By Lemma 3 below, we can
assume that n _-< 2c’ for some constant c. Hence, the space necessary to store is at most
O(l). Thus, a DASA M with the desired property can be constructed.

LEMMA 3, LetF be a minimal solution tree for (x, a) such that WIDTH(F <= l.
(Here, minimal means that FX has the least number of nodes among all solution trees for
(x, a) with WIDTH<=I.) Then DEPTH(F)<-_c and NODES(F)<=2l for some
constant c.

Proof. Since FX is minimal, DEPTH(FX =< c 1, where c is the least positive integer
such that cl>number of nodes in N with size_-</. Hence, NODES(FX)-
1+2+. .+2c-<_-2.

COROLLARY 1. Let G (P, N, T, R, RE) be a PPS. We can construct a DASA M
which when given x in P, a in Nandpositive integer as inputs can determine the existence
of a solution tree]:or (x, a) wiih WIDTH at most I. If there exists a solution tree F with
WIDTH(F <= l, LEA VES(FX <= r and DEPTH(FX <-_ d then M uses at most storage
space O(l / log Ixl) and stack space O(/[log d + log r]).

Proof. If LEAVES(F) _-< r and DEPTH(F) =< d, then NODES(FX) <- dr. The
result follows from Theorem 1.

From Lemma 3 and Corollary 1 we have

PATH SYSTEMS 357

COROLLARY 2. Let G (P, N, T, R 1, Rz) be a PPS. We can construct a DASA M
which when given x in P, a in Nandpositive integer as inputs can determine the existence
o]" a solution tree]:or (x, a) with WIDTH at most I. If there exists a solution tree F with
WIDTH(F <= and LEAVES(FX <= r then Muses at most storage space O(l + log
and stack space O(l[l + log r]).

4.2. Filial divide-and-conquer. It seems very difficult to improve the bound of
0(I log n) in Theorem 1, even if we were to replace the stack by another TM storage
tape and make the machine nondeterministic. Such an improvement would mean a
sharpening of the currently best known bound of (log n)2 for the nondeterministic tape
complexity of context-free languages [13]. However, Corollary 2 can be improved if the
machine is nondeterministic.

THEOREM 2. Let G (P, N, T, R1, R2) be a PPS. We can construct a NAPA M
which when given x in Panda in Ncan determine the existence ofa solution tree for (x, a).
If there exists a solution treeF with WIDTH(F <= andLEAVES(FX <-<_ r then Mhas
an accepting computation in which it uses at most storage space O(l +log]xl) and
pushdown space O(l log r).

Proof. Follows from the procedure described below and Lemma 4. !’]

procedure B (x, a):
[IS is a pushdown store which is initially empty. PUSH(/3) pushes/3 on top of S
while POP(S) pops and returns the top element of SII
Za;
repeat

case

1. Z is terminal: if S then return ("true") else

Z <- POP(S)

end

2. Z is nonterminal: nondeterministically do (i) or (ii)
(i) Guess a node /3; if Rl(x,a,B) then Z<--3 else return

("false")llGuess that a has 1 sonll
(ii) Guess nodes 3 and ; if R2(x, a,, 3’) or R2(x, , 3’,fl) then

[PUSH(B); Z <-- ,] else return ("false")]lGuess that c has 2 sonsll
end

forever

Clearly, the pushdown space needed by the procedure on input (x,a) is
WlDTH(F). t, where maximum number of nodes stacked in S. Theorem 2 then
follows from the following lemma.

LEMMA 4. Let G (P, N, T, R 1, R2) be a PPS and (x, a) be in P N. If a solution
tree F exists, then procedure B has an accepting computation (i.e., a computation with
output "true") in which the pushdown S never contains more than flog2 LEAVES(F)J
nodes,

Proof. Let r LEAVES(F). The argument is an induction on r. If r 1, then the
procedure need only use cases 1 and 2(i) and no node is stacked. Hence, the lemma is
true for r 1. Now assume that r > 1 and the lemma is true for all solution trees with less
than r leaves. Consider a solution tree F with r leaves. Let be the node nearest the

358 EITAN M. GURARI AND OSCAR H. IBARRA

root, a, which has 2 sons. (/3 exists since r > 1. See Fig. 6.) Let
and let F andF be the subtrees formed by y and 6, respectively. Let rl and r2 be the
number of leaves of Fv and F, respectively. Clearly, rl # 0, r2 # 0 and rl + r2 r.
Moreover, either rl <- r/2 or r2 -< r/2. Without loss of generality assume that F has
rl <= r/2 leaves. Looking now at procedure B, we see that before node fl is reached, S is
empty. When node fl is reached, the procedure can nondeterministically stack node 6
and process subtree F. By induction hypothesis, no more than 1 + [log2 rlJ =<
1 + [log2 r/2J [log2 r nodes are stacked in S when F is being processed. After
processing F, the procedure can then pop node 8 and process subtree F. Again, by
induction hypothesis, processing ofF needs no more than [log2 r2J <- [log2 rJ nodes to
be stacked in S. The result follows.

Fv F
FG. 6. F with leaves.

Notation. Let G (P, N, T, R 1, R2) be a PPS. For x in P, positive integer and a in
N such that]c]_-< l, define the set of strings H(x, a, l) {/3 [/3 in N,]/3[-< and (x, a,/3) in
Rx)U{/33,[/3, / in N, [/3], [[<___I and (x, ,/3, ,)in R}, where is a new symbol.
Assume that the elements of H(x, , l) are ordered lexicographically so that it makes
sense to refer to the jth element in the set. Define the function $(x, , l, i, j) as follows:
For x in P, in N, 1 or 2, and positive integers and j, let

if 1 and the/th element in H(x, a, l) is fl or

fl
S(x, a, 1, i,]) if 2 and the/’th element in H(x, a, l) is

for some fl,
undefined otherwise.

Note that S(x, a, l, 1,/’) is undefined if and only if H(x, a, l) has no]th element.
If F is a solution tree for (x, a), let CHOICE(FX)=max{cardinality of

H(x, , l)l is a node in F }.
Our next result concerns solution trees with restrictions on CHOICE(F) and

DEPTH(F).
THEOREM 3. Let G (P, N, T, R, R2) be a PPS. We can construct a DASA

(respectively, DAPA) M which when given x in P, a in Nand positive integer as inputs
can determine the existence of a solution tree for (x, a) with WIDTH at most I. If there
exists a solution tree FX with WIDTH(F <- l, CHOICE(F <= b andDEPTH(F <- d
thenMuses at most storage space O(l + log Ixl) and stack space O(d log b) (respectively,
pushdown store space O(d[log b + h]) for some h). The case of DAPA assumes the.
existence of partial functions f and g computable in O(l + log [xl)-storage space and a
positive constant h such that if S(x, 18, l, i,]) 3/ then f(x, fl, l, i, f) is defined,
If(x, fl, l, i,])1 <= h and g(x, y, l, i,], f(x, fl, l, i, f)) ft. The range of f is A* for some
alphabet A. (Intuitively, f is a function ofx, fl, l, and j such that ifS (x, , l, i, j) % then

PATH SYSTEMS 359

the value offcan be used by g to construct fl out ofx, y, l, andL Moreover, the value off
requires at most storage space h. Thus, f(. is a short encoded memory of ft. Trivial
functions are: f(x, fl, l, i,])= fl and g(x, ,, l, i,],/3)=/3 if]fl], [’r[<-- and undefined
otherwise. In this case, h l. Hence, we may assume that h <-l in the general case.)

Proof. Clearly, a solution tree FX with WIDTH(F: <_- l, CHOICE (FX) <_- b and
DEPTH(F:) <_-d exists if and only if H(x, a, l) has at most b elements and one of the
following holds:

(i) a is a terminal node;
(ii) there is a node fl in N such that (x, a, fl) is in R and (x, fl) has a solution tree

F with WIDTH(F _-< l, CHOICE(F _-< b and DEPTH(F <- d 1;
(iii) there are nodes fl and y in N such that (x, a,/3, y) is in R2 and (x, B),

(x, y) have solution trees F, F with WIDTH(F), WIDTH(F) -_< l,
CHOICE(F), CHOICE(F) _-< b and DEPTH(F), DEPTH(F) <_- d 1.

We shall describe a recursive procedure based on the above observation. The
procedure uses a global stack (2 (initially empty) and two procedures: a function
SON(x, Z, l, i,]) and a stlbroutine SON-I(x, Z, l). These procedures are defined as
follows (Z is a variable and val(Z) denotes its value):

(1) SON(x, Z, l, i,]). Suppose val(Z)=a. Then SON returns "true" if
S(x, a, l, i,]) and, as a side-effect, sets the value of Z to/3. In addition, the
triple (i,], f(x, a, l, i,])) is stored on top of the global stack Q. (For notational
convenience, define f(.)= null string if M is a DASA.) If S(x, a, l, i,]) is
undefined, SON returns "false" without changing the value of Z and the
contents of Q.

The computation of SON(x,Z, l, i,]) involves generating strings of
length _-< 21 + 1. Each string generated is checked if it is of the form/3 with [/31 -<-
(or of the form fl 3’ with I[, I/I--< l). For such a...string, the procedure then
determines whether (x, a,/3) is in R1 (or (x, a,/3,),) is in R:). The jth such
string can be found (if it exists) using a counter requiring space O(log b). Now
/’ =< b =< c and f, R, R:, etc., are computable in space O(l + log Ixl). It follows
that SON has space complexity O(l / log Ixl / b)-- O(Z /

(2) SOS-l(x, z, l). Suppose val(Z) -/3. Then SON- when called returns with the
value of Z set to , where a is the "historical" father of a particular instance
of B.

The computation of SON- (x, Z, l) depends on the type of M being
constructed:

(a) If M is a DASA, a is obtained by retracing the path from the root to
node ft. The information needed to determine this path is on the global
stack O in the form of a string of triples: (il, jl, f(’))
(i2,/’2, f("))" (ik, jk, f("))(ik/,/’k/X, f(")). These triples were stored
by procedure SON and in particular, (ik/,]k/X, f(")) was stored when
the value of Z was changed from a to /3. When a is found,
(ik/l, jk/, f(")) is deleted from the stack. It is straightforward to verify
that SON- has storage space complexity O(l + log [x[).

(b) If M is a DAPA, then a is obtained by simply deleting the topmost
triple (ik+X, jk+x,f(’)) from the global stack and computing
g(x,, I, ik+X,]k+X,f(’)). Again, it is clear that SON- has storage
space complexity O(l + log Ix[).

The recursive procedure is given by the following program.
procedure D(x, Z, s, t, l):

i| val(Z) is a terminal node then return ("true")

360 EITAN M. GURARI AND OSCAR H. IBARRA

for /<-- 1 to s do
if not SON(x, Z, l, 1,/) then return ("false")

if D(x, Z, s, t- 1, I) then

[call SON-I(x, Z, l)
if not SON(x, Z,/, 2,]) then return ("true")

if D(x, Z, s, t- 1, l) then
[call SON-I(x, Z,/); return ("true")]

else call SON-I(x, Z,/)]

else call SON- (x, Z, I)

end
return ("false")

end

IISuppose a is the value
of Z. If H(x, a, I) does
not have a]th element
then return falsell
IINow Z has value /3,
where/ is the first son.
of a, and a valid F
exists[I

IlPut c back to
[l(x, , fl)is in R1, i.e.,
has no second son[I

IINow Z has value
where 3’ is the second
son of a, and a valid F
existsll

IIA valid Fv does not
exist. Put c back to zll

IIA valid F does not
exist. Put a back to zll

Whenever D(x, Z, s, t, l) is called, it determines the existence of a solution tree FX
with WlDTH(F) l, CHOICE(F) -< s and DEPTH(FX) <= t, where c val(Z).
Hence, to determine the existence of a solution tree FX with the desired properties, we
find s and for which log s is the smallest and D(x, Z, s, t, l) with Z set to returns
"true". Clearly, D can be implemented using a DASA or a DAPA depending on
whether the global stack Q is operated as described in case (a) or (b) in the computation
of SON-1. A pushdown store to implement the recursion is not needed since x, Z, s and
are global and need not be stacked. The parameter t which measures the maximum
depth of recursion is also not stacked, while the value of the local variable / is already
recorded in the global stack, Q. Clearly, if there exists a solution tree Fx with
WlDTH(F =< l, CHOICE(FX b and DEPTH(F -< d then Q needs at most space
O(d log b) in the case of a DASA and O(d[log b + hi) in the case of a DAPA. Now b,
d ---c for some constant c. Hence the space required to store s and is at most O(l).
Since SON and SON-1 have space complexity O(l + log Ixl), M needs at most storage
space O(1 + log Ix [).

CortOLLARV 3. Let G (P, N, T, R 1, R2) be a PPS. We can construct a DAPAM
which when given x in P, a in Nandpositive integer as inputs can determine the existence
of a solution tree for (x, a) with WIDTH at most I. If there exists a solution tree F with
WIDTH(FX <= and DEPTH(FX <= d then M uses at most storage space O(l + log]x])
and pushdown store space O(M).

Proof. If F is a solution tree with WlDTH(F =< l, then CHOICE(FX =< c for
some constant c. Then in Theorem 3, let b c and define the functions f and g by: For
all x in P,/ and y in N, 1, 2, and positive integers and], f(x, fl,/, i,) =/3 and
g(x, y, 1, i,/,/3) =/ if 1/31, Icl =< and undefined otherwise, lq

The next result is concerned with solving PPS’s by parallel TM’s.
TrtEOIEM 4. Let G (P, N, T, R 1, R2) be a PPS. We can construct a parallel TM

PATH SYSTEMS 361

M which when given x in P, a in N and positive integer as inputs can determine the
existence of a solution tree FX with WIDTH(FX <- within storage space O(l + log Ix I).

Proof. The operation of M is described by the following program.
Phase 1. Write a on the storage tape and proceed to phase 2.
Phase 2. Let p be the node on the storage tape. If p is a terminal node, then accept;

otherwise, go to phase 3.
Phase 3. Execute (1) or (2)

(1) Nondeterministically write 4/3 to the right of p, where is a
delimiter and/3 is some node. Check if (x, p,/3) is in R 1. If so, replace
p 4/3 by/3 and go to phase 2; otherwise, reject.

(2) Nondeterministically write :/3 4 y to the right of p, where/3 and y
are nodes. Check if (x, p,/3, y) is in R2. If so, go to phase 4; otherwise,
reject.

Phase 4. Assume that this phase is always entered in a distil’guished state p. Then
enter state pl or state p..
If in state p, replace p # 3 3’ by/3 and go to phase 2.
If in state p2, replace p #/ # 3’ by 3’ and go to phase 2.

Construct a NTM M from the above algorithm. We may assume that M always
halts. (M need only check that phase 2 is entered at most c times, where c is the least
positive integer such that c _-> number of nodes in N with size _-< l.) Let K be the state set
of M. Note that p is in K. Then M becomes the desired parallel TM by defining the
function h as follows: h(p)= ^ and h(s)= v for each s in K-{p}. l-I

4.3. Dynamic programming.
DEFINITION. Let G (P, N, T, R 1, R2) be a PPS and (x, a) be in P x N. A solution

graph for (x, a) is a finite rooted directed acyclic graph GX where
(1) a (the root node) has no incoming edges:
(2) Every node/ is either terminal or there is at least one edge leading out from/.
(3) If/3 has only one direct successor, say y, then (x,/, y) is in R I.

(4) If/3 has two direct successors, say 3’ and 8, then (x,/, 3/, 8) or (x, fl, 8, 3/) is in
RE.

An example of a solution graph GX is shown in Fig. 7.

FIG. 7. A solution graph G.
Clearly, by duplicating nodes, we can convert any solution graph GX into a solution

tree FX. Thus, we have the following proposition.

362 EITAN M. GURARI AND OSCAR H. IBARRA

PROPOSITION. Let G be a PPS. (x, a) has a solution tree if and only if it has a
solution graph.

THEOREM 5. Let G (P, N, T, R1, R2) be a PPS. We can construct a DASA M
which when given x in P, a in Nandpositive integer as inputs can determine the existence
of a solution tree F with WIDTH(F <- within swrage space O(l + log [x[) and time
O(c +glxl) for some constant c. Moreover, M has nonerasing auxiliary stack tape.

Proof. By the proposition, it is sufficient to determine for (x, a) in P N whether
or not a solution graph G, exists. We describe an algorithm similar to one in [5]. The
algorithm consists of first generating and inserting in the stack all nodes in T of size at
most l. A storage space of O(l) is used in the generation. Then for each node/3 not in the
stack, I/[--< 1, the stack is examined for a node 3’ such that (x,/3, 3’) is in R or for nodes 3’
and 8 such that (x,/3, y, 8) is in RE. In either case,/3 is then inserted in the stack. A
storage space of O(l + log [x[) is needed here. The process of inserting nodes in the stack
is continued until no new node can be put in. Note that the number of nodes of size at
most that can be inserted in the stack is O(c for some Cl. Then the algorithm returns
"true" if and only iF a appears in the stack. It is clear that the algorithm can be
implemented on a nonerasing DASA which operates within O(l / log [x[) storage space
and O(c +glxl) time. [3

5. Applications. In this section, we show how PPS’s can be used to unify the proofs
of several well-known results concerning resource-bounded computation. In addition,
we obtain new theorems which sharpen and/or generalize previously known results.

DEFINITION. Let L(n) be a function on the positive integers. A NTM (DTM,
DAPA, NAPA, DASA, parallel TM) is L(n)-tape bounded if every input of length n
that is accepted has some accepting computation which uses no more than L(n) space on
its read-write storage tape. (Note that L(n) does not include the space used in the
pushdown store or the stack.) L(n) is tape constructible if there is an L(n)-tape bounded
DTM Uwhich halts for all inputs and which has the property that for each n, every input
of length n enables U to scan exactly L(n) cells on its storage tape.

Convention. There are other resource bounds (e.g., time, number of reversals,
number of nondeterministic moves, etc.) that are considered in the paper. As in the
above definition, these bounds only apply to inputs that are accepted. When the device
is nondeterministic and has several resource constraints we require that the bounds hold
simultaneously for at least one accepting computation. All the functional bounds in the
paper (L(n), T(n), R(n), C(n), and D(n)) are functions on the positive integers.
Throughout, we assume that L(n) >- log n. To simplify proofs, we also assume that L(n)
is tape constructible for results involving deterministic simulators. This assumption can
be removed since we can modify the simulators to iterate the computations for
L(n) 1, 2, 3,. until an accepting configuration is reached. Note, however, that the
modified machines may not halt for inputs that are not accepted.

5.1. Auxiliary pushdown automata and Turing machines. Our first theorem
concerns languages accepted by L(n)-tape bounded NAPA’s which operate within T(n)
time.

THEOREM 6. LetL be accepted by an L(n)-tape boundedNAPA M1 which operates
within T(n time. Then L can be accepted by an L(n)-tape bounded DASA M2 whose
stack uses no more than L(n) log (T(n)) space.

Proof. Given M1, construct a PPS G as described in 3. By Lemma 1(i) there are
positive constants c and c2 such that MI accepts an input x in E*$ within L(n) space
and T(n) time (n Ix[) if and only if there exists a solution tree for (x, V) with at most
Cl T(n) nodes and WIDTH at most c2(L(n)+log n). Let M be the DASA correspond-

PATH SYSTEMS 363

ing to G of Theorem 1 (balanced divide-and-conquer). We now describe the operation
of M2.

M2 with input x first divides the storage tape into two tracks. On track 1 it writes the
string V4 1L(n). Then M2 uses the second track of the storage tape in simulating the
computation ofM on x, V and the positive integer represented by 1 L(n). From Theorem
1 (balanced divide-and-conquer) and the assumption that L(n)>-_ log n, it follows that
M2 can be constructed to be L(n)-tape bounded and its stack uses no more than
L(n) log (T(n)) space. [q

COROLLARY 4. Let L and M1 be as in Theorem 6. Then L can be accepted by an
L(n log (T(n))-tape bounded DTMM2.

Corollary 4 has been reported earlier by Monien [14]. His proof is a direct DTM
construction. Though the basic idea in his proof resembles the (log n)2 construction of
Lewis, Stearns and Hartmanis [13], it is quite hard to follow.

If in Theorem 6, we require M2 to be a DAPA, we have the following result.
THEOREM 7. LetL be accepted by an L(n)-tape boundedNAPAM1 which operates

within T(n time. Then L can be accepted by an L(n)-tape bounded DAPA M2 whose
pushdown store uses no more than L(n)T(n) space.

Proof. The proof is similar to that of Theorem 6, this time using Corollary 3 (filial
divide-and-conquer). Note that a solution tree with O(T(n)) nodes has depth
O(T(n)).

Recently, Harju 17] claimed a result stronger than Theorem 7" M2 need only use
L(n log (T(n)) pushdown space.

We can also prove the following corollary using Lemma 3, Corollary 3 (filial
divide-and-conquer) and Theorem 5 (dynamic programming).

COROLLARY 5. Let L be accepted by an L(n)-tape bounded NAPA. Then
(i) L can be accepted by an L(n)-tape boundedDAPA whose pushdown store uses

no more than cL(" space]’or some constant c.
(ii) L can be accepted by an L(n)-tape bounded nonerasing DASA which operates

within c time for some constant c.
From Corollary 5(i), we get the following result first proved by Cook [3].
COROLLARY 6. A language L is accepted by an L(n)-tape bounded NAPA if and

only if it is accepted by an L(n)-tape bounded DAPA.
The next two corollaries are immediate from Corollary 4. They were first shown by

Lewis, Stearns and Hartmanis 13] and Savitch [15], respectively.
COROLLARY 7. If L is a context-free language (i.e., accepted by a real-time

pushdown automaton), then L has deterministic tape complexity at most (log n)2.
COROLLARY 8. Let L be accepted by an L(n)-tape bounded NTM which operates

within T(n) time. Then L has deterministic tape complexity L(n) log (T(n)).
As another application of PPS’s, we prove another result of Cook [3], [5]. The

proof follows the ideas in [5].
THEOREM 8. L is accepted by a c("-time bounded DTM (c a postive constant) if

and only if it is accepted by an L(n)-tape bounded DAPA.
Proof. The "if" part follows from Corollary 5(ii). Now suppose L is accepted by a

c"-time bounded DTM M. We may assume that M is single-tape (i.e., the input tape
is also the read-write storage tape) with a left endmarker. We also assume that M does
not write blanks, has no stationary moves, and only reverses its head on the left
endmarker or on the blank to the right of the nonblank portion of the tape. Finally, we
assume that M only accepts when its head is on the left endmarker in state f. (Note that
if M does not have the assumed properties, we can modify M to satisfy the desired
properties. The time complexity will change from cL(’) to dL(n) for some d >_- c.) Clearly,
the computation of M will have the pattern shown in Fig. 8.

364 EITAN M. GURARI AND OSCAR H. IBARRA

Let K, , F be the state set, input alphabet, and storage tape alphabet of M,
respectively, with F containing the blank symbol, B, and the left endmarker, . Define a
PPS G (P, N, T, R 1, R2) by" P = CY.,*, N {(f, , 1)} {(q, a, i, J)l q in K, a in F, and’/’
positive integers} and T {(qo, , 1, 1)}. Intuitively, (q, a, i,/’) represents the situation
in which M is in state q with its storage head scanning symbol a in position (the left
endmarker is in position 1), and M is on the jth sweep. Note that I(q, a, i,/)1-

time

space

Ca2a3 an input

"(f, , 1, k)

FIG. 8. An accepting computation ofM.

O(log (i +j)). In Fig. 8, k the number of sweeps made is even, and k =< c(") for some
ca. Also, the storage space used is s

_
c2
(") for some cz. Clearly, a 4-tuple a (q, a, i,/’)

appearing in the pattern is uniquely defined by at most 2 other 4-tuples. Thus, in Fig. 8,
a is uniquely defined by az and a3. On the other hand, fll is uniquely defined by only
/32. We shall define the relations R and R2 in such a way that the computation ofM can
be simulated in reverse, i.e., the root of the solution tree will be (f, , 1) and the leaves
will be (qo, , 1, 1). For convenience, we define R1 and R2 by cases. Assume that the
input is x =a2... an.

Case O. Last sweep: For each positive integer k, let (x, (f, , 1), (f, , 1, k)) be in
R1.

Case 1. First sweep, i.e., j 1"

a2a3’’’an

2 o

(x, al, az) is in R1 if al (ql, ai+l, + 1, 1), a2 (q2, ai, i, 1), 1 < n, M in state
reading at moves right in state ql. (al +.)

PATH SYSTEMS 365

Case 2. 2j + 1st sweep,] >_- 1’

(X, tXl, O2, O3) is in RE if al=(ql, a, + l, 2] + l), a2=(q2, b,i, 2j+l), 01.3
(q3, C, + 1, 2j), a # B, b # B,M in state q3 reading c rewrites c by a and moves left, and
M in state q2 reading b moves right in state ql.

Case 3. Entering the leftmost blank:

@2

(x, al, a2) is in R if a=(q,B,i+l,2]-l), a2=(q2, b,i, 2]-l),]>-1, b#B, M in
state q2 reading b moves right in state q. If] 1, then b is the last symbol of
x a2 an.

Case 4. Change in sweep number occuring on the right:

(X, O1, O2) is inga if al =(q,B,i, 2j) and a2=(qx, B,i, 2]-l), j>=l.
Case 5. 2jth sweep, j-> 1"

3

(X, eel, a2, a3) is in RE if al (q, a, i, 2j), a2 (q2, b, + 1, 2j), as = (q3, c, i, 2j- 1),
a # B, c B, M in state q3 reading c rewrites c by a and moves right, M in state q2

reading b moves left in state q l.

Case 6. Change in sweep number occurring on the left:

(X, iX1, O2) is in Rx if a =(ql, , 1, 2]+ 1) and a2 (ql, , I, 2j), / > 1.
Now x :a2. an is accepted byM in k sweeps and space s if and only if there is

a solution tree for (x, (f, , 1)) all of whose nonroot nodes are of the form (q, a, i,/’) with
<_- s and/" _-< k. Thus, a solution tree for (x, (f, , 1)) has maximum node size O(log (s +

k)) O(L(n)). The result now follows from Lemma 3 and Corollary 3 (filial divide-and-
conquer). [3

Note that the "only if" part of the proof of Theorem 8 fails ifM is nondeterminstic.
This is because the PPS G may have a solution tree which does not correspond to any
computation of M. For example, consider the NTMM which when in state q reading a
may rewrite a by a’ and enter state q’ while moving in direction D, where the possible
assignments for q, a, a’, q’ andD are given in Fig. 9(a). Clearly, x Cb is not accepted by
M. However, the PPS G has a solution tree for (b, (f, , 1)). See Fig. 9(b).

366 EITAN M. GURARI AND OSCAR H. IBARRA

qo
qo
qo
qo
ql

q’ a’ D

qo right
qo b right
ql c right
ql c left

f c left

(a)

(L, 1))

(q"’2’2) i) (qo, , 1, 1)

((qo, B, 3,1)) ((qo,, l’l)

(b)

FIG. 9

The next theorem involves L(n)-tape bounded NAPA’s with reversal-bounded
pushdown store.

THEOREM 9. Let L be accepted by an L(n)-tape bounded NAPA which makes at
most R(n pushdown reversals on inputs of length n. Then

(i) L can be accepted by an L(n)-tape bounded DASA whose stack uses no more
than L(n)[L(n) + log (R (n))] space;

(ii) L can be accepted by an L(n)-tape bounded NAPA whose pushdown store uses
no more than L(n log (R (n)) space.

Proof. This follows from Lemma 1 (ii), Corollary 2 (balanced divide-and-conquer)
and Theorem 2 (filial divide-and-conquer). !-I

The bound in Theorem 9(i) can be tightened if the machine is deterministic:
THEOREM 10. LetL be accepted by an L(n)-tape boundedDAPA which makes at

most R (n) pushdown reversals on inputs of length n. Then L can be accepted by an
L(n)-tape bounded DASA whose stack uses no more than L(n log (R (n)) space.

Proof. The proof is similar to that of Theorem 6 using Lemma l(iii).
The next corollary follows from Theorems 9-10 and the observation that a

machine with multiple (input) heads can be simulated by a one-headed machine with a
log n-tape bounded read-write storage tape.

COROLLARY 9.
(i) LetL be accepted by a nondeterministic two-way multihead pushdown automa-

ton M [3, 4] which makes at most R (n pushdown reversals on inputs of length
n. Then L can be accepted by a (log n)(log n + log (R (n)))-tape boundedDTM
M1 and by a (log n)(log (R (n)))-tape bounded NTMM2.

(ii) If in (i), M is deterministic, then the DTM Ma can be constructed to be
(10g n)(log (R (n)))-tape bounded.

Next, we consider an L(n)-tape bounded NAPA whose input head and storage
head make at most R(n) reversals. The pushdown store is unrestricted. For such a
machine, the complexity of simulation is smaller than that of Theorem 9(i). We need the
following lemma which is of independent interest.

PATH SYSTEMS 367

LEMMA 5. LetL be accepted by an L(n)-tape boundedNAPAMwhose input head
and storage head make at most R (n reversals on inputs of length n. Then L can be
accepted by an L(n)-tape bounded NAPA which operates within R (n)[n + L(n)] time.

Proof. Assume without loss of generality that M moves one of its heads (input or
storage) just before accepting. Also assume that if M does not move its storage head
from a given square, the content of that square is not changed. Let and F be the input
and storage alphabets of M, respectively, 5 f3 F . (For notational convenience,
assume that the input endmarkers, and $, are in E and the blank symbol B is in F). Let
D ={-1, 0, +I} and A=xDxFxFxD. Define the language (over A) L’=
{(al, i, bl, c,]). (a,, i,, bk, ct,/’k)lk _--> 1, (i,, j,) (0, 0) for 1 --<_ _--< k, there are states
q, , q,+ with q the initial state and q+ an accepting state and pushdown strings
a Z0 (the initial pushdown symbol), , ak+l such that for 1 <_- -<_ k, M in state qt
with pushdown contents at and its input and storage heads on symbols at and
respectively, eventually moves its input head in direction i,, rewrites b by ct, moves the
storage head in direction/’,, and enters state q/ with a+ the resulting pushdown
contents}. Clearly, L’ can,be accepted by a one-way pushdown automaton M’. Since
every one-way pushdown automaton can be transformed to be real-time [8], we may
assume that M’ is real-time. We will now construct from M’ an L(n)-tape bounded
NAPA M" which will accept L within time R (n)[n + L(n)].

M", when given input x in (:-{, $})*$, an initially blank storage tape and Zo on
its pushdown store, simulates the computation of M’ while checking that the input is
consistent. This is accomplished as follows"

Assume that at some point in the simulation, the input and storage heads of M" are
on symbols a, and b,, respectively. Also assume that the current state, q,, of M’ is stored
in the finite contol of M". Then M" carries out the following steps simultaneously: (i) M
nondeterministically guesses a triple (i,, c,, j) such that (i, j,) (0, 0); (ii) moves the
input head in direction i,; (iii) rewrites the storage tape symbol bt by c,; (iv) moves the
storage head in direction/’,; (v) determines the move of M’ when in state q, and input
(a,, i,, b,, c,,/’,); and (vi) updates the pushdown and state qt accordingly.

M" accepts the input if and only if M’ enters an accepting state. Clearly, M" accepts
L. Now if a string x, n Ix I, is accepted by M (the original NAPA), then the number of
nonstationary moves ofM is rn =< R (n)[n + L(n)]. By the definition of L’, there is some
string y in L’ that codes the computation of M and lyl- m. The one-way pushdown
automaton M’ accepting L’ is real-time. From the description of M" the simulation of
the computation of M’ on string y can be done without loss of time. Hence, M" on input
x accepts in time m. It follows that M" operates within time R (n)[n + L(n)].

From Lemma 5 and Theorems 6 and 7, we have
THEOREM 11. LetL be accepted by an L(n)-tape boundedNAPA whose inputhead

and storage head make at most R (n reversals on inputs o] length n. Then
(i) L can be accepted by an L(n)-tape bounded DASA whose stack uses no more

than L(n)[log (R (n)) + log(n + L(n))] space;
(ii) L can be accepted by an L(n)-tape boundedDAPA whose pushdown store uses

no more than L(n)R (n)[n + L(n)] space.
Suppose that in an L(n)-tape bounded NAPA, we replace the auxiliary pushdown

store by an unrestricted read-write storage tape. Then we obtain a nondeterministicTM
with a read-only input tape and two read-write storage tapes, one of which is L(n)-tape
bounded. Call this new machine an L(n)-tape bounded nondeterministic auxiliary
storage TM (or L(n)-tape boundedNATM, for short). Then we have the following result
which generalizes Theorem 4.2 of Greibach [6].

THEOREM 12. The following statements are equivalent.
(i) L is accepted by an L(n)R (n)-tape bounded NTM.

368 EITAN M. GURARI AND OSCAR H. IBARRA

(ii) L is accepted by an L(n)-tape boundedNATMwhose auxiliary storage makes at
most R (n reversals on inputs o" length n.

Proof. The proof follows the lines in [6].
(i) implies (ii). Let L be accepted by a NTMM with a two-way read-only input and

one L(n)R (n)-tape bounded storage tape. A partial configuration of M is a tuple
a (i, uqv) which represents the situation in which M (on some input) is in state q, its
input head is on the ith position, and its storage tape contains uv with the storage head
on the leftmost symbol of v. Clearly, L(n)R (n)-space is sufficient to store a partial
configuration. We now describe the computation of an L(n)-tape bounded NATM M’
accepting L whose auxiliary storage makes at most R (n) reversals. Given an input x$,
M’ simulates the computation of M as follows"

M’ starts off by guessing a sequence of partial configurations that M goes through
on input Cx $. This sequence is written on the auxiliary storage with #’s separating the
configurations (see Fig. 10). Each O is broken up into R (n) segments, each of which
requires L(n) space. M’ then checks that al#a2 4ak is an accepting sequence of
configurations ofM on input x$. It does this by making R (n) passes over a Ck.

[I x i$ input tape

L(n)-tape bounded storage tape

R (n)- reversal bounded auxiliary
O1 Of (O

storage tape

FIG. 10. N,ATM M’.

On the jth pass, M’ checks that the]th segments of the configurations are consistent.
The L(n)-tape bounded storage tape is used as a scratch tape for this purpose. It is clear
that M’can be constructed to be an L(n)-tape bounded NATM whose auxiliary storage
is R(n)-reversal bounded.

(ii) implies (i). Suppose that L is accepted by an L(n)-tape bounded NATM M
whose auxiliary storage is R(n)-reversal bounded. We may assume without loss of
generality that M’s auxiliary storage head makes no stationary moves. Moreover, we
may assume that the auxiliary storage has left and right endmarkers and reversals can
only occur on these endmarkers. (The number of squares between the endmarkers is
fixed during a given computation.) Clearly, a computation ofM on a given input can be
described by a profile of partial configurations as shown in Fig. 11.

In Fig. 11, each a. is of the form (Z, i, uqv). (Z, i, uqv) represents the situation in
which M (on some input) is in state q, its input head is on position i, the L(n)-tape
bounded storage tape contains uv with the storage head on the leftmost symbol of v, and
the auxiliary storage is scanning symbol Z. Call the "crossing sequence"
<O1, O2,’"", O2k-1, a2k> a cut in the profile. The L(n)R (n)-tape bounded NTMM’
accepting L operates by constructing (in succession) the cuts appearing in the profile of
an accepting computation of M. For example, in Fig. 11, (a’, a’2," ", ak-a, ak) can
easily be constructed by M knowing (al, teE," ", O2k-1 O2k>. Since a cut contains at
most R (n) partial configurations, each of which requires at most L(n) space, L(n)R (n)
is sufficient to record a cut. We omit the details.

5.2. Parallel Turing machines. We now turn to some applications of PPS’s to
parallel Turing machines. The model of a parallel TM was introduced in [11] as a

PATH SYSTEMS 369

initial partial configuration

---------___ a

2 (2

4

accepting
partial configuration

leftmost cut
rightmost cut

time

FIG. 11. Profile of a computation ofM.

space

generalization of nondeterministic TM (see 4 for definition). Several results concern-
ing the relationships between time- and tape-bounded deterministic and parallel
computation were derived in 11]. We observe that most of these results can easily be
shown using PPS. To illustrate, we give a proof of the following result which combines
Theorems 3 and 4 of [11].

THEOREM 13.
(i) IlL is accepted by an L(n)-tape bounded parallel TM, then L can be accepted by

a cL(")-time bounded DTMfor some constant c.
(ii) IlL is accepted by a cL(")-time boundedDTMfor some constant c, then L can be

accepted by an L(n)-tape bounded parallel TM.
Proof. (i) Let L be accepted by an L(n)-tape bounded parallel TMM. Without loss

of generality, we may assume that in every step, Mhas at most 2 choices of next moves.
Construct a PPS G (P, N, T, R, R2), where P 2"$, N {(a, B)lc is a partial
configuration of M, B 0, 1}, T {(a, 1)[a is an accepting configuration} 13 {(c, 0)la is
a rejecting configuration}, R1 {(x, (a, B), (a2, B:))lx in X*$, (c, B) in N, B
B,M in configuration c on input x can (in one step) only enter configuration a2}, and
R2={(x,(otl, Bal),(a2, B,2),(a3, Baa))[x in +2"$, (oti, Ba,) in N, o2o3, M in con-
figuration a can (in one step) enter configuration a2 or a3, B,I=B,2^B,3 if
h(state(ax)) ^ and B,,1 B, v B,,3 if h(state(al)) v}. It is dear that x is accepted by
M if and only if there is a solution tree for (x, (a0, 1)), where ao (1, qoB) is the initial
partial configuration of M. Part (i) then follows from Theorem 5 (dynamic program-
ming).

(ii) Now suppose L is accepted by a cL(")-time bounded DTM M. Assume that M
has the properties stated in the proof of Theorem 8. Construct the PPS G
(P, N, T, R 1, R2) corresponding to M as described in the proof of Theorem 8. G has the

370 EITAN M. GURARI AND OSCAR H. IBARRA

property that a string x (a2 an (of length n) is accepted by M within time c L(n) if
and only if (x, (/’, , 1)) has a solution tree with WIDTH O(L(n)). The result now follows
from Theorem 4 (filial divide-and-conquer). [3

COROLLARY 10. A language L is accepted by an L(n)-tape boundedDAPA ifand
only if it is accepted by an L(n)-tape bounded parallel TM.

Proof. This follows from Theorems 8 and 13.

5.3. Alternating Turing machines. The definition of acceptance by a parallel TM
requires that each path in the computation tree leads to an accepting or rejecting
configuration. This requirement can lead to some inconsistency with NTM conventions.
Consider, e.g., an ordinary NTM M in which the initial partial configuration ao
(1, qoB) on any input x in E*$ has exactly two choices of next configurations: a0 and
al (1, qIB), where ql is an accepting state. ThenM considered as a nondeterministic
TM accepts all strings. However, M considered as a parallel TM with h defined by"
h(qo) h(q) v accepts the empty set. The inconsistency can be avoided by using the
following more natural definition of acceptance:

LetM be a parallel TM and x be in *$. Define a computation tree for x as a tree
whose nodes are partial configurations satisfying "(i) the root node is a0; (ii) the leaves
are accepting configurations; (iii) if is a node which is not a leaf andM in configuration
a on input x can, in one step, enter configurations fl,...,/k, then a has sons
1," k provided h(state(a)) A; if h(state(a)) v, then a has exactly one son,/3,
1 _-< _-< k. A string x is accepted byM if x has a computation tree. A parallel TM which
accepts this way is called an alternating TM in [2], [12]. Again, we assume without loss
of generality that in every step, M has at most 2 choices of next moves.

The class of languages accepted by L(n)-tape bounded alternating TM’s remains
the same since Theorem 13 also holds for alternating TM’s [2]. The proof of part (ii)
clearly holds. For part (i), the appropriate PPS is G (P, N, T, R, RE), where P-
*$, N ={ala is a partial configuration of M}, T ={a[a is an accepting partial
configuration}, R {(x, a 1, a2)lx in *$, ai in N, M in configuration a on input x can
(in one step) enter configuration a2, and either a2 is unique or h(state(a))= v}, and
R2 ={(x, a, a2, a3)[x in E*$, ai inN, a2 # a3, M in configuration al on input x can (in
one step) enter configuration a2 or a3, and h (state(a1))= ^}. Note that a solution tree
FXo, where ao is the initial partial configuration, corresponds exactly to a computation
tree for x.

An alternating TMM is C(n)-con]unction bounded (D(n)-dis]unction bounded) if
every input of length n that is accepted has a computation tree in which the number of
/x-nodes (v-nodes) is at most C(n)(D(n)). A node a is a A-node (v-node) if
h(state(a)) ^ v). Clearly, if M is L(n)-tape bounded and C(n)-conjunction boun-
ded, then any input x of length n that is accepted has a computation tree that has at most
C(n) + 1 leaves. It follows that the PPS G corresponding to M as defined above has a
solution treeFo for (x, ao) with at most C(n)+ 1 leaves. If, in addition,M is T(n)-time
bounded, then the computation tree for x (and hence the solution treeFo has depth at
most T(n).

Parts (i) and (ii) of the next result then follow from Corollary 2 (balanced divide-
and-conquer) and Theorem 2 (filial divide-and-conquer) while part (iii) follows from
Corollary 1 (balanced divide-and-conquer).

THEOREM 14. Let L be accepted by an L(n)-tape bounded and C(n)-con]unction
bounded alternating TMM. Then

(i) L can be accepted by an L(n)-tape bounded DASA whose stack uses no more
than L(n)[L(n)+ log (C(n))] space;

PATH SYSTEMS 371

(ii) L can be accepted by an L(n)-tape bounded NAPA whose pushdown store uses
no more than L(n) log (C(n)) space.

(iii) lf, in addition, Mis T(n)-time bounded, then L can be accepted by an L(n)-tape
bounded DASA whose stack uses no more than L(n)[log (T(n))+log (C(n))]
space.

In case the alternating TMM is L(n)-tape bounded, C(n)-conjunction bounded
and D(n)-disjunction bounded, then the solution treeF has at most 2C(n)+D(n)+
1 nodes. The next result then follows from Theorem 1 (balanced divide-and-conquer).

THEOREM 15. Let L be accepted by an L(n)-tape bounded, C(n)-confunction
bounded and D(n)-dis]unction bounded alternating TM. Then L can be accepted by an
L(n)-tape boundedDASA whose stack uses no more than L(n log (C(n + D(n)) space.

COROLLARY 11. LetL be accepted by an L(n)-tape boundedNTMwhich makes at
most D(n) nondeterministic moves on inputs of length n. Then L can be accepted by an
L(n)-tape bounded DASA whose stack uses no more than L(n) log (D(n)) space.

A slightly weaker form of Corollary 11 has been observed earlier by Kintala and
Fischer 10] without proof.

If the alternating TMM is L(n)-tape bounded and T(n)-time bounded, then the
PPS G corresponding to M (as described above) has a solution treeF with CHOICE
(Fo)=< 2 and DEPTH(Fo)<= T(n). Then the functions f and g of Theorem 3 (filial
divide-and-conquer) can be defined as follows. If S(x, (k, uvw), l, i, j) (k’, uaqbw) for
some symbols a and b, then f(x, (k, uvw), l, i, j) (k’- k, v) and g(x, (k’, uaqbw), 1, i, j,
(k’-k, v)) (k, uvw). Now abs(k’-k)<- 1 and Ivl<-fixed constant. Hence, whenever
f(. is defined, If(")1--< fixed constant. Thus, we have

THEOREM 16. LetL be accepted by an L(n)-tape bounded and T(n)-time bounded
alternating TM. Then L can be accepted by an L(n)-tape bounded DAPA whose
pushdown store uses no more than T(n space.

5.4. Recursive Turing machines. Finally, we look at applications of PPS’s to
recursive Turing machines 16]. A recursive TM is an ordinary TM which can call itself.
We refer the reader to 16] for formal definitions and motivations. Here, we just give a
brief description.

A recursive TM, M, has a finite control attached to a two-way write-only input tape,
a two-way read-only input-parameter tape, a one-way write-only output-parameter
tape, and a two-way read-write storage tape (see Fig. 12). The finite control has six
distinguished states: (start), (call), (return-yes), (return-no), (received-yes), (received-
no). Initially, there is only one copy of M at level 1. The input string and input-
parameter string (assumed null at level 1) are placed on their respective tapes delimited
by endmarkers and $. The heads on these tapes are initially positioned on the left
endmarker, . The output-parameter tape contains and the storage tape is completely
blank. The machine begins in state (start) and operates like an ordinary nonrecursive
TM with a one-way write-only output tape. (Thus, the moves of M are determined by
the state and the symbols scanned on the input, input-parameter and storage tapes.)

The "active" machine, at level k (initially, k 1), can make a recursive call by writ-
ing the right delimiter $ on its output-parameter tape and entering state (call). When this
happens, a new copy of M, at level k + 1, is created with the output-parameter tape of
level k becoming the input-parameter tape of the new machine. A new input tape
containing the original input string, a new output-parameter tape containing + and a
new blank read-write storage tape are created for the machine at level k + 1. The new
copy at level k + 1 becomes the active machine and begins its computation in state
(start) with the input, input-parameter, and output-parameter heads on . The machine

372 EITAN M. GURARI AND OSCAR H. IBARRA

at level k is now "waiting". If the machine at level k + 1 enters the state (return-yes) or
(return-no), then the machine at this level disappears and the waiting machine at level k
resumes its computation in state (received-yes) or (received-no), respectively, with its
output-parameter tape reinitialized to . We assume without loss of generality that the
heads on the storage and output-parameter tapes do not write blanks.

$ i input tape

input-parameter tape

Finite
Control

output-parameter tape

i storage tape

FIG. 12. A recursive TM, M.

An input tape x in *$ is accepted or refected if M eventually enters the state
(return-yes) or (return-no), respectively, at level 1. (Note that M on some inputs may
never enter (return-yes) or (return-no). These inputs are neither accepted nor rejected.
Thus M as defined is a recognition device, see [16].) M can be deterministic or
nondeterministic. In case M is nondeterministic we require that there is no input for
which there are two computations which accept and reject the input, respectively. In
fact, we shall assume that there is no combination of input and parameter which can
result in both a "yes" and a "no" answer to a recursive call (see [16]).

Following 16], define a level instantaneous description (or simply level ID) ofM as
a 4-tuple (i, uqv, wly, z). a represents the configuration of M (at some level) in
which the input head is on position i, the storage tape contains uv with the storage head
on the leftmost symbol of v, the state is q, the input-parameter tape contains wy with its
head on the left-most symbol of y, and the output parameter tape contains z. The width
of c is the length of uv plus the length of z.

DEFtNXIOr. LetM be a recursive TM. M is L(n)-width bounded if every input of
length n has an accepting or rejecting computation in which each level ID encountered
during the computation has width at most L(n). Similarly, M is D(n)-depth bounded
(respectively, C(n)-call bounded) if every input of length n has an accepting or rejecting
computation in which the depth of recursion (respectively, the number of recursive
calls) is at most D(n) (respectively, C(n)).

The following result was shown in 16].
THEOREM 17. Let L be accepted by a deterministic (respectively, nondeterministic)

L(n)-width bounded and D(n)-depth bounded recursive TMM. Then L can be accepted
by an L(n)D(n)-tape bounded DTM (respectively, NTM) M’.

Proof [16]. The construction of M’ from M is straightforward. M’ simply keeps
track of the level ID’s as they are created and updates them accordingly. Since M has
simultaneous width L(n) and depth D(n), a storage space of O(L(n)D(n)) is
sufficient.

Now consider the case when the recursive TM M is L(n)-width bounded and
C(n)-call bounded. Clearly, the above construction applied to this case yields an M’
which still has a worst case storage bound of O(L(n)C(n)). (This will happen, e.g., when
D(n) C(n).) We can prove a better simulation result.

PATH SYSTEMS 373

THEOREM 18. Let L be accepted by a deterministic L(n)-width bounded and
C(n)-call bounded recursive TMM. Then L can be accepted by an L(n)-tape bounded
DASA whose stack uses no more than L(n) log (C(n)) space and by an L(n)-tape
bounded DASA whose stack uses no more than C(n) space.

Proof. Let a and/ be level ID’s of M and x in *$ be an input. Write a :fffl if a

can enter/3 after 0 or more steps and state(/)= (return-yes) or (return-no) or (call).
The initial level ID (at level 1) is ao (1, (start) B, $,), where B is the blank symbol.
Without loss of generality, assume thatM in level ID ao on its first move enters level ID

do (1, (call)/, $, $), where/ is a fixed nonblank symbol. Thus, aoo for all
input x.

Define a PPS G (P, N, T, R1, RE) as follows: N {(h, a,/3)[a and/3 are level ID’s
and h yes or no}, P +E* $, T {(h, a,/3)l(h, a, fl) in N, state(fl) (return-h)},
RI , RE {(X, (hi, al, 1), (hE, o2, 2), (h3, o3, 3))lx in * $, (h., aj, fl.) in N,

hi h3, a. ::),/3i,/31 (i, u(gall)v, wy, z$), c2 (1, (start)B, [z$,), a3 (i, u(received-

hE)v, wy,)}.
Clearly, M accepts x in at most C(n) recursive calls (n [x[) if and only if (x, (yes,

a0, Co)) has a solution tree with at most 2C(n)/1 nodes (hence, depth at most
C(n)+ 1). Also, from the definition of RE and the fact that hE has only two possible
values (yes and no), CHOICE(F 2 for any solution tree FX. The result then follows
from Theorem 1 (balanced divide-and-conquer) and Theorem 3 (filial divide-and-
conquer). [-1

For nondeterministic recursive TM’s we have
THEOREM 19. Let L be accepted by a nondeterministic L(n)-width bounded and

C(n)-call bounded recursive TMM. Then
(i) L can be accepted by an L(n)-tape bounded DASA whose stack uses no more

than L(n)[L(n) + log (C(n))] space;
(ii) L can be accepted by an L(n)-tape bounded NAPA whose pushdown store uses

no more than L(n) log (C(n)) space.
Proof. The proof is similar to that of Theorem 18. This time, the PPS G-

(P, N, T, R l, RE) is defined as follows: N {(h, a)lce is a level ID of M and h yes or
no}, P= *$, T ={(h, a)l(h, a) in N, state(a) (return-h)}, R1 ={(x, (hi, al),
(hE, aE))lhl hE, state(eel) (call), M in level ID a on input x can, in one step, enter
level ID a2}, RE {(x, (hi, al), (hE, a2), (h3, a3))l hi h3, al (i, u(call)v, wy, z$),
a2 (1, (start)B, z$,), a3 (i, u(received-hE)V, wly,)}. ThenM accepts x in at most
C(n) recursive calls if and only if (x, (yes, ao)) has a solution tree with at most C(n)+ 1
leaves. From Corollary 2 (balanced divide-and-conquer) and Theorem 2 (filial divide-
and-conquer) we have the result.

Combining Theorems 17, 18, and 19 we get
THEOREM 20. LetL be accepted by an L(n)-width bounded, C(n)-call bounded and

D(n)-depth bounded recursive TMM.
(i) ffMis deterministic, then L has deterministic tape complexity min {L(n)+ C(n),

L(n) log (C(n)), L(n)D(n)}.
(ii) IfM is nondeterministic, then L has deterministic tape complexity L(n)[L(n) +

log (C(n))] (respectively, nondeterministic tape complexity
min {L(n) log (C(n)), L(n)D(n)}).

We conclude with the following corollary which was also shown in [16] by a
different technique.

374 EITAN M. GURARI AND OSCAR H. IBARRA

COROLLARY 12. LetL be accepted by a nondeterministic L(n)-width bounded and
D(n)-depth bounded recursive TM. Then L has deterministic tape complexity L2(n)D(n).

Proof. Immediate from Theorem 19(i) and the observation that C(n) <- cL(n)(n) for
some constant c.

Acknowledgment. We would like to thank the referee for organizational sugges-
tions and detailed comments which improved the presentation of our results.

REFERENCES

[1] A. AHO, J.’ HO’CROVT ,ND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. CHANDRA AND L. STOCKMEYER, Alternation, Proc. of the Seventeenth Annual Symposium on
Foundations of Computer Science, IEEE, (New York), 1976, pp. 98-108.

[3] S. COOK, Characterizations of pushdown machines in terms of time-bounded computers, J. Assoc.
Comput. Mach., 18 (1971), pp. 4-18.

[4],Path systems and language recognition, Proc. of the Second Annual ACM Symposium on Theory
of Computing (New York), 1970, pp. 70-72.

[5],An observation on time-storage trade off, Proc. of the Fifth Annual ACM Symposium on Theory
of Computing (New York), 1973, pp. 29-33.

[6] S. GREIBACH, Visits, crosses, and reversals for nondeterministic off-line machines, Information and
Control, 36 (1978), pp. 174-216.

[7] T. HARJU, A simulation result for auxiliary pushdown automata, Tech. Rep. 4 (1977), Dept. of
Mathematics, Univ. of Turku, Finland.

[8] J. HOPCROFT AND J. ULLMAN, Formal Languages and their Relation to Automata, Addison-Wesley,
Reading, MA, 1969.

[9] O. I3ARRA, Characterizations of some tape and time complexity classes of Turing machines in terms of
multihead and auxiliary stack automata, J. Comput. System. Sci., 2 (1971), pp. 88-117.

10] C. KINTALA AND P. FISCHER, Computations with a restricted number of nondeterministic moves, Proc.
of the Ninth Annual ACM Symposium on Theory of Computing (New York), 1977, pp. 178-185.

[11] D. KOZEN, On parallelism in Turing machines, Proc. of the Seventeenth Annual Symposium on
Foundations of Computer Science, IEEE (New York), 1976, pp. 89-97.

[12] R. LADNER, R. LIPTON AND L. STOCKMEYER, Alternating pushdown automata, Proc. of the
Nineteenth Annual Symposium on Foundations of Computer Science, IEEE (New York), 1978, pp.
92-106.

[13] P. LEWIS, R. STEARNS AND J. HARTMANIS, Memory bounds for recognition of context-free and
context-sensitive languages, Proc. of Sixth Annual Symposium on Switching Circuit Theory and
Logical Design, IEEE (New York), 1965, pp. 191-202.

[14] B. MONIEN, Relationships between pushdown automata and tape-bounded Turing machines, Proc. of
Symposium on Automata, Languages and Programming, 78-Rocquencourt, France, M. Nivat, ed.,
North Holland Elsevier, Amsterdam, July 1972, pp. 575-583.

[15] W. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J. Comput.
System Sci., 4 (1970), pp. 177-192.

[16], Recursive Turing machines, International J. Comput. Math., 6 (1977), pp. 3-31.
[17] I. SUDBOROUGH, Time and tape bounded auxiliary pushdown automata, Proc. of the Sixth inter-

national Symposium on the Mathematical Foundations of Computer Science, Czechoslovokia,
Springer-Verlag, September 1977.

[18] Relating open problems on the tape complexity of context-free languages and path systems
problems, Proc. of the Twelfth Annual Johns Hopkins Conference on Information Sciences and
Systems, March 1978.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

(C) 1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0011 $01.00/0

CODE MOTION*

JOHN H. REIF

Abstract. Code motion is a program optimization concerned with the movement of code as far as possible
out of control cycles into new locations where the code may be executed less frequently. This paper describes
methods for approximating certain functions which ensure that the relocated code may be computed properly
and safely, inducing no errors of computation.

The effectiveness of code motion depends on the goodness of our approximation to these functions, as
well as on tradeoffs between (1) the primary goal of moving code out of control cycles and (2) the secondary
goal of providing that the values resulting from the execution of relocated code are utilized.

Two versions of code motion are formulated: the first emphasizes the primary goal, whereas the other
insures that the second goal is not compromised. Algorithms are presented for both formulations of code
motion; the algorithm for the first version of code motion is restricted to reducible flow graphs, but the other
runs on all flow graphs. Both of our algorithms run in almost linear time. Previous algorithms for similar
formulations of code motion have time cost lower bounded in the worst case by the length of the program text
times the number of nodes of the control flow graph.

Key words, code optimization, flow graph, data flow analysis, code movement

1. Introduction. We assume here the global flow model such as described in [2],
[3]. Let G (V, E, s) be the control flow graph of program P to which we wish to apply
code motion. Nodes in the set V correspond to linear blocks of code, edges in E specify
possible control flow immediately between these blocks, and all flow of control begins at
the start node s e V. We also distinguish the final node f V at which all flow of control
ends. Every execution of the program P corresponds to a path in G, though some
control paths may not correspond to possible executions of P. The essential parameters
of the model are n V[, rn]El, and the number of text expressions (each block in
V is assumed to contain at least one text expression, so n <_- 1). We assume bit vectors of
length may be stored in a constant number of words and we have the usual logical and
arithmetic operations on bit vectors, as well as an operation which shifts a bit vector to
the left up to the first nonzero element. (This operation is generally used for normaliza-
tion of floating point numbers; here it allows us to determine the position of the first
nonzero element of the bit vector in a constant number of steps.) An algorithm runs in
almost linear number of steps relative to this model if it requires O((m + l)a (m + l)) bit
vector and elementary operations, where a is the extremely slow-growing function of
[22] (a is related to a functional inverse of Ackermann’s function).

Consider a text expression located at node loc(t) in V. To effect code motion (see
also [5], [3], [6], [7] for descriptions of code motion optimizations) on the computation
associated with t, we relocate the computation to a node movept(t) by deleting from
the text of node loc(t) (t may be replaced by a simpler instruction, say a load instruction)
and installing an appropriate text expression t’ (not necessarily lexically identical to the
string t) at movept(t). On execution of the modified program P’ the result of the
computation at movept(t) might be stored in a special register or memory location to be
retrieved when the execution reaches node loc(t). See Fig. 1 for a simple example of
code motion.

* Received by the editors July 22, 1977, and in revised form May 9, 1979.
t Center for Research in Computing Technology, Harvard University, Cambridge, Massachusetts. Now

at Computer Science Department, University of Rochester, Rochester, New York 14627. This research was
supported in part by the Naval Electronics System Command Contract N00039-76-C-0168 and Rome Air
Development Center Contract F30602-76-C-0032.

A text expression may be considered an index into the text of a block of code in V.

375

376 JOHN H. REIF

Original Program P improved Program P’

)
FIG. 1. A simple example of code motion.

To insure that P’ is semantically equivalent to the original program P, we require
that if node w is the movept of t, then:

R1. All control paths from the start node s to loc(t) contain node w.
R2. The computation is possible at node w; i.e., all quantities required for the

computation must be properly defined at node w.
R3. The computation must be safe at w; thus if an error occurs in a particular

excecution of P’, an error must also have occurred in the corresponding
execution of the original program P.

Observe that the nodes satisfying R1 form a chain, called a dominator chain, from s
to loc(t). The birth point of text expression is the first node on this chain that satisfies
R2. We show in 17] that if the program P is interpreted within the arithmetic domain,
the problem of computing birth points exactly is recursively unsolvable, so we must be
content with computable approximations. Reif [17], and Reif and Tarjan [19] give
algorithms for computing such approximations. The algorithm of [19] requires an
almost linear number of bit vector operations for all control flow graphs to compute an
approximation BIRTHPT(t) to the true birth point. We assume BIRTHPT(t) is
contained on all paths from the start node s to loc(t).

The first node on the dominator chain from BIRTHPT(t) to loc(t) which satisfies
restriction R3 is called the safe point of t. Section 3 discusses an approximation to the
safe point, called SAFEPT, which may be computed in an almost linear number of bit
vector operations, given an efficient test for safety of code motion (we rely on a global
flow algorithm by Tarjan [24] for this). Unfortunately, known algorithms (including
Tarjan’s) for testing safety of code motion are efficient only on a restricted class of flow
graphs which are called reducible (see [9]).

Let us continue the formulation of the code motion problem. We add a further
restriction"

R4. The movept of must not be contained on a control cycle avoiding loc(t).
Let M1 consist of all nodes occurring on the dominator chain from SAFEPT(t) to

ooz MOa’OY 377

loc(t) that satisfy R4. We choose movept(t) from the nodes in M1 based on the following
goals:

G1. movept(t) is to be located on as few control cycles as possible.
G2. As few control paths as possible may contain movept(t) and reach the final

node j in V without passing through loc(t) (we assume j is reachable from all
nodes).

The above goals conflict, for to satisfy G1 we would choose movept(t) earlier in the
dominator ordering than we would if we were to also satisfy goal G2.

We consider two formulations of code motion. In the first formulation we stress.G 1
and in the other we stress G2. Let ME be the set of nodes in M1 which also satisfy the
restriction"

R5. All control paths from the movept of to the final node f must contain loc(t).
Note that ME is not empty since loc(t) ME. For 1, 2 let

MI those nodes in M which satisfy R4 and are contained in the minimum
number of control cycles

and let movept(t) be the batest node in M relative to the dominator ordering of G
More general formulations of code motion have been described in [3], [4], [5], [6],

[7], 16], including the movement of code to several nodes (rather than to a single node),
the movement of code to nodes occurring after (rather than before) loc(t) in the
dominator ordering of F, and code movement combined with common subexpression
elimination. Previous formulations of code motion [6], [7] similar to ours require lq(l)
(the "big omega" notation denotes a lower bound in the worst case; see [14]) operations
per node in the flow graph, or a total worst-case time cost of lq(l n).

The next section defines the relevant digraph terminology. Section 3 presents an
algorithm for computing SAFEPT, using Tarjan’s algorithm for testing safety of code
movement. Section 4 reduces the first version of code motion to the computation of
SAFEPT and a pair of functions C1 and C2 related to the cycle structure of flow graphs.
We show that the function C1 suffices to solve the second type of code motion; in this
formulation we avoid testing for safety of code motion. Sections 5 and 6 present
algorithms for computing the functions C1 and C2 over certain domains in an almost
linear number of bit vector operations. The algorithm for computing C2 requires a
special function DDP; in 7 an algorithm, restricted to reducible flow graphs, is
presented which computes DDP in O(mo(m)) bit vector steps. We conclude in 8 with
a graph transformation (similar to those described in ([6], [2]) which improves the
results obtained from the two versions of code motion and in certain cases simplifies our
algorithms for computing C1 and C2.

2. Graph theoretic notions. A digraph G (V, E) consists of a set V of elements
called nodes and a set E of ordered pairs of nodes called edges. The edge (u, v) departs
from u and enters v. We say u is an immediate predecessor of v and v is an immediate
successor of u. The outdegree of a node v is the number of immediate successors of v and
the indegree is the number of immediate predecessors of v.

A path from u to w in G is a sequence of nodes p (u vl, v2, , Vk W) where
(vi, vi+l) E for all i, 1 _-< < k.

The path p may be built by composing subpaths:

p (Vl,""", /)i)" (/)i,""",

The path p is a cycle if u w. A path is simple if it contains no cycles.
A node u is reachable from a node v if either u v or there is a path from v to u.

378 JOHN H. REIF

Aflow graph V, E, s) is a triple such that V, E) is a digraph and s is a distinguished
node in V, the root, such that s has no predecessors and every node in V is reachable
from s.

A digraph is acyclic if it contains no cycles. If u is reachable from v, u is a decendant
of v and v is a ancestor of u (these relations are proper if u v). Immediate successors
are called siblings. An acyclic flow graph T is a tree if every node v other than the root
has a unique immediate predecessor, the parent of v. T is oriented if the edges departing
from each node are oriented from left to right.

The preordering of oriented tree T is defined by the following algorithm (see also
Knuth 13]).

ALGORITHM A.
INPUT An oriented tree T with root s.
OUTPUT A numbering of the nodes of T.
begin

procedure PREORDER(w):
begin

if w is unnumbered then
begin

k := k+l;
Let w be numbered k;
for all siblings of w from left to right do
PREORDER(u);

end;
end;

Initially all nodes are unnumbered;
k:=0;
PREORDER(s);

end.

Given a preordering, we can (see [20]) test in constant time if any particular pair of
nodes is in the ancestor relation. A postordering is the reverse of a preordering.

Let G (V, E, s) be an arbitrary flow graph. A spanning tree of G is an oriented
tree ST rooted at s with node set V and edge list contained in E. The edges contained in
ST are called tree edges, edges in E from descendents to ancestors in ST are called cycle
edges, nontree edges in E from ancestors to their descendants in ST are forward edges,
and edges in E between nodes unrelated in ST are cross edges.

A special spanning tree of G, called a depth-first search spanning tree is constructed
by a linear time algorithm by Tarjan 20] and has the property that if the nodes
are preordered by the algorithm above, then for each cross edge (u, v), v is preordered
before u.

A node u dominates a node v if every path from the root to v includes u (u properly
dominates v if in addition, u v). It is easily shown that there is a unique tree DT, called
the dominator tree of G, such that u dominates v in G iff u is an ancestor of v in DT. The
parent of a node in the dominator tree is the immediate dominator of that node. Figure 4
illustrates the dominator tree of the flow graph of Fig. 3.

The cycle edges are partitioned by their relation in the dominator tree DT.
(a) A-cycle edges are cycle edges from a node to a proper dominator.
(b) B-cycle edges are cycle edges between nodes unrelated on the dominator tree.
G is reducible if each cycle p of G contains a unique node dominating all other

nodes in p. Programs written in a well-structured manner are often reducible. Various
characterizations of reducibility are given by Hecht and Ullman [9]; in particular they

CODE MOTION 379

show that:
THEOREM 2. G is reducible iff G has no B-cycle edges.
Lengauer and Tarjan give in [15] a test for reducibility requiring an almost linear

number of elementary steps.

3. Approximate safe points of code motion. Text expression is safe at node w if
no new errors of computation are induced when is relocated to node w. To
approximate the safe point of we require a good method for determining if is safe at
particular nodes.

A text expression is dependent on a program variable if that variable occurs within
the text of (this need not imply functional dependence). The text expression is
dangerous if there exists some assignment of values to the variables on which is
dependent which induce an error in the computation of t. For example, an expression
with a division operation is dangerous, since an error occurs if the divisor evaluates to
zero. Following Kennedy [12], we say that there is an exposed instance of text
expression on a simple (acyclic) control path p if there is some text expression t’
located in p, with the same text string as t, and such that no variable on which is
dependent is defined at any node in p occurring after the first node of p and before
loc(t’). For each node w let SAFE(w) consist of all text expressions which are not
dangerous plus all dangerous text expressions which have an exposed instance on every
simple control path from w to the final node f.

THEOREM 3.1. (due to Kennedy [12]). If w occurs on the dominator chain from
BIRTHPT(t) to loc(t) and SAFE(w) then is safe at node w.

Proof. Let P’ be the program derived from P by relocating the computation of to
node w. If there is an error resulting from the computation of on control path p in the
modified program, then since SAFE(w) the error would also have occurred
(although somewhat later) in the execution of the original program on control
path p. [3.

Recall the parameters n- IVI, m IEI, and the number of text expressions.
Tarjan [24] presents an algorithm for solving certain general path problems, and which
may be used to compute SAFE in a number of bit vector operations almost linear in
m / if the program flow graph is reducible. Also, Graham and Wegman [8] and Hecht
and Ullman [10] give algorithms for computing SAFE with time cost often linear in
+ m, but with worst case time cost O(l + m log(m)) and f(l + n2), respectively.

Let loc(t) be the node where text expression is located. To approximate the safe
point of t, we take SAFEPT(t) to be the first node w of the dominator chain from
BIRTHPT(t) to loc(t) such that SAFE(w).

Let IDOM map from nodes in V-{s} to their immediate dominators in G. For
each w N, let EARLY(w) consist of those text expressions with BIRTHPT(t)= w
plus, if w s, all EARLY(IDOM(w)) SAFE(IDOM(w)). Let LATE(w) be the set
of all text expressions tSAFE(w) such that w dominates loc(t). Intuitively, if
EARLY(w) then is defined at w but may not be safe at w. On the other hand, if
LATE(w) then is safe at w but may not be defined at w.
LEMMA 3.1. SAFEPT(t) w iff EARLY(w) f’l LATE(w).
Proofi Clearly, for each node w on the dominator chain from BIRTHPT(t) to loc(t),

e LATE(w) iff SAFEPT(t) dominates w. Hence, for each node w on the dominator
chain following BIRTHPT(t) to SAFEPT(t), if eEARLY(IDOM(w)) then since
t SAFE(IDOM(w)), e EARLY(w). Also for any w on the dominator chain following
SAFEPT(t) to loc(t), SAFE(IDOM(w)), so t EARLY(w). Thus w SAFEPT(t)

iff w dominates SAFEPT(t) and SAFEPT(t) dominates w
iff EARLY(w) (’1 LATE(w). [-I

380 JOHN H. REIF

Lemma 3.1 leads to a simple algorithm for computing SAFEPT. EARLY is
computed by a preorder pass through the dominator tree DT and LATE is computed by
a postorder (i.e., reverse of the preorder of 2) pass through DT.

ALGORITHM B.
INPUT Control flow graph G (N, E, s), the set of text expressions TEXT,
BIRTHPT, and SAFE.

OUTPUT SAFEPT.
begin

declare LATE, EARLY as arrays of length n [V[;
declare SAFEPT as an array length l;
Compute the dominator tree DT of G;
Number nodes in V by a preordering of DT;
forw:= lton do

L1. EARLY(w) := LATE(w):= the empty set { };
for all text expressions TEXT do

L2. add to EARLY(BIRTHPT(t)) and LATE(loc(t));
for w := 2 to n do

L3. EARLY(w):= EARLY(w)U(EARLY(IDOM(w))-SAFE(IDOM(w)));
for w:=nby-lto ldo

begin
for all siblings u of w in DT do
L4. LATE(w LATE(w LI LATE(u);
comment Apply Lemma 3.1;
for all EARLY(w) LATE(w) do
L5. SAFEPT(t):= w;

end;
end.
We assume that a bit vector of length may be stored in a constant number of words

and that in a constant number of bit vector operations we may determine the first
nonzero element of a bit vector (this is not an unreasonable assumption since most
machines have an instruction for left-justifying a word to the first nonzero bit).

THEOREM 3.2. AlgorithmB is correct and requires O(max{ma(m), l}) elementary
and bit vector operations.

Proo] The correctness of Algorithm B follows immediately from Lemma 3.1. The
dominator tree DT may be constructed by an algorithm by Lengauer and Tarjan 1 5 in
time almost linear in rn IEI, (if G is reducible, an algorithm due to Hecht and Ullman
10] computes DT in a linear number of bit vector operations). Steps L1, L2, L3, L4, L5
each require a constant number of elementary and bit vector operations and are
executed O(n), 0(l), O(n), O(n), 0(l) times, respectively. Since G is a flow graph,
rn => n 1. Hence, the total time cost of Algorithm B is O(max{rna (m), l}) bit vector
operations. 71

4. Reduction of code motion to cycle problems. For an arbitrary flow graph
G (V, E, s) and w, x s V such that w dominates x in G, let Cla(w, x) be the latest
node, on the dominator chain in G from w to x, which is contained on no w-avoiding
cycles. Similarly, let C2(w, x) be the first node, on this dominator chain, which is
contained on no x-avoiding cycles. See Fig. 2.

LEMMA 4.1. For nodes x, y Vsuch that y dominates x, letMbe the list of nodes on
the dominator chain from y to x and contained on no x-avoiding cycles, let w be the first
element of M, and let M’ those nodes in M contained in a minimal number of cycles.

COD. MO’rON 38 1

C2: C1, C2. (

FIG. 2. Examples of some dominator chains from w to x (with cycle edges dashed).

Then Cl(w, x) is the latest node in M’ relative to the dominator ordering of G.
Proof. Observe that C1(w, x) M; for otherwise C1(w, x) is contained on a

x-avoiding cycle which also contains w, a contradiction with the assumption that w M
is contained on no x-avoiding cycles.

Suppose p is a cycle containing Cl(w,x) and avoiding some y
M {C1(w, x)}. If y properly dominates C1(w, x) then since w dominates y, p is
w-avoiding, a contradiction with the assumption that Cl(w, x) is contained on no
w-avoiding cycles. Otherwise, if y is properly dbminated by Cl(w, x), then since y
dominates w, p is x-avoiding, contradicting the assumption that C1(w, x) M.

Suppose Cl(w, x) properly dominates some z M’. If z is contained on no
w-avoiding cycles, then z dominates Cl(w, x) by definition of C1, a contradiction. If z
is contained on a w-avoiding cycle, then so is Cl(w, x), a contradiction. 71

Let G V, E, s) be the control flow graph. Our first variation of code movement,
moveptl, may be described in terms of C1, C2, and SAFEPT.

THEOREM 4.1. For each text expression t,

movept(t) CI(C2(SAFEPT(t), loc(t)), loc(t)).

Proof. Clearly, any node on the dominator chain from SAFEPT(t) to loc(t) satisfies
RI-R3. Recall that M1 consists of those nodes on the dominator chain from SAFEPT(t)
to loc(t) which satisfy R4; i.e., they are contained on no control cycles avoiding loc(t).
By definition of C2, w C2a(SAFEPT(t), loc(t)) is the first node in M1 relative to the
domination ordering in G. Hence by Lemma 4.1, movept(t) Cla(w, loc(t)) is the last
node of M relative to the domination ordering.

From the control flow graph G (V, E, s) we derive the reverse control flow graph
G (V, En, f) which is a digraph rooted at the final node f V and with edge set ER
derived from E by reversing all edges. Gn is assumed to be a flow graph; so every node
is reachable in Gn from f.

LEMMA 4.2. Ifx dominates y in G, y dominates z in G, and z dominates x in GR, then
y dominates x in GR and z dominates y in GR.

Proof (by contradiction). Suppose there is a y-avoiding path p in G from f to x.
Since z dominates x in G, pl must contain z. The reverse of p, p, is a path in G. Since

382 JOHN H. REIF

x dominates y in G, there must be a y-avoiding path p2 in G from s to x. Composing p2

and p, we have a path in G from s to f which contains z but avoids y. But this
contradicts our assumption that y dominates z in G. Hence, y dominates x in
Similarly, we may easily show that z dominates y in GR. l-1

THEOREM 4.2. If W dominates x in G and x dominates w in G, then C2(w, x)
CI(x, w).

Proof. It is sufficient to observe by Lemma 4.2 that the dominator chain from w to x
in G is the reverse of the dominator chain from x to w in GR. The symmetries in the
definition of C2 and C1 then give the result.

Let HPT(t) be the first node on the dominator chain of G from BIRTHPT(t) to
loc(t) which is dominated by loc(t) in the reverse flow graph GR. It is useful to observe
that is safe at HPT(t) since there is an exposed instance of on every path from HPT(t)
to f. For each w V let H(w) be the first node, on the dominator chain in G from the
start node s to w, which is dominated in GR by w. H may be computed by a swift scan of
the nodes in V, in preorder of the dominator tree of G by the following rule:
H(w) H(x) if w dominates x in GR, where x is the immediate dominator of w in G,
and otherwise H(w) w.

HPT is given from H by the following easy-to-prove lemma.
LEMMA 4.3. HPT(t)= H(loc(t)) if BIRTHPT(t) dominates H(loc(t)) in G and

otherwise HPT(t) BIRTHPT(t).
The next theorem expresses movept2 in terms of C1 and HPT.
THEOREM 4.3. For all text expressions t,

movept2(t) CI(CIR (loc(t), HPT(t)), loc(t)).

Proof. Recall that M2 is the set of nodes v MI which satisfy restriction R5: That all
control paths from v to f contain loc(t).

We claim that w C2(HPT(t), loc(t)) is the first node in M2 relative to the
dominator ordering of G. Since is safe at HPT(t), SAFEPT(t) dominates HPT(t), and
so w is clearly an element of M2. If there exists some w’ M2 which properly dominates
w, then since w’ satisfies restriction R5, loc(t) is contained on all paths from w’ to f,
which implies that HPT(t) dominates w’, a contradiction.
By Theorem 4.2, w=C2(HPT(t), loc(t))=Cl,(loc(t), HPT(t)). Hence,

movept2(t)=Cl(w, loc(t)) is the last node in M relative to the domination
ordering.

The next two sections describe how to compute CI and C2 efficiently.

5. The computation of CI. Let G (V, E, s) be an arbitrary flow graph with the
nodes of V numbered from 1 to n VI by a preordering of some depth-first search
spanning tree ST of G. For certain w, x V such that w dominates x in G, we wish to
compute Cl(w, x); recall from 4 that this is the last node on the dominator chain
from w to x which is contained on no w-avoiding cycles.

For w n, n 1,. , 2 let I(w) be the set of !! x V contained on a cycle of G
consisting only of descendants of w in ST, and such that x is not contained in any
I(u)-{u} for u > w. The sets I(n), I(n 1), , 1(2) are related to the intervals of G
(see [1]) and may be computed in almost linear time by an algorithm of [21].

Let IDOM(x) give the immediate dominator of node x V-{s}.
LEMMA 5.1 (due to Tarjan [21]). For each w V-{s} and x el(w), IDOM(w)

properly dominates x.

Proof (by contradiction). Suppose the lemma does not hold; so there exists a
IDOM(w)-avoiding path p from the root s to x. But by definition of I(w), there exists a

CODE MOTION 383

cycle q, avoiding all proper ancestors of w in ST and containing both w and x. Since
IDOM(w) is a proper ancestor of w in ST, q avoids IDOM(w). Hence, we can construct
from p and q a IDOM(w)-avoiding path from s to w, which is impossible. El

Our algorithm for computing C1 will construct, for each w V, a partition PV(w)
of the node set V. Initially, for w n, PV(w) consists of all singleton sets named for the
nodes which they contain. For w n, n 1,. , 2 let J(w) consist of I(w) plus all nodes
in V contained on a w-avoiding cycle and immediately dominated by some element of
I(w). Then PV(w 1) is derived from PV(w) by collapsing into w all sets with at least
one element contained in J(w) {w }.

For w, x V such that w dominates x, let g(w, x) be the name of the set of PV(w) in
which x is contained.

LEMMA 5.2. g(w, X) is an ancestor o]x in ST and if w > 1, IDOM(g(w, x)) properly
dominates x.

Prool By induction on w.
Basis step. For w n, g(w, x) x and so IDOM(g(w, x))= IDOM(x) properly

dominates x.
Inductive step. Suppose, for some w > 1, the lemma holds for all w ’-> w. Consider

some x V such that w dominates x.
Case 1. If g(w 1, x) g(w, x) then the lemma holds by the induction hypothesis.
Case 2. If g(w 1, x)= w then in PV(w), g(w, x) contains some y J(w)-{w}.

First we show that w is an ancestor of y in ST and IDOM(w) properly dominates y. If
y I(w)-{w}, then w is an ancestor of y in ST by definition of I(w), and IDOM(w)
dominates y by Lemma 5.1. Otherwise, suppose y(J(w)-I(w))-{w} so y is
immediately dominated by some y’ I(w). Hence y’ is a proper ancestor of y in ST and
by definition of I(w), w is an ancestor of y’, so w is an ancestor of y’ in ST. By Lemma
5.1, IDOM(w) properly dominates y’, and hence IDOM(w) also properly dominates y.

Since the set g(w, x) of PV(w) contains 3, g(w, x)= g(w, y). By the induction
hypothesis, g(w, x) g(w, y) is an ancestor of both x and y in ST. We have shown that w
is an ancestor of y in ST. Since w < g(w, x), w is a proper ancestor of g(w, x) in ST, so w
is also an ancestor of x in ST.

We claim that IDOM(w) properly dominates g(w, x). If not, there would exist an
IDOM(w)-avoiding path p from the root s 1 to g(w, x). IDOM(w) is an ancestor of w
in ST and g(w, x) is not an ancestor of w, so g(w, x) is not an ancestor of IDOM(w) in
ST. Also, since g(w, x) is an ancestor of y in ST, there is a IDOM(w)-avoiding path p’ of
tree edges from g(w, x) to y. Composing p and p’, we have a IDOM(w)-avoiding path
from s to g(w, x), which is impossible since we have previously shown that IDOM(w)
properly dominates y. Hence, IDOM(w) properly dominates g(w, x). By the induction
hypothesis, IDOM(g(w,x)) properly dominates x, and so IDOM(w) properly
dominates x. l-q

THEOREM 5.1. Considerany x, w Vsuch thatw dominates x. Ifx is contained in no
w-avoiding cycles then g(w, x) x and otherwise g(w, x) is the highest ancestor o]x in ST
such that IDOM(g(w, x)) properly dominates x and all nodes, on the dominator chain
following IDOM(g(w, x)) to x, are contained in w-avoiding cycles.

Proof. (sketch). If x is contained in no w-avoiding cycles in G then x cannot be
contained in l(w’) for w < w’=< x and so in this case g(w, x) x.

Otherwise, consider the case where x is contained in some w-avoiding cycle.
Suppose some node w’ on the dominator chain following IDOM(g(w, x)) to IDOM(x)
is not contained in a w-avoiding cycle. Then the set g(w’, x) of PV(w’) is not merged
into w’ in PV(w’- 1), so g(w’, x) g(w’- 1, x) w’. Furthermore we can show that for
y w’, w’- l, g(w, x)+ l; g(w’, x)J(y) so g(w’, x)= g(y, x) y. Hence

384 JOHN H. REIF

g(w’, x) g(g(w, x), x) g(w, x). Since g(w, x) is the name of a set of PV(w), g(w, x) is
not merged into any other set of PV(g(w,x)),PV(g(w,x)-l),...,PV(w), so
g(g(w, x), x) g(w, x), and we have a contradiction.

Finally, suppose IDOM(g(w, x)) is contained in some w-avoiding cycle p. Each
such path p must contain a unique node wo which dominates IDOM(g(w, x)) and no
node in p properly dominates wo. Choose some such p with wo as late as possible in the
dominator ordering; i.e., as close as possible to IDOM(g(w, x)). Then we can show that
g(w, x) J(w)-{wo} and so g(w, x) is merged into wo in PV(w 1), which is impossi-
ble (since g(w, x) is the name of a set in PV(w)). [3

COROLLARY 5.1. Let w, x Vsuch that w dominates x in G. 1]:x is contained in no
w-avoiding cycles then Cl(w, x) x. Otherwise, Cl(w, x) IDOM(g(w, x)).

Proof. If x is contained in no w-avoiding cycles then, by definition, Cl(w, x) x.
Otherwise, suppose x is contained in some w-avoiding cycle. By Theorem 5.1, all nodes
in the dominator chain following IDOM(g(w, x)) to x are contained in w-avoiding
cycles, so Cl(w, x) properly dominates g(w, x). Hence, IDOM(g(w, x)) is the last
node in the dominator chain from w to x which is contained in a w-avoiding cycle and
we conclude that Cl(w, x)= IDOM(g(w, x)).

We require the disjoint set operations’
(1) FIND(x) gives the name of the set currently containing node x.
(2) UNION(x, y): merge the set named x into the set named y.
The algorithm for computing CI is given below.
ALGORITHM C.
INPUT Flow graph G (V, E, s) and ordered pairs (w, x),.. , (Wl, Xl) such that
each w dominates x.
OUTPUT Cl(w, xa), , Clo(Wl, Xl).
begin

declare SET, BUCKET, FLAG to b arrays length n IV[;
Compute the depth-first spanning tree ST of G;
Number the nodes in V by preorder in ST;
Compute the dominator tree DT;
or x :=1to n do

begin
SET(x) := {x};
BUCKET(x) := the empty set { };
FLAG(x) := FALSE;

end;
for := 1 to do add Xi to BUCKET(w/);
for w := n by-1 to 1 do

begin
for all x BUCKET(w) do

begin
if FLAG(x) then
C1a (w, x) := the parent of FIND(x) in DT;

else Cl(w, x):= x;
if w > 1 then

begin
Compute I(w) by the algorithm of [21];
if I(w) is not empty then

begin
for all y s I(w) do

CODE MOrO 385

end;
end;

end;
end;

begin
z := FIND(y);

if NOT FLAG(z) then
begin
D: for all x IDOM-l(z) do

if FLAG(x) then
UNION(FIND(x), w);

FLAG(z) := TRUE;
end;

if z w do UNION(z, w);
end;

THEOREM 5.2. Algorithm C correctly computes C1G(W1, Xl), C1G(Wl, Xl) in
time almost linear in m + l.

Proof (sketch). We may show by an inductive argument that on entering the main
loop on the (n + 1- w)th iteration:

(1) FIND(x) gives g(w, x);
(2) FLAG(x) iff x is contained in a w-avoiding cycle, and then apply Corollary 5.1

to show the correctness of Algorithm C.
ST, DT, and I(n), I(n 1),. ., I(2) may be computed by the algorithms of [20],

[15], [21] in time almost linear in m-IEI. The other steps of Algorithm C clearly
require a linear number of elementary and disjoint set operations. These set operations
may be implemented in almost linear time by an algorithm analyzed by Tarjan [22]. El

6. The computation of C2. The first formulation of code motion was shown to
reduce to a number of subproblems including the calculation of the function C2; recall
that for flow graph G V, E, s) and each w, x V such that w dominates x, C26(w, x)
is the first node on the dominator chain from w to x which is not contained on any
x-avoiding cycles. For such w, x let a path from x to w, which avoids all proper
dominators of x other than w, and which is either a simple (acyclic) path or a simple
cycle (a cycle containing no other cycles as proper subsequences), be called a dominator
disjoint (DD) path. Let DT be the dominator tree of G.

Our algorithm for computing C2 will require a function DDP such that for each
x V, DDP(x)= x if x s or there is no DD path from IDOM(x), and otherwise
DDP(x) is the first node y on the dominator chain from the root s to x such that there
exists an x-avoiding DD path from IDOM(x) to y.

LEMMA 6.1. If DDP(x) properly dominates x then all nodes on the dominator
ordering from DDP(x) to IDOM(x) are contained on an x-avoiding cycle. Otherwise,
DDP(x) x and IDOM(x) is contained on no x-avoiding cycles.

Proof. If DDP(x) properly dominates x, then let p be a DD path from IDOM(x) to
DDP(x). ,Since DDP(x) dominates IDOM(x), there is an x-avoiding path p’ from
DDP(x) to IDOM(x). Hence p p’ is the required x-avoiding cycle.

On the other hand, suppose DDP(x)= x s and IDOM(x) is contained on an
x-avoiding cycle q. Let q’ be the subsequence of q from IDOM(x) to some node z
immediately dominating x, and containing no other proper dominators on x. Then q’
is a DD path, so DDP(x) properly dominates z, implying that DDP(x)x,
contradiction.

386 JOHN H. REIF

LEMMA 6.2. Let z Vhave at least two siblings and be contained on a cycle avoiding
some sibling ofz in DT. LetXl(X2) be a sibling ofz with DDP value earliest (latest) in the
dominator ordering. Then]:or each y which is properly dominated by z, DDP(xl) is a

dominator o]’ DDP(y); furthermore, if y x2 and y is a sibling of z then DDP(y)=
DDP(xl).

Pro@ Suppose z is a proper dominator of y, but DDP(y) is a proper dominator of
DDP(xl). Then DDP(y) y so there is a DD path p from IDOM(y) to DDP(y). Let x’
be a sibling of z which is not a dominator of y. Let p’ be a simple x’- avoiding path from z
to y. Composing p’ and p, we have an x’-avoiding DD path from z to DDP(y). But this
implies that DDP(x’) is a proper dominator of DDP(xl), contradicting the assumption
that Xl has DDP value earliest in the dominator ordering. Hence, DDP(y) is dominated
by DDP(xa).

Suppose y x2 and y is a sibling of z. Since z is contained on a cycle avoiding some
sibling of z, there must be a DD path/ from z to DDP(xa). If/ avoids all siblings of z in
DT, then we have our result; DDP(y) DDP(x1). Otherwise, let S be the last node in/5
which is a sibling of z. Let/a be the subsequence of/7 from S to z. For any x’ V- {S},
let p2 be a x ’- avoiding simple path from z to S. Composing/1 and p2, we have a
x ’- avoiding DD path from z to DDP(xl). Hence, DDP(x’)= DDP(xl). If S x2 then
y S so we have DDP(y)= DDP(xa). On the other hand, if S x2 then DDP(x2)=
DDP(xl). Since DDP(y) dominates DDP(x2), we again have DDP(y)= DDP(xl). [3

Let DT be the dominator tree of G with the edges oriented so that for each node
z V contained on a cycle avoiding some node immediately dominated by z, the
left-most sibling of z in DT has DP value at least as late in the dominator ordering as the
other siblings of z (by Lemma 6.2, the remaining siblings have the same DDP), and
number V by a preordering of DT.

For each x V-{r}, let K(x) consist of (1) the set of nodes contained on the
dominator chain from DDP(x) to IDOM(2) plus (2) the immediate dominator of
DDP(x) if it is contained on a DDP(x)-avoiding cycle.

Let PV’(1), PV’(2),..., PV’(n) be a sequence of partitions of V such that:
(a) PV’(1) partitions V into unit sets, each set named for the node which it

contains.
(b) For x 2,. ., n let PV’(x) PV’(x 1) if DDP(x) x. Otherwise, let PV’(x)

be derived from PV’(x-1) by collapsing each set containing an element of K(x)-
{IDOM(x)} into the set containing IDOM(x) in PV’(x 1) and then renaming this set to
IDOM(x).

For w, x e V such that w dominates x, let h (w, x) be the name of the set containing
w in PV’(x).

THEOREM 6.1. I1 W is contained in no x-avoiding cycles, then h(w, x)= w and
otherwise h w, x) is the last node on the dominator chain]rom w to x such that all nodes
occurring up to and including h(w, x) on this chain are contained on x-avoiding cycles.

Pro@ Let (w =yl,. , Yk X) be the dominator chain from w to x.
Suppose w is not contained on an x-avoiding cycle. Consider some node yi on this

dominator chain following w. If DDP(yi) dominates w then by Lemma 6.1, w is
contained in an x-avoiding cycle, a contradiction. Thus w K(yi)-{yi-1} and w is not

collapsed into Yi-1, SO W h(w, ya) h(w, Yk)-- h(w, x).
Otherwise, suppose w is contained on some x-avoiding cycle. Assume there is a

node yi, on the dominator chain following w to h (w, x), which is not contained on an
x-avoiding cycle. By Lemma 6.1, DDP(y/) yi. Then h(w, yi) properly dominates y, so
there is some y-I h(w, yi) on the dominator chain from yi to w such that DDP(y)
dominates h (w, yi). By Lemma 6.1, yi is contained on an x-avoiding cycle, a contradic-
tion.

CODE MOTION 387

Finally, assume h(w, x) w and let yi be the first node following h(w, x) on
the dominator chain from w to x. Suppose yi is contained on an x-avoiding cycle.
Then by Lemma 6.1, DDP(y) properly dominates y. Since h(w,x) w, h(w,x) is
contained on an x-avoiding cycle, so h(w,x)K(yi+a)-{y} and hence h(w,x)
is merged into y, contradicting our assumption that h(w, x) is the name of a set in
eV’(x).

COROLLARY 6.1. For w, x V such that w dominates x, if w is contained on no
x-avoiding cycles then C2(w, x)= w and otherwise, C2(w, x) is the unique node
dominating x and immediately dominated by h(w, x).

Proof. The proof follows directly from Theorem 6.1.
Our algorithm for computing C2 will require the usual disjoint set operations

UNION and FIND plus the operation RENAME(x, y), which renames the set x to y.
ALGORITHM D.
INPUT Flow graph G (V, E, s), DDP, and ordered pairs (Wl, Xl),’’’, (Wl, xt)
such that each wi dominates xg.
OUTPUT C2G(Wl, xa), C2G(wI, Xl).
begin

declare SET, FLAG, BUCKET to be arrays length n
Compute the dominator tree DT of G;
[or all z V such that z has a sibling x in DT with
DDP(x) dominating z do

begin
let x’ be the sibling of z which has DDP(x’)
latest in the dominator ordering;
install x’ as the left-most sibling of z;

end;

Number the nodes of V by the preordering of the resulting oriented tree;
forx:= lton do

begin
SET(x) := {x};
FLAG(x) := FALSE;
BUCKET(x) := the empty set { };

end;
for := 1 to do add w to BUCKET(x);
forx:= lton do

begin
if x > 1 and DDP(x) x then

begin
z := the parent of x in DT;
FLAG(z) := TRUE;
NEXT(z) := x;
RENAME(FIND(z), z);
y := the parent of DDP(x) in DT;

D: if FLAG(y) and y z do
UNION(y, z);

u := FIND(DDP(x));
till u z do

begin
FLAG(u) := TRUE;
UNION(u, z);

388 JOHN H. REIF

u := FIND(NEXT(u));
end;

end;
comment Apply Corollary 6.1;
for all w BUCKET(x) do

if FLAG(w) then C2G(w, x) := NEXT(FIND(w))
else C2G(w, x):= w;

end;
end;
THEOREM 6.2. Algorithm D correctly computes C2(wl, xl)," C2G(WI, Xl) in

time almost linear in m + l, where m
Proof (sketch). It is possible to establish that for all w e V after the xth iteration of

the main loop’
(1) NEXT(IDOM(w))= w for w s and w properly dominates x.
(2) The sets are just as in PV’(x), with h(w, x) the name of the set containing w.
(3) FLAG(w)= TRUE iff w is not contained in a x-avoiding cycle.

Then the correctness follows from Corollary 6.1.
We compute DT by the algorithm of [15] in time almost linear in m + I. The other

steps of Algorithm D may easily be shown to require a linear number of elementary and
disjoint set operations. Hence, by the results of [22], the total cost in elementary
operations is almost linear in m + l.

7. Computing DDP on reducible flow graphs. This section is concerned with the
function DDP required by Algorithm D to compute C2. Unfortunately, we know of no
algorithm which computes DDP efficiently for G nonreducible. We assume henceforth
that G is reducible, so by the results of Hecht and Ullman [9], all cycle edges of G are
A-cycle edges (they lead from nodes to ttteir proper dominators). Let ST’ be the
spanning tree derived from the depth first search spanning tree ST of G by reversing the
edge list. The nodes of G are numbered by a preordering of ST’.

LEMMA 7.1. IfX > y and both x and y are unrelated in DT, then any path pfrom x to y
contains a dominator of x.

Proof. It is sufficient to assume that p is simple (acyclic). Let (u, v) be the first edge
through which p passes such that v_<-y < u. Observe that the only edges of G in
decreasing preorder are A-cycle edges, so (u, v) is an A-cycle edge and v dominates u.
We claim also that v dominates x. Suppose not, so there is a v-avoiding path p’ from the
root s to x. Composing p’ with the subsequence of p from x to u, we have a v-avoiding
path from s to u, which contradicts the fact that v dominates u. Hence, v dominates
x.

We now show that in the reducible flow graph G, DD paths have a very special
structure. Let p (x yo, ’, yk w) be a DD path from x to w passing through edges
e,..., e, where e (y-l, y,).

TmOREM 7.1. ek is an A-cycle edge and el,..., e_ are not.

Proof. Since p cannot contain any dominators of x other than w, y-i and x are
unrelated in DT. Assume e (y_, w) is not an A-cycle. Hence, x > w > yk_ and
applying Lemma 7.1, (x y0,"’, yk-) must contain a node z which is a proper
dominator of x, contradicting our assumption that p is DD.

Consider any e,. (yi-1, yi) for 1 <i < k. Since p is DD, yi does not dominate x.
Thus, there is a y-avoiding path pl from the root s to x. Also, let P2 be the subsequence
of p from x to yi-x. Composing pl and p2, we have a yi-avoiding path from the root s to
yi_a, which implies that yi-a is not dominated by y. Hence, none of el,’’’, et,-1 are
A-cycles.

CODE MOTO 389

THEOREM 7.2. Letp be a DDpath from x to w, where w properly dominates x and let
z be an immediate predecessor of x in G such that z, x are unrelated in DT. Then
p’= (z, x) p is a DD path avoiding all siblings of z in DT.

Proof. To show that p’ is DD we need only demonstrate that w properly dominates
z and p avoids z. Let p (x y0, , Yk w). Since z, x are unrelated in DT and w
properly dominates x, w is distinct from z.

We claim that w properly dominates z in G. Suppose not, then there must be a
w- avoiding path pl from the root s to z. But Pl (z, x) is a w- avoiding path from the root
s to x, contradicting our assumption that w properly dominates x. Hence, w properly
dominates z.

Suppose p contains z, so z y for some 1 < < k. Then (z, x yl, , y z) is a
cycle in G and must contain an A-cycle edge. Since z, x are unrelated in DT, this implies
that for some j, 1 =<j -< i, (y._, Yi) is an A-cycle edge, contradicting Theorem 7.1. We
conclude that p avoids z.

Hence, p’ (z, x) p is DD.
Now suppose p conttins a node y dominated by z. Since x, z are unrelated in DT,

there must be a z-avoiding path p2 from the root s to x. Composing p2 and the portion of
p from x to y, we have a z-avoiding path from s to y, which is impossible. Hence,
p’= (z, x). p avoids all siblings of z in DT.

Let p be a DD path from x to w. Let the first edge (u, v) through which p passes,
such that u is dominated by x but v is not properly dominated by x, be called the first
jump edge of p.

THEOREM 7.3. Let x’ be a proper dominator of x. If either (1) v w dominates x’ or
(2) v w and IDOM(v) properly dominates x’, then there exists a DD path from x’ to w
with first lump edge e (u, v).

Proof. Let Pl be a simple path from x’ to x, Suppose pl contains some node z not
dominated by x’. Then the subsequence of pl from z to x must contain x’. But this
implies that x’ occurs twice in pl, which is impossible. Hence, all nodes in pl are
dominated by x’ and p2 pl"p is a DD path. Since x’ properly dominates x which
dominates u, x’ also dominates u. If either (1) or (2) hold, then v does not properly
dominate x’. Thus, the first jump edge of P2 is e (u, v).

ALGORITHM E.
INPUT A reducible flow graph G (V, E, s).
OUTPUT DDP.
begin

declare SET, FLAG, DDP, SIBLINGS to be arrays length n IV[;
procedure EXPLORE(x, w, e):

begin
comment there is a DD path from x to w
and e is the first jump edge of p;

Let e (u, v);
or each y SIBLINGS(x) such that y, u are

unrelated in DT do
begin

delete y from SIBLINGS (x);
DDP(y) := w;

end;
if x s and not FLAG(x) then

begin
FLAG(x) := TRUE;
x’ := IDOM(x);

390 JOHN H. REIF

D: if FLAG(x’) then
UNION(x, FIND(x’));

if NOT x w then
begin
comment Apply Theorem 7.3;
if (v w dominates x’) OR (v w and
IDOM(v) properly dominates x’) then

L1. EXPLORE(x’, w, e);
comment Apply Theorem 7.2;
for all immediate predecessors z
of x in G such that x, z are unrelated
in DT do

L2. EXPLORE(z, w, (z, x));
end;

end;
end;

Compute DT, the dominator tree of G;
Compute ST, a depth-first spanning tree of G;
Let ST’ be derived from ST by reversing the edge list;
Number the nodes of V by preorder of ST’;
for allx:=ltondo

begin
SET(x) := {x};
FLAG(x) := FALSE;
DDP(x) := x;
SIBLINGS (x) := the siblings of x in DT;

end;
for w := 1 to n do

for all A-cycle edges (x, w) entering w do
L3. EXPLORE(x, w, (x, w));

end;
LEMMA 7.2. On each execution of EXPLORE(x, w, e), w dominates x and there is a

DD path from x to w with first]ump edge e.

Proof (by structural induction). On each initial call to EXPLORE(x, w, e) at label
L3, e is a A-cycle edge (x, w) which is clearly a DD path. Suppose on any other call to
EXPLORE(x, w, e) there is a DD path from x to w with first jump edge e. By Theorems
7.3 and 7.2, the recursive calls to EXPLORE at L1 and L2, respectively, also satisfy this
lemma.

It is also easy to prove by structural induction that the following holds.
LEMMA 7.3. On each execution of EXPLORE(x, w, e), let y be a dominator of x

contained in the set named FIND(y). Ify has notpreviously been visited then FLAG(y)
FALSE and FIND(y)=y; otherwise, FLAG(y)= TRUE and FIND(y) is the earliest
node y’ on the domination chain from the root s to y such that all nodesfrom y’ to y on this
chain have been previously visited.

Let p be a DD path from x to w with first jump edge e (u, v). For k > 1, the kth
jump edge of p is recursively defined to be the (k 1)th jump edge (if this is defined and
is not the last edge through which p passes) of the subsequence of p from v to w.

LEMMA 7.4. For each w, y V such that w properly dominates y, if there exists a
y-avoiding DD path p from IDOM(y) to w, then EXPLORE(IDOM(y), w, e) is
eventually called, where e (u, v) is the first jump edge of some such p.

COIF MOa’OY 391

Proof (by induction on w). Suppose the lemma holds for all w’ < w. Since e (u, v)
is the first jump edge of p, IDOM(y) dominates u. If v w, then (u, v) is an A-cycle
edge so EXPLORE(u, w, (u, w)) is executed at label L3, and by a sequence of
recursive calls to EXPLORE at label L1, we finally have a call to
EXPLORE(IDOM(y), w, (u, v)). Otherwise, suppose the lemma holds for all p leading
to w such that p has less than k jump edges. If p has k jump edges, then by the second
induction hypothesis, EXPLORE(u, w, (u, v)) is called at label L2. Again, by a
sequence of recursive calls to EXPLORE at label L1, we eventually have a call to
EXPLORE(IDOM(y), w, (u, v)). [-I

THFOIZM 7.4. Algorithm E correctly computesDDPfor G reducible, in time almost
linear in m I/1.

Proof. The correctness of Algorithm E follows from Lemmas 7.2, 7.3, and 7.4. ST
and DT may be computed (if they have not been computed previously) by the methods
of [20], [15 in almost linear time. For each x e V, the total cost of all visits to x by
EXPLORE is IIDOM-I[x]I +]indegree(x)l in elementary and disjoint set operations.
Hence, if we use a good implementation of disjoint set operations (analyzed by Tarjan
[22]), the total cost of Algorithm E is almost linear in m. [3

8. Niche flow graphs. Here we introduce a special class of flow graphs called niche
flow graphs which in certain cases simplify the algorithms given in 5 and 6 for
computing C1 and C2. As we shall demonstrate, the transformation of an arbitrary flow
graph to a niche flow graph can be done in almost linear time; furthermore, both
versions of code motion are improved by this transformation. Earnest [6] and Aho and
Ullman [2] describe a similar process, where special nodes are added to the flow graph
just above intervals.

Let G (V, E, s) be an arbitrary flow graph. For any w V-{s} with immediate
dominator IDOM(w) in G, if IDOM(w) is contained on no w-avoiding cycles then
IDOM(w) is called the niche node ofw. Intuitively, the niches nodes lie just above cycles
(relative to the dominator ordering of G) and hence are good nodes to move code into.
G is a niche]tow graph if each node w V-{s}, with an entering A-cycle edge but no
entering B-cycle edge, has a niche node.

If G is not a niche flow graph, then a niche flow graph G’ may be derived from G by
testing for each w V-{s} whether w has an entering A-cycle edge and no entering
B-cycle edges. If so, then add a distinct, new node which is to be the niche of w in G’,
an edge from ff to w, and replace each noncycle edge (x, w) entering w with a new edge
(x,). The resulting flow graph G’ has no more than n IV[additional nodes and
edges. Since no B-cycle edges are added to G’, by Theorem 2, G’ is reducible if G was.

LF.MMA 8.1. IfG is reducible and y V-{s} is contained in an IDOM(y)-avoiding
cycle q, then y has an entering A-cycle edge.

Proof. Let x be the immediate predecessor of y in q. Since G is reducible, q contains
a unique node z dominating all other nodes in q. But no proper dominator of y is
contained in q, so z y. Hence, y dominates x and (x, y) is an A-cycle edge. [3

Let the nodes of G be numbered as in 5 by a preordering of a depth-first search
spanning tree of G.

THEORZM 8.1. IfG is a reducible niche flow graph, then for w n, n 1, , 2 the
partition PV(w- 1) is derived from PV(w) by collapsing sets I(w)-{w} into w.

Proof. Recall that PV(w 1 is defined to be derived from PV(w by collapsing into
w each set z containing at least one element y J(w)-{w}. Suppose there is a set
z

_
I(w) in PV(w) containing some y (J(w)-I(w))-{w}. Then, by definition of J(w),

y is contained on a w-avoiding cycle q and IDOM(y) I(w). But since z_ I(w), q avoids

392 oIqy H. rEW

Original Control Flow Graph

Niche Flow Graph

is the text expression located at v5

FIG. 3. Transformation of a flow graph G into a niche flow graph G’.

IDOM(y) and IDOM(y) is contained in a y-avoiding cycle q’. By Lemma 8.1, y has an
entering A-cycle edge. Since G is a niche flow graph, IDOM(y) is the niche of y. But this
is impossible since IDOM(y) is contained on a y-avoiding cycle q’.

The above theorem allows us to simplify Algorithm D, which was used to compute
C1 G, in the case G is a reducible niche flow graph. In particular, the statement labeled D
may be deleted from Algorithm D. Similarly, in this case the statement labeled D may
be deleted from Algorithm E.

THEOREM 8.2. if G is a reducible niche node and DDP(x)# x, then K(x)= those
nodes of the dominator chain from DDP(x) to IDOM(x).

CODE MOTION 393

v2) SAFEPT(t)

v3) movept(t)

) movept2(t)

loc(t)

FIG. 4. The dominator tree of the flow graph G’.

Proof. Suppose there exists some x V such that DDP(x) properly dominates x
and IDOM(DDP(x)) is contained on a DDP(x)- avoiding cycle. Let p be the DDP path
from x to DDP(x) and let p’ be a simple path from DDP(x) to x. Composing p and p’, we
have a IDOM(DDP(x))-avoiding cycle containing DDP(x). Hence by Lemma 8.1,
DDP(x) has an entering A-cycle edge. Since G is a niche flow graph, IDOM(DDP(x)) is
the niche node of x. But by hypothesis, this niche node of DDP(x) is contained on a
DDP(x)-avoiding cycle, which is impossible. U

394 JOHN H. REIF

v6
(/

SAFEPT(B RTHPTH(t)

movept(t) movept(t)

FIG. 5. The dominator tree of the reverse of the flow graph G’.

REFERENCES

[1] F. E. ALLEN, Control flow analysis, SIGPLAN Notices, 5 (1970), pp. 1-19.
[2] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing Translation and Compiling, II, Prentice-Hall,

Englewood Cliffs, NJ, 1973.
[3], Principles of Compiler Design, Addison-Wesley, Reading, MA, 1977, pp. 454-466.
[4] V. A. BUSAM AND O. E. ENGLUND, Optimization ofexpressions in Fortran, Comm. ACM, 12 (1969),

pp. 666-674.
[5] J. COCKE AND F. E. ALLEN, A catalogue ofoptimization transformations, Design and Optimization of

Computers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, pp. 1-30.
[6] C. EARNEST, Some topics in code optimization, J. Assoc. Comput. Mach., 21 (1974), pp. 76-102.
[7] C. M. GESCHKE, Global program optimizations, Ph.D. thesis, Carnegie-Mellon Univ., Dept. of

Computer Science, Pittsburgh, October 1972.
[8-] S. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analysis, J. Assoc.

Comput. Mach., 23 (1976), pp. 172-202.
[9] M. S. HECHT AND J. D. ULLMAN, Flow graph reducibility, this Journal, (1972), pp. 188-202.

[10] ., Analysis of a simple algorithm for global flow problems, this Journal, 4 (1975), pp. 519-532.
[11] J. B. KAM AND J. D. ULLMAN, Global data flow problems and iterative algorithms, J. Assoc. Comput.

Mach., 23 (1976), pp. 158-171.
[12] K. KENNEDY, Safety of code motion, Internat. J. Comput. Math., 3 (1971), pp. 5-15.
[13] D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1968.
[14] ., Big omicron and big omega and big theta, SIGACT News (1976), pp. 18-24.
[15] R. LENGAUER AND R. E. TARJAN, A fast algorithm for finding dominators in a flow graph, Trans.

Programming Languages and Systems, (1979), to appear.
[16] E. S. LOWRY AND C. W. MEDLOCK, Object code optimization, Comm. ACM, 12 (1969), pp. 13-22.
17] J. H. REIF, Combinatorial aspects ofsymbolic program analysis, Ph.D. thesis, Harvard Univ. Division of

Engineering and Applied Physics, Cambridge, MA, 1977.
[18] J. H. REIF AND H. R. LEWIS, Symbolic evaluation and the global value graph, Fourth ACM Symposium

on Principles of Programming Languages, Jan., 1977; Symbolic evaluation, Part I, J. Assoc.
Comput. Mach., submitted.

[19] J. H. REIF AND R. E. TARJAN, Symbolic program analysis in almost linear time, Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson, Arizona, January, 1978; this
Journal, submitted.

[20] R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
[21], Testing flow graph reducibility, J. Comput. System Sci., 9 (1974), pp. 355-365.

CODE MOTION 395

[22]

[23]

[24]

, Efficiency o[a good but not linear set union algorithm, J. Assoc. Comput. Mach. 22 (1975), pp.
215-225.

., Applications o] path compression on balanced trees, Tech. Rep. 512, Stanford Computer Science
Dept., Stanford Univ., Stanford, CA, August 1975.
, Solving path problems on directed graphs, Tech. Rep. 528, Stanford Computer Science Dept.,

Stanford Univ., Stanford, CA, October 1975.

SIAM J. COMPUT,
Vol, 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0902-0012 $01.00/0

ON THE COMPUTATIONAL COMPLEXITY OF PROGRAM
SCHEME EQUIVALENCE*

H. B. HUNT III’, R. L. CONSTABLE AND S. SAHNI

Abstract. The computational complexity of several decidable problems about program schemes,
recurSion schemes, and simple programming languages is considered. The strong equivalence, weak
equivalence, containment, halting, and divergence problems for the single variable program schemes and the
linear monadic recursion schemes are shown to be NP-complete. The equivalence problem for the Loop
programming language is also shown to be NP-complete. Sufficient conditions for a program scheme problem
to be NP-hard are presented. The strong equivalence problem for a subset of the single variable program
schemes, the strongly free schemes, is shown to be decidable deterministically in polynomial time.

Key words, computational complexity, P, NP, NP-complete, program scheme, recursion scheme,
equivalence, containment, halting, divergence, and isomorphism

Introduction. Early work with program schemes was motivated by a quest for
program optimization techniques [9], [10], [13]. Ideally one would find a class of
schemes rich enough to model many interesting programs but simple enough to have
decidable problems such as equivalence, halting, or divergence. No attempt was made,
however, to assess the computational complexity of such decidable problems. Here, we
show that a variety of such decidable problems for the single variable program schemes,
the linear monadic recursion schemes, and several simple programming languages are
NP-complete.

The remainder of this paper is divided into four sections. Section 1 contains
definitions and basic properties of p-reducibility, program schemes, and recursion
schemes. In 2 the strong equivalence, weak equivalence, containment, halting, and
divergence problems for the single variable program schemes and the linear monadic
recursion schemes are shown to be NP-complete. We also present general sufficient
conditions for a problem on the single variable program schemes to be NP-hard. In 3
we consider subclasses of the single variable program schemes for which strong
equivalence is decidable deterministically in polynomial time. Finally in 4, we briefly
consider the complexity of the equivalence problem for several classes of simple
programming languages including the Loop 1 languages in [14].

1. Definitions. We present definitions and basic properties of p-reducibility,
program schemes, and monadic recursion schemes needed in 2, 3, and 4. The
definitions of strings, alphabets, context-free grammars, and derivations used here are
from [7]. We denote the empty word by A.

DEFINITION 1.1. P(NP) is the class of all languages over {0, 1} accepted by some
deterministic (nondeterministic) polynomially time-bounded Turing machine.

DEFINITION 1.2, Let g and A be finite alphabets. Let (X, A) denote the set of all
functions from Y_,* into A* computable by some deterministic polynomially time-
bounded Turing machine. Let L and L2 be subsets of * and A*, respectively. We say

* Received by the editors February 14, 1975, and in final revised form May 2, 1979. This research was
supported in part by the National Science Foundation under grants DCR-74-14701, GJ 35570, and
DCR-75-22505.

f Department of Electrical Engineering and Computer Science, Columbia University, New York, New
York 10027.

t Department of Computer Science, Upson Hall, Cornell University, Ithaca, New York 14853.
Department of Computer, Information and Control Sciences, University of Minnesota, Minneapolis,

Minnesota 55455.

396

COMPUTATIONAL COMPLEXITY 397

that L1 is p-reducible to L2, written L1 ptimeL2, if there exists a function f in o(;, A)
such that, for all x E*, x L1, if and only if, f(x) L:.

DEFINITION 1.3. A language Lo is said to be NP-hard if, for all L in NP,
L ptimeLo. A language L0 is said to be NP-complete if it is NP-hard and is accepted by
some nondeterministic polynomially time-bounded Turing machine.

DEFINITION 1.4. A Boolean form f is a D3-Boolean form if f is the disjunction of
clauses C1, , Co such that each clause Ci is the conjunction of at most three literals.
A Boolean form f is a C3-Boolean form if f is the conjunction of clauses C, , Cp
such that each clause Ci is the disjunction of at most three literals.

PROPOSITION 1.513]. The sets - {flf is a nontautological D3-Boolean form} and
-2 {fir is a satisfiable C3-Boolean form } are NP-complete.

PROPOSITION 1.613]. Let and 2 be languages. If 1 is NP-hard and 1 is
p-reducible to 2, then 2 is NP-hard.

DEFINITION 1.7. Let D be a set. A predicate on D is a function from D into {True,
False}.

We assume that the reader is familiar with the basic properties and results
concerning program schemes, monadic recursion schemes, and interpretations as
presented in 1], [4], 10].

Program schemes are defined as follows. Let , F, o, and be mutually disjoint
sets of labels, variable symbols, function symbols, and predicate symbols, respectively.
A program scheme S is a finite nonempty sequence of

(1) assignmentstatements of the form k. y - f(x 1, , x,), where k in is a label,
f in is an n-ary function symbol, and x 1, , x,, y in are variable symbols;

(2) conditional statements of the form k. If Pj(Xl, x,) then kl else k2, where
k, k 1, and k2 are labels, P. in is an n-ary predicate symbol, and x 1, , x, in

are variable symbols; and
(3) halt statements of the form k. Halt, where k is a label.

We sometimes allow loop statements of the form k. Loop as abbreviations for the
statement.

k. ff Pi (x 1, ", x,) then k else k.

We frequently assume that the first element of S is its initial statement and the last
element of S is either a loop or halt statement.

The meaning of a program scheme S is defined in terms of interpretations.
Formally, an interpretation I of S consists of

(1) a nonempty set D, called the domain of I;
(2) an assignment of an element of D to each variable symbol in F;
(3) an assignment of a function f D" -D to every n-ary function symbol f in ;

and
(4) an assignment of a predicate P D -D to every n-ary predicate symbol Pi in

The definition of a computation of a program scheme S under an interpretation I can be
found in [10]. The value of S under I, denoted by vali(S), is the final value of the
distinguished output variable of S if the computation of S under I halts; and is
undefined otherwise.

A monadic recursion scheme S is a finite list of definitional equations

Fx := If Plx then cx else/x,

F,,x := If P,x then a.x else

Definition 1.3 extends the concept of NP-completeness to languages over arbitrary finite alphabets.

398 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

where F1,’’ ", Fn are defined function symbols; P1,’’’, Pn are (not necessarily dis-
tinct) predicate symbols; and a 1,/1, , an,/n are (possibly empty) strings of defined
and basis symbols. A monadic recursion scheme S is said to be linear if at most one
defined function symbol occurs in each of the strings

The semantics of a monadic recursion scheme S is also defined in terms of
interpretations. Formally, an interpretation I of a monadic recursion scheme S consists
of

(1) a nonempty set D, called the domain of I;
(2) an assignment of a function fx :D D to every basis function symbol f is S;
(3) an assignment of a predicate P D {True, False} to every predicate symbol

Pi in S;and
(4) an assignment of an element x x of D to x.

An interpretation I of a monadic recursion scheme S, with set of basis function symbols, is said to be free if
(i) the domain D of/equals []*. {x}; and
(ii) for all f in and strings wx in []* {x}, f* (wx) equals the string fwx.

For any interpretatioh I, (f fnx) (fl) (" "(fn) (x) ").
The computations of a monadic recursion scheme can be defined in terms of

context-free grammars as follows. To each scheme

S. Fix := If Pix then OliX else [iX (1_-< i_-< n),

we associate a context-free grammar Gs with terminal alphabet equal to , nonter-
minal alphabet F equal to {F1, ’, Fn}, and set of productions equal to {Fi - a 1, Fi
flill <-- -<_ n}. Let I be an interpretation. Following [4]we say that a rightmost derivation
of Gs is legal for I if, for every step in the deviation of the form yFiw ySw, where

Gs, 8 (LF)* and w *, 8 ai if Pi(w) True and 8 =/i if P(w) False. The
computation of S under I corresponds to the unique legal derivation for I. If F1*w

Gs

for w * by the legal derivation for I, then vale(S) =wI(x); otherwise, vale(S) is

undefined.
Finally we assume that there is a finite alphabet .E such that each scheme or

program S is presented as a string trs over E. We say that the length of the string trs is the
size of S.

DEFINITION 1.8. Let S and S’ be program or monadic recursion schemes. We say
that

(1) S halts if, for all interpretations I of S, the computation of S under I halts;
(2) S diverges if, for all interpretations I of S, the computation of S under I does

not halt;
(3) S and S’ are strongly equivalent if, for all interpretations I, either both of

vale(S) and val(S’) are undefined, or both of vali(S) and valz(S’) are defined
and are equal;

(4) S and $’ are weakly equivalent if, for all interpretations I for which both of
vale(S) and valx(S’) are defined, valx(S) equals val(S’) and

(5) S contains S’ if, for all interpretations I for which valx(S’) is defined, valz(S) is
defined and equals val(S’).

Let S and S’ be program schemes. We say that
(6) S is isomorphic to S’ if, for all interpretations I, the sequences of the instruc-

tions executed by the computations of $ and S’ under I are the same.

COMPUTATIONAL COMPLEXITY 399

Definition 1.9110]. Let 0 be any binary relation on the program schemes or on the
monadic recursion schemes such that, for all schemes S and $’,

(1) if S and $’ are strongly equivalent, then SOS’; and
(2) if SOS’, then S and S’ are weakly equivalent.

Then, the relation 0 is said to be a reasonablb relation.

2. Program and recursion schemes. A variety of decidable problems on the single
variable program schemes (abbreviated svp schemes) and on the linear monadic
recursion schemes (abbreviated lmr schemes) are shown to be NP-complete. These
problems include strong equivalence, weak equivalence, containment, halting, and
divergence. This is accomplished in two steps. First, we show that these problems are
NP-hard for the svp schemes. Second, we show that these problems are in NP for the
lmr schemes.

DEFINITION 2.1. A switching scheme $ is a monadic, loop-free, svp scheme such
that each of its statements is either a conditional or a halt statement.

Our first proposition relates the tautology problem for D3-Boolean forms to the
problem of deciding, for a switching scheme S with halt statement labeled B, if the
statement labeled by B is executed during some computations of $. All our NP-hard
lower bounds follow from it.

PROPOSITION 2.2. There exists a deterministic polynomially time bounded Turing
machine Mo such that Mo, given a D3-Boolean form f as input, outputs a switching
scheme Sf with exactly two halt statements labeled A and B such that the statement
labelled B is executed during some computation of $, if and only if, f is not a tautology.

Proof. We illustrate how Mo constructs Sr from f by an example. Suppose f equals
X13zX4 V X2-3X4 V X14.5. Then, Sr is the following"

1. If Pl(X) then 2 else 4
2. If P2(x) then 4 else 3
3. If P4(x) then A else 4
4. If P2(x) then 5 else 7
5. If P3(x) then 7 else 6
6. If P4(x) then A else 7
7. If Pl(X) then 8 else B
8. If P4(x) then B else 9
9. If Ps(x) then B else A
A. Halt.
B. Halt.

We denote the set {Sfl.f is a D3-Boolean form; and the Turing machine Mo of
Proposition 2.2, given input f, outputs S} by .

DEFITOrq 2.3. Let S be an svp scheme with exactly two halt statements labeled A
and B. Let and 3 be svp schemes. The program scheme IS, sg, N is the program
scheme that results from S by replacing the statement labeled A in S by s and by
replacing the statement labeled B in S by 3, with a suitable renumbering of the
statements in sg and as necessary.

For example, let S, s, and 3 be the following"

S’I. IfP(x) then2else3 s" 1. x/C(x)
2. x - x 2. Halt.
A. Halt.
3. xx Yd" 1. xg(x)
B. Halt. 2. Halt

400 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

Then, IS, ,. N] is the following:

1. If Pl(x) then 2 else 3
2 xx
A. x ,- f(x)
4. Halt.
3. xx
B. x - g(x)
5. Halt.

The next theorem gives general sufficient conditions for a predicate on the svp
schemes to be NP-hard.

THEOREM 2.4. Let H be any predicate on the svp schemes for which there exist svp
schemes and such that, for all schemes S in , H([S, ,]) equals False ifand only
the statement ofS labelled B is executed during some computation orS. Then, the set {SIS
is an svp scheme and YI(S) equals False} is NP-hard. Moreover, if and are loop-free,
then the set {SIS is a loop-free svp scheme and II(S) equals False} is also NP-hard.

Proof. By Propositions 1.5 and 1.6, it suffices to show that the set -1 of nontau-
tological D3-Boolean forms is p-reducible to the set {SIS is an svp scheme and II(S)
equals False}. Let f be a D3-Boolean form. Let Sr be the corresponding element of
Then, rl([Sr, ,]) equals False, if and only if, the statement in Sr labeled B is executed
during some computation of Sr. By Proposition 2.2 this is true, if and only if, f is not a
tautology. Since [Sr, ,] is constructible from f by a deterministic polynomially
time-bounded Turing machine, the theorem follows. QED

The next two corollaries yield some applications of Theorem 2.4. Henceforth, we
denote the svp scheme 1. Halt. by .

COROLLARY 2.5. Let II be any of the following predicates on the svp schemes:
(i) S diverges;
(ii) S halts;
(iii) S is strongly equivalent to
(iv) S contains
(v) contains S;
(vi) S is weakly equivalent to and
(vii) for all reasonable relations p on the svp schemes,

Then, the set {SIS is an svp scheme and II(S) equals False} is NP-hard.
Proof. Each of the predicates in (i) through (vii) satisfies the conditions of Theorem

2.4, where the corresponding schemes and are as follows:

(i) is 1. Loop. is 1. Halt.
(ii) d is 1. Halt. is 1. Loop.
(iii) through (viii)’ is 1. Halt. is 1. x #fix)

2. Halt.
Q.E.D.

COROLLARY 2.6. Let p be any of the following binary relations on the svp schemes:
for all svp schemes S and S’, SpS’, if and only if,

(i) S is isomorphic to S’;
(ii) S is strongly equivalent to S’;
(iii) S contains S’;
(iv) S is weakly equivalent to S’; and
(v) for all reasonable relations po on the svp schemes, SpoS’.

Then, the set {(S, S’)IS and S’ are svp schemes and ---(SpS’)} is NP-hard. Moreover, the set
{(S, S’)[(S and S’ are loop-free svp schemes and --.(SpS’)} is also NP-hard.

COMPUTATIONAL COMPLEXITY 401

Proof. The conclusions of this corollary, for the relations of (ii) through (v), follow
easily from Theorem 2.4 and Corollary 2.5. Therefore, we only prove that the
conclusions of this corollary hold for isomorphism. As in the proof of Theorem 2.4, we
show that the set 1 of nontautological D3-Boolean forms is p-reducible to the set
{(S, S’)[S and S’ are loop-free svp schemes and S is not isomorphic to S’}.

Let f be a D3-Boolean form. Let Sr be the corresponding element of c. Then,
letting 5o denote the scheme

1. x - g(x)
2. Halt.

the schemes [St, 5, 30] and [St, , 5] are isomorphic, if and only if, the statement in S
labeled B is not executed during some computation of St. By Proposition 2.2 this is true,
if and only if, f is a tautology. Since the schemes [St, 3, 5o] and [St, 3, 5 are loop-free
and are constructible from f by a deterministic polynomially time-bounded Turing
machine, the corollary follows. Q.E.D.

The importance of Theorem 2.4 and Corollaries 2.5 and 2.6 lies in the weakness of
the hypotheses needed to show that any predicate satisfying their conditions is
NP-hard. Since no looping except possibly loop statements and only monadic functions
and predicates are required, their conclusions hold for many other classes of program
schemes, e.g. the monadic program schemes with nonintersecting loops, the liberal
schemes, and the progressive schemes, see [10], [12]. In the remainder of this section,
we show that similar results hold for the lmr schemes and that several of these NP-hard
problems are NP-complete.

The effective translation of monadic svp schemes into strongly equivalent lmr
schemes in [4] can easily be seen to be executable by a deterministic polynomially
time-bounded Turing machine. Thus letting 5’ denote the lmr scheme

Fix If Px then x else x,

one immediate implication of Corollaries 2.5 and 2.6 is the following.
COROLLARY 2.7 (1). Let II be any of the following predicates on the lmr schemes:

(i) S halts;
(ii) S diverges;

(iii) S is strongly equivalent to 3’;
(iv) S contains ’;
(v) 3’ contains S;
(vi) S is weakly equivalent to ’; and
(vii) for all reasonable relations p on the lmr schemes, Sp’. Then, the set {SIS is an

lmr scheme and H(S) equals False} is NP-hard.
(2) Let p be any of the following binary relations on the Imr schemes: for all Imr

schemes S and S’, S/aS’, if and only if,
(viii) S is strongly equivalent to S’;
(ix) S contains S’;
(x) S is weakly equivalent to S’; and
(xi) for all reasonable relations po on the lmr schemes, SpoS’. Then, the set {(S, S’)]S

and S’ are lmr schemes and ---(SpS’)} is NP-hard.
The next two propositions will be used to derive upper bounds on the compu-

tational complexity of halting, divergence, strong equivalence, weak equivalence, and
containment for the lmr and svp schemes. The first proposition is new. The second
closely follows results in [4].

402 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

PROPOSITIOY 2.8. Let R be an lmr scheme with n defining equations. Then, R
diverges]:or some interpretation if and only if there exists a free interpretation I ofR for
which the computation ofR under I takes at least 2n + 1 steps.

Proof. The "only if" part is obvious. We show the "if" part. Suppose the compu-
tation of R under I takes at least 2n + 1 steps. Then some defining equation, say

F.x := If Pix then ax else ix,

must be applied at least three times during it. Hence, the computation of R under 1
must contain at least two applications of this equation for which the predicate P takes
the same value. Thus letting Gs be the context-free grammar associated with S, there
exist strings bl, b2, Cl, and c2 of basis function symbols such that

F1 blFiCl,
Gs

4-

F,. b2F,.c2
Gs

P(clx) =Pi(C2ClX)
for the legal derivation for/.

If c2 equals A, then the computation of R under I diverges. Otherwise, let I0 be the
free interpretation of R defined by; for all predicate symbols P in R;

if w- cc and a is a suffix of c2;Pi (wx) p(wx), otherwise.

Then, the computation of R under I0 diverges.
PROPOSITION 2.9. LetR and S be two Imr schemes, with set ofbasis function symbols

and set o]: defined function symbols F sucti that
(i) both ofR and S have at most n defining equations;
(ii) the length ofeach string and fl in a defining equation o]’R or S is less than m;

and
(iii) each string and Bi in a defining equation of R or S is an element of

*. F. (U{})U #, U{,q.
Then, (1) ifthere exists an interpretation I’ under which R andS differ but]or which both of
valx,(R) and valx,($) are defined, then there is a free interpretation L under which R and $

differ andfor which both of val (R) and valz (S) are defined, such that the minimum ofthe
lengths of valt(R) and valx(S) is less than 3n3m. Similarly, (2) /f there exists an
interpretation 1’ for which valv(R) is defined and valv(S) is not, then there is a free
interpretation L for which valx(R) is defined and valz(S) is not, such that the length of
valt(R) is also less than 3n3m.

The proofs of (1) and (2) appear on pages 154-157 in [4].
THEOREM 2.10. The following sets are NP-complete

(i) $1 {$[8 is an lmr scheme; and $ does not halt};
(ii) $2={$[S is an lmr scheme; and $ does not diverge};
(iii) $3 {(S, $’)15 and $’ are lmrschemes; and S and $’ are not strongly equivalent);
(iv) $4 {(S, S’)[S and $’ are Imr schemes: and S and $’ are not weakly equivalent};

and
(v) $5 {(S, S’)[S and S’ are lmr schemes; and S does not contain S’}.
Proof. By Corollary 2.7 each of these sets is NP-hard. We illustrate how Pro-

positions 2.8 and 2.9 can be used to show that these sets are in NP. We only sketch the
proofs for $1 and $4. The proofs for $2, $3, and $5 are similar and are left to the reader.

COMPUTATIONAL COMPLEXITY 403

(i) Let M be the nondeterministic Turing machine that operates as follows"
Step 1. M, given input S, checks if 6’ is an lmr scheme. If not, M halts without

accepting.
Step 2. M guesses a rightmost derivation H of the context-free grammar Gs

associated with S of the form F1 bilFilCi --... .bi,Fikci,,
Gs Gs Gs

where, letting no be the number of the defining equations of $, k 2no + 1;
F, FI, , F are defined functions symbols of S; and bl, c, , b, ci
are strings of basis function symbols of $.

Step 3. M verifies that II is legal for some free interpretation I of S. If so, M
accepts S. Otherwise, M halts without accepting.

By Proposition 2.8, M accepts $1. Moreover, M is polynomially time-bounded.
This follows since

(1) the lengths of each of the sentential forms FI, bigicix, bigici in H is less
than (2n0 + 1). (m + 1) + 1, where m is an upper bound on the lengths of the strings ai, i
in the defining equations f S; and

(2) II is legal for some interpretation/, if and only if, for each pair (biFici, bit Fircir)
of sentential forms in H, if

bifFiicii biicii
Gs

birFij,Cir bij,’c"
G$

ti’

Ci Cir,

then 6’.
Clearly conditions (1) and (2) can be checked deterministically in time bounded by

a polynomial in the size of S.
(iv) Let M be the nondeterministic Turing machine that operates as follows:
Step 1. M, given input (S, S’) checks if S and S’ are lmr schemes. If not, M halts

without accepting.
Step 2. M converts $ and S’ into strongly equivalent lmr schemes $1 and S,

respectively, that satisfy the conditions of Proposition 2.9.
Step 3. M guesses a rightmost derivation II of Gsl

F1 ’" bi,Fi,ci, bik+lCik+l
Gs Gs Gsl

and a rightmost derivation II’ of Gs

where k + 1 and + 1 are less than 3n3m 3 and bik+lCik+l b il+lc it+l
[Here, n equals the maximum of the number of defining equations in S and S’; and m
equals the maximum of the lengths of the strings cei and i in any of the defining
equations of $1 and S.]

Step 4. M verifies that both of II and II’ are legal for some interpretation. If so, M
accepts (S, S’). Otherwise, M halts without accepting.

By Proposition 2.9 M accepts $4. Moreover, M is polynomially time-bounded.

404 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

This follows by reasoning analogous to that in the proof of (i) and is left to the
reader. Q.E.D.

COROLLARY 2.11. The following sets are NP-complete
(i) {SIS is an svp scheme; and S does not halt};
(ii) {SIS is an svp scheme; and S does not diverge};
(iii) {(S, S’)IS and S’ are svp schemes; and they are not strongly equivalent};
(iv) {(S, S’)IS and S’ are svp schemes; and they are not weakly equivalent};
(v) {(S, S’)IS and S’ are svp schemes; and S does not contain S’}; and
(vi) {(S, S’)]S and S’ are loop-free svp schemes; and S and S’ are not strongly

equivalent}.

3. A deterministic polynomial time decidable equivalence problem.
3.1. Strongly free schemes. In 2 we saw that the strong equivalence problem for

the svp schemes is NP-complete and thus is likely to be computationally intractable.
Here, we inquire if any interesting subclasses of the svp schemes have provably
deterministic polynomial time decidable strong equivalence problems. We note that the
proof above that strong equivalence for the svp schemes is NP-hard involves sieves of
predicates of the type appearing in Figure 3.1 where (a) some predicates, such as P, P2,
and P3 in Figure 3.1, test the same value twice; and (b) the sieve is a directed acyclic

FIG. 3.1

graph but not a tree. Schemes with predicates satisfying (a) have the property that not all
paths are executable and thus are unlikely to correspond to well-written computer
programs. This suggests that we consider svp schemes which have no such predicates.

COMPUTATIONAL COMPLEXITY 405

Using the terminology of [4], [10], svp schemes with no predicates satisfying (a) or,
equivalently, svp schemes in which all paths are executable are said to be free. Thus, we
are led to the question--

QI: "Do free svp schemes have a deterministic polynomial time decidable strong
equivalence problem?"

Only a partial answer to question Q1 is presented here. We show that the class of
svp schemes in which no two predicates test the same value in a Herbrand inter-
pretation, called the strongly free schemes, has a deterministic polynomial time
decidable strong equivalence problem.

In a strongly free svp scheme there is a function application between any two
predicates. These schemes behave like deterministic finite automata; and our technique
for showing that their strong equivalence problem is decidable deterministically in
polynomial time is to consider them as deterministic finite automata (as described
below). There is one nontrivial difficulty, however. A strongly free scheme $ may have
redundant predicates, i.e. predicates whose left and right branches are equivalent. To
obtain a deterministic polynomial time strong equivalence test, we must find a deter-
ministic polynomial time redundancy test. This is accomplished by modifying the usual
state minimization algorithm for deterministic finite automata.

Before presenting the results of this section, we need some notation. Recall that the
value of a scheme $ under interpretation H is denoted by val (S, H). We denote the
value of a scheme S under interpretation H starting with statement L0 by val (S, H, L0).
With every svp scheme S, we associate the three languages L(S), L (S), and Lc#(S)
defined as follows.

DEFINITION 3.2. The value language of an svp scheme S, denoted by L(S), is the
set {val (S, H)[H is a Herbrand interpretation for which S halts}.

Value languages were extensively used in [4].
DEFINITION 3.3. Let S be an svp scheme. LeH be a Herbrand interpretation. The

computation string of S under H, denoted by Comp (S, H) is the (possibly infinite) string

Ol.m+lPi Pizol.EPiol.l

such that each ci is a (possibly empty) string of function symbols of S, Pi is either P.+i or

P where Pii is a predicate symbol of S, and

P. is Pii if and only if, (Pii)n(ai al)= Truelj

The computation language of $, denoted by L($), is the set {Comp ($, H)IH is a
Herbrand interpretation}. The terminating computation language of S, denoted by
LC#($), is set {Comp (S, H)[H is a Herbrand interpretation for which S halts}.

The proof of the following lemma about terminating computation languages is left
to the reader.

LEMMA 3.4. For svp schemes Sl and S2, ifLc#(S)= LC#(S2), then
(i) Sl and $2 halt for the same Herbrand interpretations; and
(ii) for all Herbrand interpretations]:or which both $1 and $2 halt, Comp (S, H)

Comp ($2, H).
Recall that an svp scheme S is said to be free if no predicate is tested twice with the

same argument values under any Herbrand interpretation. This implies that there must
be a function application between any two separate occurrences of the same predicate
test. We define a similar but stronger notion of freedom.

DEFINITION 3.5. An svp scheme S is said to be strongly free if and only if no two
predicates test the same value in any Herbrand interpretation.

406 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

For strongly free svp schemes, there must be a function application between any
two predicate tests.

DEFINITION 3.6. The occurrence of a predicate P in statement L in a scheme $, say

L1. If P(x) then Ll else L

is said to be superfluous, if and only if, val (S, H, Lt) val (S, H, Lr) for all Herbrand
interpretations H. More generally, two statements L1 and L2 in schemes Sl and $2,
respectively, are said to be equivalent, if and only if, val (Sl, H, L1) val (S2, H, L1) for
all Herbrand interpretations H. Finally, a scheme S is said to be reduced, if and only if, it
contains no superfluous predicate occurrences.

Our first theorem shows how reduced strongly free svp schemes can be charac-
terized by their terminating computation languages. It will be used to show how reduced
strongly free svp schemes behave like deterministic finite automata.

THEOREM 3.7. IfS1 and S2 are reduced strongly free svp schemes, then $1 $2 ifand
only if Lc# ($1) Lc#(S2).

Proof. (1) :> Let $1 --$2. We show that L#($1) Lc#(s2) by proof by contradic-
tion. Suppose Lc#(s1) Lc#(s2). Let x xn’"xl be a string in one of L#(S1) and
Lc#(s2) but not both, say x LC#(SI)-LC#(S2). Let x be the subsequence of x
obtained by deleting all predicate tests. Then, there exists a string y y, yl in
Lc#(s2) such that

(a) letting yl be the subsequence of y obtained by deleting all predicate tests, we
have y x 1; and

(b) no other string in Lc#(s2) satisfies (a) and agrees with x on a longer final
segment.

Such a string y exists since x val (S1, H) for some Herbrand interpretation for which
$1 halts and $1 ---$2 by assumption.

Let k (l <- k <-_min (n, m)) be the least positive integer such that Xk’" "Xl#
Yk "Y 1. Let c be the string that results from Xk-1 X by deleting all predicate tests
(a can be the empty string). Since x yl and $1 and $2 are strong free svp schemes,
both of Xk and Yk must be predicate tests. Suppose the test in Xk is Pi and the test in Yk is
Pj. By assumption Pi # Pi. Let the corresponding statements in $1 and $2 be

Lio" If Pi(x) then L1 else L2 and

Lo" If Pi(x) then L else L,
respectively. Then L1 cannot be equivalent to both of L and L2, otherwise the
occurrence of Pi in statement Lio is superfluous. So suppose that L1 and L are not
equivalent. Then there is a Herbrand interpretation Ho such that

val ($1, Ho, L1) val ($2, Ho, Ll).
Since $1 and Sz are free, we can also choose a Herbrand interpretation H1 such that

Comp ($1, H1) XkXk-I"’’Xl,

(omp ($2, HI) YkYk-I" Yl.

Let H2 be any Herbrand interpretation satisfying the following:
(A) For all proper suffixes a’ of a and for all predicate symbols Pr

(pt)H2(a’x) (pl)Hl(ce’X);

(B) (Pi)n2(ax) True;
(C) (Pi)2(ax)= True; and

COMPUTATIONAL COMPLEXITY 407

(D) For all strings a’ w’a such that a is a proper suffix of a’ and for all predicate
symbols Pt,

(pl)H2(o’x) (pl)H(w’x).

Clearly such Herbrand interpretations exists. For each such Herbrand interpretation
H2,

val ($1, HE) # val (SE, HE),

contradicting the assumption that $1 and S2 are strongly equivalent. (2) (<=). This
follows immediately from Lemma 3.4.

A reduced strongly free svp scheme S can be viewed as a deterministic finite
automaton A(S) accepting Lc#(S). To see how this works, consider the reduced
strongly free svp scheme So and its associated deterministic finite automaton A(So)
shown in Fig. 3.8. The alphabet of A(So) is

x= {f, fp-i, fgp + + +
1, fp, fp, fgp2 };

SO

fgp

2 fP"

A(So)
FIG. 3.8

408 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

and the state set is

K {start, P, P, P1, halt, error},
where P is the]th occurrence of predicate Pg (in some arbitrary ordering of occur-
rences.) Finally in the state diagram of A(So), we intend that all unlabeled edges be
implicitly labeled by those elements of E not occurring as labels on outgoing edges.

Clearly the automaton A(So) accepts the language LC#(So). Thus rephrasing
Theorem 3.7, for reduced strongly free svp schemes $1 and $2, $1 $2, if and only if, the
associated deterministic finite automata A(Sl) and A(S) are equivalent. Noting that,
for a strongly free svp scheme $1, A(S1) is constructable from Sl deterministically in
polynomial time and that the equivalence problem for deterministic finite automata is
decidable deterministically in polynomial time [6], we have the following.

THZORZM 3.9. The strong equivalence problem for reduced strongly free svp schemes
is decidable deterrninistically in polynomial time.

3.2. Reducing strongly free lanov schemes in deterministic polynomial time. In
order to extend the equivalence algorithm to arbitrary strongly free Ianov schemes, we
give a method of reducing such schemes. We can not simply regard these schemes S as
finite automata A(S) and then reduce A(S). The difficulty is illustrated by a simple
example which the reader can provide.

In order to decide whether a predicate test is superfluous we need to apply an
algorithm similar to the usual finite automaton reduction technique. We search for
nonredundancy. When we find it, we attached the predicate value P[or P- to the edges
leading from the state. Then we repeat the algorithm.

Informally the algorithm is the usual Moore type reduction algorithm on A(S)
except that if a predicate appears to be superfluous at stage n, that is, both branches lead
to states which are equivalent at stage n, then it is treated as superfluous (the predicate
label is not used in the equivalence algorithm). Whenever a suspected superfluous
predicate turns out to be necessary, then we restore the predicate label and recompute
the equivalence relation. This algorithm succeeds because if it is possible to reduce A(S)
and assume at every stage that a state is redundant, then it is really redundant (we prove
this in Theorem 3.12).

Before we can describe the reduction algorithm we need a number of conventions.
First, given scheme S and its associated automaton A(S) we associate with each state
the predicate Pg of S corresponding to it. Labels from each state have the form yP, yP-
for x, y (/}*. To rerhove a predicate from a label, say from xP- or yP-, means to
replace these labels by x or y respectively.

In the reduction algorithm we will consider various sets of labels for the edges of
the state diagram. At stage n of the algorithm we will use an alphabet denoted
E := {a ’, , a p.}. For any state in the automaton A(S) associated with a strongly free
scheme S, at most two of these labels will apply (will lead to other than an error state).
Call these letters 0s (the predicate is false) and ls (the predicate is true). After
predicates are removed from labels at a state, there may be only one label remaining.
This gives rise to a nondeterministic transition function 8.

As in the Moore type minimization algorithm for finite automata (see [5, 6, 7]), we
will group states into blocks. The blocks at stage n of the algorithm will be denoted B T.

The algorithm starts with two blocks, B := {halt state}, B := {all nonhalt states},
and proceeds to split blocks into smaller blocks until no further splitting is possible. It is
possible to split a block B’ as long as condition ** given below holds:

** :la ,n=]s1, s2GB such that
6(s, a) B’ and (s2, a) B’; for the transition function of A(S).

COMPUTATIONAL COMPLEXITY 409

That is, there are two states in a block which we can recognize as distinct
(inequivalent) by one of 8’s transition on the label a.

The informal algorithm is this.
REDUCTION ALGORITHM 3.10. Start with X, A(S). Form X as the set of labels

with predicates removed and A(S) as the automaton with predicates removed from
labels (but written on the states). Let B contain the half state and B all non-halt
states. Let N be the stage number, initially N 0. Let 80 be the (nondeterministic)
transition function arising from the of A(S).

BEGIN REDUCTION ALGORITHM
initialize (set N 0, set up B, B).
while ** do

begin (1) compute the output behavior of each state under (at stage N)
using each possible transition of 8r.

(2) locate the non-redundant states at stage N, i.e. 8s, a)Bv and
8s, b) B, #] (possibly a b).

(3) form a’new set of labels, Xn/, by restoring the predicates to the
labels on the outgoing edges of non-redundant states located in step
(2). The new automaton diagram is denoted Av/(S).

(4) recompute the output behavior using Xv/, N+I.
(5) split blocks Bv to form blocks B2v/ by grouping only those states

of B which have the same output behaviour as computed in (4).
end

Redundant states are those whose outgoing edges do not have predicates restored
to their labels.

END REDUCTION ALGORITHM.

Given the reduced automaton, say A(S), we can construct from it a scheme
having no redundant predicates. We remove each redundant state, say

L" if Pi then Lt else Lr

and connect all incoming edges to Lt (that is, replace any goto L by goto Lt).
Combining this algorithm with the reduction algorithm, we have an algorithm for

transforming strongly free Ianov schemes S to reduced strongly free Ianov schemes ,
(we prove this below). The application of Algorithm 3.10 is illustrated in Figs. 3.11a,
3.11b, and 3.11c.

Analysis of runtime. It is easy to see that the Reduction Algorithm is in the worst
case bounded above by o(Ixl. Iglb. Consider the time for each step, the bounds are

(1) -<_IZI.IK[(2) <-IKI (3) <--IF.,[(4) <-[E[.IK] (5) .<-IKI.

So the worst case occurs when at most one state is split off of a block on each iteration.
Thus the worst case is

o(Ig[, [2, IXI" Igl+2" Igl+lXI]),

If we use a more efficient algorithm, such as Hopcroft 16] (also see Gries [5]), then
the time is o(1 1, Igl" log (Igl)),

In any case this is a polynomial time bounded algorithm in either [KI, IX[or in ISI.
We now summarize our knowledge in a theorem.

410 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

0

The

A(S)

1, 2, 3, 4, 5}

blocks are for i= 1, 2,3,4,5:

FIG. 3.11A

BB1 B2 B3 B4 5

FIG. 3.11B

fp+
p

FG. 3.11C

3.2.1. Correctness of the algorithms.
THEOREM 3.12. There is an algorithm whose runtime is no more than a polynomial

in ISI which produces the reduced scheme given S. That is,
(i) S =- and

(ii) $ contains no redundant predicates.

COMPUTATIONAL COMPLEXITY 411

Proof. The time analysis given above shows that the algorithm is polynomial in ISI.
We need only show (i) and (ii). We first consider (i).

(1) Clearly if a predicate Pi remains in $ then it is not redundant because the
algorithm produces an interpretation under which the true and false branches from Pi
are distinct. So we need only show that if a predicate occurrence is removed, say at state
s as

s" if Pi then Ll else L,

then that occurrence is really redundant. To prove this, suppose some predicate
occurrences were erroneously removed, say Pil at state sil,’’’, Pi. at states si.. Then
order these by the length of the interpretation under which the true and false branches
are distinct. Suppose Pi is one with the least length interpretation. Then that inter-
pretation cannot involve another predicate erroneously removed in an essential way.
That is, either the two computations, the true one which is XnXn- X or the false one,
y,y,,, y either (a) do not contain any Pij (erroneously removed predicates) or (b) if
such a Pij does occur, then the true branch from it to the halt state (xn or y,) is the same
as the false branch, because otherwise this Pi would have a shorter interpretation
showing it to be nonredundant than Pi does, contradicting the definition of Pi. Thus in
either case (a) or (b), the computations y, y and x. x appear already in some
A k (S). That is, neither computation requires the presence of an erroneously classified
predicate. Therefore, Pi would be discovered to be nonredundant at some state k of the
reduction algorithm.

,2) Finally, to show $ we notice that $ and are nearly isomorphic. For every
state s of S there is a corresponding state g of unless s is redundant. But if s is
redundant, then we know that the edges in S which by-pass s do not change
equivalence. The reader can prove this by car.efully considering these "near iso-
morphisms" under any Herbrand interpretation H.

We now state a fact about finite automata.
Fact 3.13. There is an O(]E] n log (n)) time algorithm to decide the equivalence of

finite automata $1, Sz over Z where n max (IK],]K21), K1, K2 the state sets of $1, $2.
Using this we have the theorem we.need.
THEOrEM 3.14. There is a polynomial time bounded algorithm to decide the

equivalence of strongly free Ianov schemes.

3.2.2. Extension to predicate clusters. We now want to mention an extension of
the reduction and equivalence algorithms from strongly free Ianov schemes to strongly
free Ianov schemes with tree-like predicate clusters substituted for predicates. The idea
is to replace any tree-like cluster of predicates by a single multi-exit predicate.

Let S be a Ianov scheme, then a cluster ofpredicates in S is a loop free subscheme of
S containing no function applications and such that no edge can be extended without
including a function application. A tree-like cluster is such that the cluster is a tree whose
nodes are predicates.

Notice that in a.free scheme no predicate can occur more than once on a path from
root to leaf in a cluster, but predicates may indeed occur more than once.

We represent these clusters by multi-exit predicates and can make this assignment
of multi-exit predicates to clusters uniform if we choose a specified ordering of
predicates. For example, suppose we have P, O, R, T. We then label all outputs in the
order P, , R, T.

To decide equivalence of free Ianov schemes S1, $2 we convert the predicate
clusters to multi-exit predicates and then convert the result to a finite automaton, A (S),

412 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

with labels on predicates given in a standard order. Even in the case of free Ianov
schemes, the generation of multi-exit predicates may require exponential time.

If all the predicate clusters in a Ianov scheme are tree-like, then the multi-exit
predicate has the same number of exits as there are leaves in the tree, thus it can be
generated in polynomial time (in the number of edges) given the cluster.

We can use essentially the same type of reduction algorithm as before, but we must
be careful to say exactly when a predicate in a cluster is redundant on the basis of
information gathered about the multi-exit predicate in A(S).

During the reduction algorithm, the edges leaving a multi-exit predicate can be
grouped together into edge-groups, EV(s); that is a stage N there may be 1,. , rn
edge-groups associated with state s. We say that a predicate occurrence Q in a cluster C
is redundant with respect to the edge-groups Ei if for all sequences of predicate tests z
such that ZlQ+y eE there is a sequence z2 compatible with z (no predicate P appears
as P/ in Zl and P- in z2 or vice versa) such that z2Q-y E. That is, Q does not affect
the decisions made by predicates tested after Q. For example, let the edge-groups be
labeled A, B, C arid consider the tree-like predicate cluster and the equivalent
multi-exit predicate in Figs. 3.15a and 3.15b. The sequences in the edge-groups are

A B
P+O+ P+O-

C
p-o+

P

A C

P

B C
FIG. 3.15A

p+ Q-

FIG. 3.15B

Thus, the predicate Q is redundant with respect to edge-group C. (Therefore in the
reduction algorithm the labels P-Q/ and P-Q- are replaced by P-.)

This example suggests how inefficient a predicate cluster might be. But we do not
need to consider methods of finding the minimum cluster equivalent to a given cluster in
order to obtain a polynomial equivalence algorithm. We only need a method of
eliminating the redundant predicates from the labels on outgoing edges of multi-exit
predicates.

This example is too simple to illustrate the difficulties in testing for redundant
predicate occurrences. It is not sufficient to see whether xQ+y and xQ-y both appear in
an edge group. For example, consider the tree-like predicate cluster in Figure 3.16.
Then in edge-group B we have P-Q+y, S-R /Q-y, R-Q-y. So Q is redundant for B
because both S-R + and R- are compatible with P-.

In order to mimic the reduction algorithm for strongly free schemes, we need a
procedure to check for redundancy in predicate clusters given as assignment of
edge-groups (this assignment comes from the main algorithm).

COMPUTATIONAL COMPLEXITY 413

/

A B S B

B C
FIG. 3.16

3.2.3. Multi-exit nonredundancy procedure. Given predicate cluster C and edge-
groups E, ’, E., to test whether a predicate occurrence O in a label on an edge in E/
is redundant, do the following"

begin
(1) locate Q in the cluster (let y be the path to Q).
(2) list all prefixes of the form z where zQ/y is in E.
(3) for each z in (2) check whether there is a prefix w

where (a) wQ-y is in E/
(b) w and z are compatible.

(4) if there is a w for each z, then Q is redundant, otherwise it is not and the
predicate is output.

end

The reader can now check the validity of the following claims.
PROPOSITION 3.17. A predicate occurrence Q in tree-like cluster C is nonredundant

with respect to edge group Ei if the multi-exit redundancy procedure generates Q given C
and El.

It is also easy to check that this procedure runs in polynomial time in the number of
predicates in the cluster.

PROPOSITION 3.18. If tree-like predicate cluster C has n predicates, then the
multi-exit redundancy procedure runs in at most n 2 steps.

4. Simple programs. We conclude by showing that the equivalence problems for
several very elementary programming languages are also NP-complete. First, we
consider the Loop 1 languages in [12], [14].

DEFINITION 4.1. A loop program is a finite sequence of instructions of the five
types: (1) Do x, (2) End, (3) x -0, (4) x y, and (5) x x + 1.

A subset of the variables used in a loop program is designated as the input variables
of the program. One variable is designated as the output variable of the program. Loop
programs compute functions of their input variables. We say that two loop programs are
equivalent if they compute the same function.

DEFINITION 4.2. For all 0, 1, 2 , L is the class of all loop programs in which
the maximum level of nesting of Do statements equals i. The set Inequiv (Li) is the set of
all pairs of inequivalent L programs.

PROPOSITION 4.3. Inequiv (L) is NP-complete.

414 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

Proof. To show that Inequiv (L1) is NP-hard, it suffices to show that 3-2, the set of
satisfiable C3-Boolean forms, is p-reducible to it. We show how, for each C3-Boolean
form f, to efficiently construct an LI program Hr such that, for all assignments of initial
values to its input variables, the value of its output variable upon termination equals 0, if
and only if, f is not satisfiable.

Let f c A C2 A A Ck where Ci Cil V Ci2 V Ci3 and each c0 is a literal. Let the
propositional variables of f be Xl, , xn. Then, the L1 program IIf is constructed as
follows. The input variables of IIr are xl, , xn; and the output variable of II is z. The
program 1-If has the form--(A 1, A 2, , An, B1, Bk, D1, Dk, Z 0, Z Z + 1,
Do C, z 0, End,.. Do, Ck z -0, End), where Ai, Bi, and D, are program blocks
defined as follows:

(1) A. computes the value of g., the negation of x.
A. is g. - 0

Do x.
x-. -0
End.

(2) B computes the value of the clause ci, for any given values of
Xl, , xn, gx, , gn. We illustrate the construction of Bg by an example. Suppose ci is
X V .’2 V .3, then

Bi is c10
Do Xl
C1 <--- 0
C1--- C1+ 1
End
Do .2
C1 <---- 0
C1 --C1+ 1
End
Do x3
C1-- 0
CI-Cl+I
End.

(3) D, computes the value of g,n, the negation of c,.

D, is g, - 0
& -g, + 1
Do c,
gm -0
End.

We leave it to the reader to verify that the program IIf outputs a I for some
assignment of values to its input variables, if and only if, f is satisfiable. Otherwise, 1-If
always outputs 0.

Finally, the fact that Inequiv (L1) is in NP follows immediately from Theorems 4
and 7 in [14]. Q.E.D.

We note that the equivalence problem for L0 programs can be solved deter-
ministically in linear time, and that the equivalence problem for L2 programs is
undecidable [12].

COMPUTATIONAL COMPLEXITY 415

DEFINITION 4.4. Let x and y be nonnegative integers. Then,

x-y, ifx->y,
x- y

0, otherwise.

DEFINITION 4.5. 1 is the class of all programs consisting of a finite sequence of
instructions of the form (1) xi xi + Xk, and (2) x 1- xi, where x. and Xk may be
nonnegative integer constants. 2 is the class of all programs consisting of a finite
sequence of instructions of the forms xi xi Xk, where x. and Xk may be non-negative
integer constants.
1 and 2 programs compute functions in the obvious manner. We say that two 1

or 2 programs are equivalent if they compute the same function, lnequiv () (lnequiv
(2)) is the set of all pairs of inequivalent 1(2) programs.

PROPOSITION 4.6. Inequiv (l) and Inequiv (2) are NP-complete.
Proof. (1) To show that Inequiv (1) is NP-hard, it suffices to show that -2 is

p-reducible to it. This is accomplished by simulating the construction in the proof of
Proposition 4.3.

Let f c A C2 A A Ck, where ci c1 v Ci2 V Ci3 and each c0 is a literal. Let the
propositional variables of f be x1,’’ ", x,. The 1 program IIr has n input variables
Xl,...,xn, output variable , and has the formn(A1,..., An, B1,’",
Bk, D1, , Ok, P 1 61, , P- 1 t?k). Here, A 1, B. and D, arem

(a) Ai is i - 1 xi,

(b) letting c=xx V,2 V X3, Bi isci’Xl+2, Cj<"Ci+X3, and
(c) D,, is 6, 1 -cm
To show that Inequiv (1) is in NP, it suffices to note that there is a deterministic

polynomially time-bounded Turing machine M such that M, given a 1 program H as
input, outputs an equivalent L1 program H’. Thus, since Inequiv (L1) is in NP, so is
Inequiv (i51).
M operates as follows. It replaces all instruction of the form. x - 1 x. in H by the

program fragment

Xi <--- 0
xg xi + 1
Loop x.
xiO
End

It replaces all instructions of the form xg -x + Xk in H by the t program fragment
Xi --" X

Loop Xk

Xi <’- Xi "- 1
End.

(2) The proof that Inequiv (2) is NP-complete is similar and will not be presented
here. Details can be found in [2].

REFERENCES

[1 E. ASHCROFT, Z. MANNA AND A. PNEULI, Decidable properties of monadic functional schemes, J.
Assoc. Comput. Mach., 20 (1973), pp. 489-499.

[2] R. L. CONSTABLE, H. B. HUNT III, AND S. SAHNI, On the computational complexity of scheme
equivalence, TR-74-201, Department of Computer Science, Cornell University, Ithaca, NY, 1974.

416 H. B. HUNT III, R. L. CONSTABLE AND S. SAHNI

[3] S.A. COOK, The complexity oftheorem provingprocedures, Proceedings Third Annual ACM Symposium
on Theory of Computing, May 1971, pp. 151-158.

[4] S. J. GARLAND AND D. C. LUCKr-IAM, Program schemes, recursion schemes, and formal languages, J.
Comput. System Sci. 7 (1973), pp. 119-160.

[5] D. GRIES, Describing an algorithm by Hopcroft, Acta Informat. 2 (1973), pp. 97-109.
[6] J. E. HOPCROFT, An nlogn algorithm for minimizing states in a finite automaton, Theory of Machines

and Computations, Z. Kohavi and A. Paz, eds., Academic Press, 1971, pp. 189-196.
[7] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-

Wesley, Reading, MA, 1969.
[8] I. IANOV, On logical algorithm schemata, Cybernetics Problems I, 1958.
[9] D. M. KAPLAN, Regular expressions and the equivalence of programs, JCSS, 4 (1969), pp. 361-386.
10] D. C. LUCKHAM, D. M. R. PARK, AND M. S. PATERSON, On formalized computer programs, Ibid., 4

(1969), pp. 220-249.
[11] Z. MANNA, Program schemas, Currents in the Theory of Computing, A. V. Aho, ed., Prentice-Hall,

Englewood Cliffs, NJ, 1973, pp. 90-142.
12] A. R. MEYERAND D. RITCHIE, Computational complexity andprogram structure, IBM research paper,

May 15, 1967.
[13] M. PATERSON, Equivalence problems in a model of computation, MIT A.I. Laboratory Technical

Memo. No. 1, Massachusetts Institute of Technology, Carribridge, Ma, 1970.
[14] D. TSICHRITZS, The equivalence problem ofsimple programs, J. Assoc. Comput. Math., 17 (1970), pp.

729-738.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0013501.00/0

SAVING SPACE IN FAST STRING-MATCHING*

ZVI GALIL AND JOEL SEIFERAS:

Abstract. The string-matching problem is to find all instances (as contiguous substrings) of a "pattern"
character string x in a longer "text" string y. The naive algorithm, trying the pattern from scratch starting at

each successive text position, requires only a fixed number of auxiliary storage locations but time proportional
to [xl’ [y[(worst case). On the other hand, the fast algorithm of Knuth, Morris, and Pratt requires only time
proportional to ly[but extra space proportional to Ix[(every case). Algorithms described in this paper reduce
the extra space used by the Knuth-Morris-Pratt algorithm down to O(log Ix[), and the time for the naive
algorithm down to O([x[[y[) for any fixed e > 0. Also described are implementations on two-way multihead
finite automata and multitape Turing machines.

Key words, string-matching, pattern-matching, text-searching, multihead finite automaton, Turing
machine, time-space trade-off, counter simulation, string periodicity, failure function

Introduction. The inspiration for this paper was an attempt to implement the fast
string-matching algorithm of Knuth, Morris, and Pratt [13] as a FOWrRAN subroutine.
Although a FORTRAN subroutine can use a variable-length array if it receives the array
and its length as arguments, every local storage location must be allocated when the
subroutine is compiled; i.e., there is no provision for "dynamic storage allocation"
during execution. On the other hand, the Knuth-Morris-Pratt algorithm uses a number
of local storage locations which grows with the size of the input to the algorithm. This
rules out any straightforward implementation without limiting the generality (at least in
principle) of the algorithm, and it motivates our search for fast string-matching
algorithms which use less space.

The string-matching problem is to find all instances of a "pattern" character string
x as a subword (contiguous substring) in a "text" string y. The classical "naive"
algorithm (trying the pattern from scratch starting at each successive text position)
requires time proportional to Ixl’]Yl in the worst case, while the "fast" algorithm of
Knuth, Morris, and Pratt requires time proportional to only Ixl + [y] in the worst case.
(We use]w] to denote the length of the character string w.) On the other hand, the naive
algorithm requires only a fixed number of additional memory locations, while the fast
algorithm requires about]x] additional memory locations in every case. (G. Barth’s
space-saving variant [2] of the Knuth-Morris-Pratt algorithm sometimes uses fewer
additional memory locations, but only when no full instance of the pattern occurs in the
text.) It is the latter fact that makes a general straightforward implementation of the fast
algorithm impossible without dynamic storage allocation. (A "straightforward imple-
mentation" would neither change the contents of the Ix[+]Yl memory locations initially
containing x and y nor store more than O(log ([x[+ [y[)) bits (enough for an arbitrary
reference into x or y) in a single memory location.) Our results improve each algorithm
in its weak suit.

* Received by the editors August 30, 1978, and in revised form June 14, 1979.

" Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel. Part of this research was
done while the author was visiting the Computer Sciences Department at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York. The work of this author was supported in part by the Israel
Commission for Basic Research.

Department of Computer Science, University of Rochester, Rochester, New York 14627. Part of this
research was done while the author was at The Pennsylvania State University, University Park, Pennsylvania,
and part was done while he was visiting the M.I.T. Laboratory for Computer Science, Cambridge,
Massachusetts. The work of this author was supported in part by the National Science Foundation under
Grants MCS 77-06613 and MCS 77-19754.

417

418 ZVI GALIL AND JOEL SEIFERAS

(1) We show how to reduce the additional space utilization by the fast algorithm
down to O(log Ixl) memory locations. Although theoretically this does still require
some dynamic storage allocation in the worst case, a mere seventy additional memory
locations suffice to accommodate every pattern up to a billion characters long and many
(in fact, most) patterns longer than that. As in the Knuth-Morris-Pratt algorithm, the
text need not be "backed up" or stored at all (e.g., it could be read sequentially from a
card reader). Alternatively, if the text is buffered, the algorithm can read the text and
detect the pattern instances in real time. (Galil observed that the Knuth-Morris-Pratt
algorithm has this property [9].) On a multitape Turing machine with three input heads,
this linear-time algorithm can be implemented in space O((log Ixl)2),

(2) We show how to reduce the running time of the naive algorithm all the way
down to O(Ixl(lxl/lyl)) for any fixed e >0. Thus we get an almost linear-time
algorithm which can be implemented without any dynamic storage allocation at all.
Like the slow naive algorithm, this faster algorithm can be implemented as a
FORrRArq subroutine which receives the text only sequentially, say from a card reader.
Also like the naive algorithm, in fact, this faster one can be implemented on a two-way
multihead finite automaton with only a single, one-way head available for reading the
text. (The number of heads used to read the pattern is proportional to 1/e.) On a
single-worktape Turing machine with three input heads, this almost linear-time
algorithm can be implemented in space O(log

The algorithms referred to in paragraphs (1) and (2) above are the extremes in a
time-space-trade-off hierarchy of algorithms. The hierarchy is obtained from the
Knuth-Morris-Pratt algorithm by leaving varying subsets of data unrecorded, essen-
tially to be recomputed on demand. Although this is a familiar general idea (e.g., [3],
[12]) the time penalty can be kept unusually small for the right choice of unrecorded
data in the Knuth-Morris-Pratt algorithm.

The techniques and results described in this paper can be used to save space in
various related algorithms as well. For example, theorems similar to ours below hold for
palindrome recognition [10] and for string-matching with "forced mismatches" [17].

Preliminaries. lor l=<i-<[z[, let z(i) denote the ith character of the character
string z. For 0 <_- =< j -<]z], let [i, j]z denote that string v for which there are strings u and
w such that z uvw, i= lu[, and j luvl; i.e., [i, j]z z(i + 1)... z(j).

The nonnull string u is a period of v if v is a prefix of u k for some k. Equivalently,
the nonnull string u is a period of v if and only if v is a prefix of uv [13].

PERIODICITY LEMMA [15], [13]. If z has periods of lengths p and q, and]z[->_p + q,
then z has a period of length gcd (p, q), the greatest common divisor o[p and q.

The basic algorithms. Consider a pattern x and a text y. For 1 <_-q <_-Ix I, define

KMP(q) min {p > 0[[p, q]x is a prefix of [0, q],,}.

Note that KMP is nondecreasing and that KMP(q)_-< q is the length of the shortest
period of [0, q],. (Some authors [13], [6], [1] define only the related function q-
KMP(q) explicitly. Aho, Hopcroft, and Ullman [1] call this the "failure function" for
the pattern x.)

In our algorithms we will use p for the next prospective starting position of the
pattern in the text. The algorithms check out these prospective positions in increasing
order, so p can only increase. We use q for the length of the known match between the
pattern and the text starting at position p; so x(i)= y(p+ i) for 1 -<i -<q (i.e., [0, q],

FAST STRING-MATCHING 4 19

[p, p + q]y). Briefly, then,

p -position of pattern in text,
q length of known match starting at that position.

In these terms, the basic Knuth-Morris-Pratt algorithm is

(p, q) := (0, 0);
loop:
whilex(q+l)=y(p+q+l)doq :=q+l;
if q O (p, q):= (p+ 1, O)

[3 q >0 (p, q):= (p + KMP(q), q-KMP(q))
fi;
go to loop

(We use Dijkstra’s if-fi alternative construct [5]. The symbol 71 is used to separate the
enclosed set of "guarded commands." Each guarded command consists of a "guard" (a
boolean expression), an arrow, and a "guarded list" (a sequence of statements
separated by semicolons). Each time the construct is reached in execution, a guarded
command whose guard is true is selected, and the corresponding guarded list is
executed.) Of course the algorithm stops when p 4- q + 1 > lYl. To detect matches, just
watch for q]x I. So that the algorithm can continue after a match, let x (Ix I+ 1) be the
unmatchable character $. The total running time is O([y[+]x]) because the quantity
2p + q keeps increasing toward its bound of 21yl + (Ix + 1).

The naive algorithm differs in that the function KMP is not used when a mismatch
occurs; instead, (p, q) is always set to (p 4- 1, 0). For each integer k ->_ 1, we can design a
hybrid algorithm as follows:

(p, q) := (0, 0);
loop:
whilex(q+l)=y(p+q+l)doq :=q+l;
if q =0(p, q):- (p+l, 0)

(q > 0 anti KMP(q) _<- qk)
(p, q) :-- (p + KMP(q), q KMP(q))

[-] (q > 0 and KMP(q) > q/k) -(p, q):= (p + [q/k], O)
fi;
go to loop

(Each connective and above is actually the "conditional and"; its expression is
considered false if the left conjunct is false, even if the right conjunct is undefined.) To
see that this algorithm overlooks no prospective text position p for the pattern, just note
that it never increments p by more than KMP(q). Note that we get the pure Knuth-
Morris-Pratt algorithm for k 1 and the pure naive algorithm for k]x]+ 1.

The running time for the hybrid algorithm is O(k]yl+]x]) because the quantity
(k 4-1)p + q keeps increasing. To compensate for the worse time bound for k > 1, the
algorithm can get by with limited knowledge of the function KMP; the exact value is
needed only when KMP(q) _-< qk. We show below how this allows us to get by with only
O(logk Ix])= O((log]x])/(log k)) additional memory locations, provided k _-> 3. (By a
more careful analysis of essentially the same algorithm, we can extend this result down
to k _-> 2 and relax the requirement that k be an integer. See Appendix A for details. On
the other hand, in a first reading of this and the next two sections, the reader can safely
restrict attention to the specific case k 3.)

420 ZVI GALIL AND JOEL SEIFERAS

Remark. In incrementing p, our algorithms take into account the match of length q,
but they do not take into account the mismatch x (q + 1) y (p + q + 1). This is useful if
we sometimes want variations of the algorithms to "force a mismatch" (increment p for
some reason other than x(q + 1) y(p + q + 1)). To find all a string’s prefixes of the form
ww, for example, we could match the string against itself, "forcing a mismatch" when
such a prefix is found (q p). For more examples and a formalization of string-matching
with forced mismatches, see [17].

For string-matching without forced mismatches, on the other hand, Knuth, Morris
and Pratt point out that taking the mismatch x(q + 1) y(p + q + 1) into account can
save time. In our hybrid algorithm, taking the mismatch into account can also save
space, by further limiting the necessary knowledge of KMP; more specifically, the exact
value of KMP(q) becomes unnecessary unless KMP(q + 1) KMP(q), provided k => 2.
To see this, consider the task of incrementing p when q is positive and KMP(q + 1)
KMP(q)<-_q/k. Since x(q+ l)=x(q+ l-KMP(q+ l))=x(q+ l-2 KMP(q+ l))=.., incrementing p by any multiple of KMP(q)= KMP(q + 1) will lead to the same
mismatch; therefore, p can be incremented by the length of some other larger period of
[0, q Ix. It follows by the periodicity lemma that p can be incremented by at least
[q KMP(q)] => [q -q/k] >= [q/k], provided k _->2. This leads to the following revision
of our basic hybrid algorithm:

(p, q) := (0, 0);
loop:
whilex(q+l)=y(p+q+l)doq :=q+l;
it q 0 (p, q) := (p+ 1, 0)

(q > 0 and KMP(q + 1) KMP(q) and KMP(q) <_- qk)
(p, q) := (p + KMP(q), q -KMP(q))

[-l eise- (p, q):= (p+ [q/k]; 0)
fi;
go to loop

Below we refine the algorithm which does not take into account the mismatch
x(q + 1) y(p + q + 1). See Appendix B for the corresponding refinement of the
algorithm which does take the mismatch into account

The k-truncation and its properties.
DEFINITION. The k-truncation of the function KMP is the partial function KMPk

defined by

KMP(q)
KMPk (q)

undefined
if KMP(q) _-< q/k,
otherwise.

(The k-truncation of KMP is just that part of KMP required for our basic hybrid
algorithm, described above.)

Since KMP is nondecreasing, th6 k-truncation of KMP is nondecreasing on its
domain of definition. Let VAL(1) < VAL(2) <. < VAL(/) be the sequence of distinct
values it assumes. Note that if KMPk(ql)=KMP(q2)=VAL(r), then KMP(q)=
VAL(r) for every q between ql and q2. For each r (1 =< r =< l), take

GATE(2r- 1)= min {ql KMP(q)= VAL(r)},

GATE(2r) 1 + max {ql KMP(q) VAL(r)}.

FAST STRING-MATCHING 421

Example.

pattern: aaabaaabaa a b a a a a a b a a a b
position: 012345678910111213141516171819202122
KMP: 1111444444 4 4 4 4 4 413141414141414
KMP3: ---1 4 4 4 4
l= 2, VAL(1)= 1, VAL(2) 4
GATE(l)= 3, GATE(2)-4, GATE(3)= 12, GATE(4)- 16.

Lemma 1 below summarizes the major consequence for KMP of the periodicity
lemma. Lemma 2 and Corollaries 1-3 describe properties of KMPk motivated by and to
be cited in the following section.

LEMMA 1. if KMP(q2) > KMP(ql), then KMP(q2) > ql KMP(qx).
Proof. Suppose KMP(q2) > KMP(qx) (hence q2 > ql) but

KMP(qx) + KMP(q2) ql < q2.

Then [0, ql]x has periods of both lengths KMP(q) and KMP(q2), hence also a period of
length gcd(KMP(ql), KMP(q2)), by the periodicity lemma. Since KMP(q2)-qI, the
period [0, KMP(qE)]x of [0, qE]x, and hence [0, q_]x itself, also has a period of length
gcd(KMP(q), KMP(q2)). Since KMP(q2) is the length of the shortest period of [0, qE]x,

KMP(q2) _<- gcd(KMP(qx), KMP(q2)) _-< KMP(q) < KMP(qz),

a contradiction.
LEMMA 2. If k >- 2, then GATE(2r 1) k. VAL(r) for every r (1 <- r <-_ l). We use

only the fact that VAL(r) [GATE(2r- 1)/k], which will hold even when k is not an
integer (see Appendix A).)

Proof. We always have KMP(k. VAL(r))_-< VAL(r). (There must be some q with
VAL(r) KMPk(q)<-_q/k. But then [0, k. VAL(r)]x is a prefix of [0, q]x and inherits a
period of length KMP(q)= VAL(r).) Below, using the hypothesis k ->2, we rule out
strict inequality. It follows that

k VAL(r)= min {ql KMP(q)= VAL(r) and KMP(q)N q/k}= GATE(2r- 1).

It remains only to rule out VAL(r)>KMP(k. VAL(r)). By Lemma 1, this
inequality would imply

VAL(r) > k. VAL(r)-KMP(k. VAL(r))

_-> k VAL(r)- VAL(r).

For k -> 2, this would yield the contradiction VAL(r)> VAL(r).
LEMMA 3. If KMP(q2)>KMP(q) and KMP(ql) <-_ql/k, then KMP(q2)>

[(k-1)q/k].
Proof. Assume the hypothesis. By Lemma 1,

KMP(q2) -> qx KMP(ql) + 1

->q-ql/k + l

=(k-1)q/k+l

> [(k-1)ql/k]. [

422 ZVI GALIL AND JOEL SEIFERAS

COROLLARY 1. If k > 2, then

VAL(r + 1)/VAL(r) > k 1 > 1

for every r (1 <- r <- 1).
COROLLARY 2. I[k _-> 3, then

GATE(2r) < GATE(2r + 1)

]:or every r (1 _-< r _-< 1).
Proof. Take

By Lemma 3,

so

qa GATE(2r)- 1,

q2 GATE(2r + 1).

(k 1)ql/k < KMP(q2)

q2>(k-1)ql

=qa+(k-2)ql

>-_ql+(k-2)k

->qa+ 1 if k_>-3

((k 2)k _-> 1, provided k _-> 1 +/ 2.4). [3

COROLLARY 3. If k >- 3 and KMP(q) KMPk (q) VAL(r), then

GATE(2r 2) <- q KMP(q) < q < GATE(2r).

Proof. Assume the hypothesis. Only the leftmost inequality is not immediate. By
Lemma 3,

so

q >_- k. KMP(q) > (k 1)(GATE(2r- 2)- 1),

GATE(2r- 2)- 1 <q/(k- 1)

<- q q/k (sincek_->3)

-<_ q-KMPk(q).

Saving Slmee in linear time. Rather than store a full table of the k-truncation of
KMP, our hybrid algorithm can simply store the VAL and GATE sequences in 31
memory locations. In fact, only the GATE sequence (2/memory locations) has to be
stored explicitly if k _->2; because then VAL(r)= [GATE(2r-1)/k] for every r (1 _<-
r_-< l), by Lemma 2 above. For k > 2, it follows from Corollary 1 above that <
1ogk-1 IX[O((1og]X[)/(1og k)); so we assume in this section that k does exceed 2. (The
inequality /<logk-11xl is strict because VAL(1)= [GATE(2/-1)/k] _<- [Ixl/k] <
Ixl/(k-1).)

To get by with the proposed compact representation of the k-truncation of KMP,
as q changes the algorithm will have to keep track of for which r (0 _-< r _-< 2/) GATE(r) _-<
q < GATE(r + 1). (We adopt the conventions that GATE(0) 0 and GATE(2/+ 1)

FAST STRING-MATCHING 423

Ixl +2.) The possible changes are q := 0, q := q + 1, and (when KMP(q)<=q/k)q := q-
KMP(q). By Corollaries 2 and 3 above, the second and third of these changes can
require at most one increment r := r + 1 and at most one decrement r := r- 1, respec-
tively. Therefore, keeping track requires only constant time for each change.

Shown below is a refinement of our hybrid algorithm along the lines suggested
above. We use r for max {r’l GATE(r’) 5- q}.

(p, q, r) := (0, 0, 0);
loop:

while x (q + 1) y (p + q + 1) do
begin

q :=q+l;
while q => GATE(r + 1) do r := r + 1; [at most once]
if q]x then declare match

end;
if q 0 (p, q, r):= (p+ 1, 0, 0)

71 (q > 0 and r is odd)
(p, q):= (p + [GATE(r)/kJ, q- [GATE(r)/k]);
while q < GATE(r) do r := r- 1 [at most once]

I-1 (q > 0 and r is even)-
(p, q, r):= (p + [q/k], O, O)

fi;
go to loop

Note that we can avoid some redundant tests above by changing the while-loops

while q >= GATE(r + 1) do r := r + 1,
while q < GATE(r) do r := r- 1

to the respective it-statements

if q >-- GATE(r + 1) then r := r + 1,
if q < GATE(r) then r := r- 1.

Below, however, we neglect these optimizations, because they do not apply to the
generalizations described in Appendix A.

Since p cannot decrease, our algorithm can indicate for certain the first time the
scanned text position p + q reaches whether a pattern instance ends at text position i;
i.e., the algorithm is on-line. Moreover, although p+q sometimes decreases, we can
modify the algorithm so that the text itself never has to be rescanned. To do this, we let a
matching portion of the pattern temporarily play the role of the rescanned text. To see
how this is possible, consider any point at which a new text symbol y (p + q + 1) is first
read. Since p cannot decrease, the only portion of the text which might be rescanned
before the next new text symbol is read is [p, p + q + 1]y. The single symbol y(p + q + 1)
can be stored in a single additional memory location ("next" below). The rest,
[p, p + q]y matches the pattern prefix [0, q]x so it will be accessible in the pattern if the
current value ("p0" below) of p is saved for index adjustment. In this way, we get an
algorithm which reads the text on-line without "backing up" and which does not store
more than a single character of it at a time. The algorithm, restructured to make the
read-loop explicit, is shown below. We use for max {i’Iy(i’) has been read}.

424 ZVI GALIL AND JOEL SEIFERAS

(p, q, r) := (0, 0, 0);
:=0;

loop:
:=i+l;[i=p+q+l]

read next; [next y(p + q + 1)]
po := p;
until p + q do

if ((p + q + 1 and x(q + 1) next) or
(p+q+ 1 <i and x(q + 1)=x(p+q+ 1 -po)))

then
begin
q:=q+l;
while q _-> GATE(r + 1) do r := r + 1

end
else

ifq =O(p, q, r) := (p+ 1, 0, 0)
71 (q > 0 and r is odd)

(p, q):= (p+ [GATE(r)/kI, q- [GATE(r)/kI);
while q < GATE(r) do r := r- 1

lq (q > 0 and r is even)
(p, q, r):= (p+ [q/k], O, O)

fi;
q Ix then declare match;

go to loop

It is interesting to note that the on-line algorithm above satisfies Galil’s predic-
tability condition [9]. This condition requires that the time spent between read’s be at
most proportional to a constant plus the further postponement of the soonest conceiv-
able next completed match. Of course the further postponent is just one less than the
increase in p. The time spent is proportional to the increase in the quantity (k + 1)p + q.
Since p + q increases by only 1, however, this means that the time spent is at most
proportional to a constant plus the increase in kp (and hence in p). It follows [9] that the
algorithm can be made to run in real time (bounded delay between read’s) if special
memory locations are available for text buffering. Moreover, the real-time version
would still use only O(1Ogk Ixl) memory locations in addition to those reserved for x
and y.

It remains only to show how initially to set up the GATE sequence. As in the
original Knuth-Morris-Pratt algorithm [13], the preprocessing can be done by match-
ing the pattern against itself, starting with (p, q) (1, 0). Of course no complete instance
of the pattern will be found, but for each we will have KMP(i)=p the first time
p + q holds. To see this, consider any (1

_
-< [xl). The first time p + q holds, no

symbol beyond x(i) has been examined, so KMP(i) is still a prospective position for the
pattern; i.e., p -< KMP(i). Since the algorithm guarantees that [p, i]x is a prefix of [0, i]x
at this point, we cannot have p < KMP(i); so p KMP(i), as claimed. Note that KMP(i)
cannot possibly be needed by the algorithm until later, when q holds.

When KMP(i)=p is discovered, our algorithm should consider adding to its
GATE sequence. Suppose the last element in the sequence so far is GATE(R). Then
should be added to the sequence as GATE(R + 1) if and (by Corollary 2) only if either R
is even and KMP(i)-< ilk or R is odd and KMP(i)> ilk.

The preprocessing algorithm is shown explicitly below. As above, we use for
max{i’lx(i’) has been read}=min{i’lp+q=i’ has not yet held}. We use R for

FAST STRING-MATCHING 425

max {r’l GATE(r’) =<i- 1}.

GATE(0) := 0;
(p, q, r) := (1, 0, 0);

:= l; read x(i); R :=0;
loop:

:= i+l;readx(i);[i=p+q+l]
if x(i)= $ then

begin
if R is even

then [R 21] GATE(R + 1) := + 1
else [R 21-1] (GATE(R + 1), GATE(R + 2)) := (i, + 1);

return
end;

until p + q do
if x(q + 1)=x(p+q +1)

then
begin
q:=q+l;
while (r + 1 -< R and q => GATE(r + 1)) do r := r + 1

end
else

if q 0 (p, q, r) := (p + 1, 0, 0)
fi (q > 0 and r is odd)-

(p, q) := (p+ IGATE(r)/kJ, q- IGATE(r)/kJ);
while q < GATE(r) do r := r- 1

Vl (q > 0 and r is even)
(p, q, r):= (p + [q/k], O, O)

ff ((p <= i/k and R is even) or
(p > ik and R is odd)) then
begin
R :=R+I;
GATE(R):=

end;
go to loop

Including preprocessing, our hybrid algorithm for fixed k > 2 performs string-
matching in linear time (O(klxl + Ixl / klyl / Ixl) O(k(Ixl / lYl)) O(Ixl / lYl)) and
only logarithmic additional space (about 10+ 2. logk-11xl O(log Ixl) memory loca-
tions, counting those used for p, q, r, etc.). This is an exponential reduction in the
additional space used by Knuth, Morris, and Pratt for linear-time string-matching. In
Theorem 1 we summarize these results.

THEOREM 1. For each k > 2, about 10+ 2 logk_l Ix] local memory locations are
enough for an algorithm to recognize the end ofevery instance ofa pattern string x (passed

The exact number depends on how we count. For example the range of the variables and R is
sufficiently small that we might store them together in the same location. In addition, there are questions of
whether locations are needed for constants such as 0 and for temporary results such as q!k and i! k. All this is
further confused by the fact that the finite program itself would typically be stored together with the local
variables. More precise automata-theoretic statements will be possible for the implementations on multihead
finite automata and Turing machines which follow.

426 ZVI GALIL AND JOEL SEIFERAS

as an argument in a randomly accessible read-only array of length [x[) as a subword in a
longer on-line text string y in time proportional to k]y[. Each text character is read only
once, after the algorithm has decided whether the pattern is a suffix of the preceding text

prefix. Only the text character most recently read has to be stored, but the delay between
successive read’s can be bounded by a constantproportional to k iftext buffering is allowed
(i.e., if the text is stored in a read-only array which can be read again).

Although taking k larger above does improve space efficiency (at the expense of
time efficiency), there is no practical reason to consider any k larger than, say, 3. With
only about 30 local variables, for example, the k 3 algorithm can accommodate any
pattern up to 21= 1024 characters long; with 70 local variables, it can handle any
pattern up to a billion characters long. Even longer patterns can be handled within the
same space if for those patterns happens to be small enough.

(Only an exceedingly rare pattern does not have very small. To see this, suppose
l>=lo>=l. By Corollary 1 above, VAL(/0)>m for m=(k-1)-1. Therefore, any
pattern with _-> lo has a prefix [0, k VAL(/0)]x with a period of length

KMP(k VAL(/o)) KMP(GATE(2/0-1)) (by Lemma 2)

VAL(/o)

>m.

For each > m, however, only 2 of the 2ki binary strings of length ki have a period of
length i. Of the 2 binary patterns of length n >-k(m + 1), therefore, the number with
l->_ lo is at most

2n-ki 2i--2 2i(1-/
i>=m+l i>--_m+l

2(,2-1 1)-l/2-(k -1)

2(2-1 1)-1/2(-1’,,.
so the frequency of such patterns is at most (2k-1 1)-/2(-’, regardless of n. If k 3,
for example, the frequency of such patterns is at most (1/3)/22’0 and the average value
of is no more than

(1/3) Y’. lo/22’<1/2.
lo

(A particular consequence of the calculation above is that the frequency of binary
patterns with nonzero (i.e. KMPk nonempty) is no more than one in every 2k-1(2k-1
1). In other words, if we simply replace the assignment p := p + 1 by p := p + [q!k in
the naive string-matching algorithm, we get a linear-time algorithm which correctly
performs string-matching (in any text) for all but one out of every 2k-1(2k-1 1) binary
patterns of any given length.)

Saving more space. In principle, of course, the linear-time algorithms of Theorem 1
still do require dynamic storage allocation to perform completely general string-
matching. We do not know whether completely general string-matching of this sort is
possible in linear time without dynamic storage allocation, but it is possible to further
reduce and even eliminate the dynamic storage allocation without retreating all the way
to the slow (O([x[.]y])) naive algorithm. To see how, note that the parameter k in our
hybrid algorithm can be a computed function of the pattern length. If the function is
easily computable, its calculation will not affect our time and space analyses. As we
increase the function from a constant up to identically the pattern length, we will get a

FAST STRING-MATCHING 427

heirarchy of algorithms of increasing time complexity (O(k([x[+[y[))) but decreasing
space complexity (O(1Ogk [X[)- O((1og [X[)/(1og k))). More significant than this time-
space trade-off, however, is the effect of choosing k [x[for a fixed small rational
e>0.

THEOREM 2. For each small rational e > O, about 10 + 2/e local memory locations
are enough for an algorithm to recognize the end of every instance of a pattern string x
(passed as an argument in a randomly accessible read-only array of length [x[) as a
subword in a longer on-line text string y in time proportional to [x[]y]. Each text character
is read only once, after the algorithm has decided whether the pattern is a suffix of the
preceding text prefix. Only the text character most recently read has to be stored.

Proof. Assume e =< 1 and Ix] _-> 2. The algorithm computes

and then calls the algorithm of Theorem 1 for this value of k. (This is possible because
our descriptions actually did use k only in a variable’s role.) Since e -<_ 1,

Therefore,

and

Ix[_-<k-1 < 21+lxl 41xl.
10+ 2. IOgk-1 [Xl 10+ 2(log Ixl)/(1og (k 1))

=< 10+ 2(log]x])/(log]x])

10+2/e

klyl (41xl / 1)lYl-- O(l’xlly[). E3

Theorem 2 finally makes general, fast string-matching possible without any
dynamic storage allocation at all (e.g., in FORTRAN). About 30 local variables (e
1/10) suffice for completely general string-matching in time O(Ixll/llyl), and about 70
local variables (e 1/30) reduce the time to o<lxl / lyl)o Not only are these times very
close to linear, but for patterns up to 1024 and a billion characters long, respectively, k
evaluates to just 3. For all practical purposes, therefore, these algorithms are identical
to the linear-time k 3 algorithm of Theorem 1, prefaced by the calculation of k as a
theoretician’s hedge.

Implementations on multihead finite automata. The simplicty of the naive string-
matching algorithm is that it can be implemented on a multihead finite automaton. Only
two two-way heads have to be maintained: one at position p + q + 1 of the text, and one
at position q + 1 of the pattern. Alternatively, if "backing up" the text is to be avoided, a
single one-way text head and three two-way pattern heads suffice. The algorithms of
Theorem 2 have a similar simple structure, but the number of heads grows in proportion
to 1/e.

THEOREM 3. For each small rational e >0, a two-way [lO+2/e]-head finite
automaton can recognize the end of every instance of a pattern string x as a subwordin a
longer on-line text string y (accessible to only one of the heads) in time proportional to
Ixllyl. The text head shifts right only, and it does so only after the automaton has decided
whether the pattern is a suffix of the text prefix scanned so far. (The multihead finite
automata for this theorem can sense which heads are coincident.)

428 ZVI GALIL AND JOEL SEIFERAS

Proof. This result is apparently stronger than Theorem 2. (Theorem 2 could be
derived as an easy corollary of Theorem 3, but probably not vice versa.) For the proof,
we adapt the algorithms designed for the earlier result.

Recall that there are three steps in the algorithms for Theorem 2" calculate k,
preprocess the pattern, and search the text. To calculate k we implement the following
algorithm:

m:=0;
while k > 1 do

begin
:=

m :=m+e
end;

m:= [m];
while rn > 0 do

begin
k :-2k;
m :=m-1

end;
k:=k+l

We can maintain k and Ira] as head positions in the pattern and commit m- [mJ to
finite-state memory. One auxiliary head enables the halving or doubling of k in time
proportional to k. For e =< 1, it follows that the entire calculation requires only time
proportional to lx l.

The essential variables and quantities 3f the earlier preprocessing and searching
algorithms will be maintained as head positions in the adaptations. First consider the
preprocessing algorithm. Heads will be maintained at the following pattern positions"

k (calculated earlier),
i,
q+l,
p+q+l,
P,
[i/k],
GATE(l), GATE(2), , GATE(2/)

(at most 2l _-<2. logk-1 Ix] _-<2/e positions).

Until assignment, the heads for GATE(l), GATE(2),..., GATE(2/) will advance
with the head at position i. The positions GATE(0) and GATE(2/+ 1)- 1 are marked
by the endmarkers around x, and the values of r and R are maintained in finite-state
memory. Note that none of the maintained head positions need ever exceed Ix + 1.

So that each head position can be updated in time proportional to a constant plus
the largest mandated change, three auxiliary heads will be used. The first will count
modulo k to enable [i/k] to be updated in a single step when increases. The second
will be used to count modulo k for the calculation of [GATE(r)/k] or [q/k] from a
copy of GATE(r) or from q, respectively, when either of these increments is needed.
The third auxiliary head will be used for the necessary copy of GATE(r) when the
increment [GATE(r)/k is needed. Thus the preprocessing algorithm accounts for all
[9 + 2/e heads on the pattern.

FAST STRING-MATCHING 429

For the searching algorithm, three fewer pattern heads will be needed. Of course
the one text head will be maintained at position of the text. Pattern heads will be
maintained at the following positions:

k (calculated earlier),
GATE(l), GATE(2), , GATE(2/) (calculated earlier),
i-p,
q+l,
p+q+l-po.

So that each head position can be updated in time proportional to a constant plus the
largest mandated change, two auxiliary heads will be available to help in calculating
[GATE(r)/kJ or [q/k] when either of these increments is required. Note again that
none of the maintained head positions need ever exceed Ix + 1.

To adapt the time analysis, we should consider each test and each assignment in the
preprocessing and searching algorithms. Each test can be performed in constant time by
comparing scanned symbols or by checking for head coincidence or proximity; for
example, p + q holds in the searching algorithm if and only if q + 1 exceeds -p by
exactly 1. By design, the time for each assignment is proportional to the largest
mandated change in head position, and only the following assignments in the two
algorithms can mandate more than a constant change in the position of any head"

(p, q):= (p+ [GATE(r)/kJ, q- [GATE(r)/kJ),

(p, q):= (p + [q/k], 0),

po := p.

Recall that the earlier time analysis was based on the proportional increase with time of
the quantity (k + 1)p + q. In each of the first two assignments, the quantity still does
increase in proportion to the largest mandated change in any head position and hence in
proportion to the largest mandated change in any head position and hence in proportion
to time. The last assignment mandates a change only in p + q + 1-po, a decrease of
p p0. Since p never decreases, the text length is a bound on the sum of all such changes.
Therefore, the total time spent on the last assignment is only O(lyl).

Remarks. (i) Only five of the heads above ever have to shift left. Three of these are
used in the calculation of k. Since a one-way head can maintain the position k after it is
found, all five two-way heads are available again for the preprocessing algorithm; they
are used at positions q + 1 and p + q + 1 and as the three auxiliary heads. Finally, the
two-way heads are used in the searching algorithm at positions q + 1, p + q + 1 -p0, and
-p and as the two auxiliary heads. Since the searching algorithm requires three fewer

heads, it does not matter that the one-way heads used at positions i, p, and [i/k in the
preprocessing algorithm are no longer available. We conjecture that some left shifting is
unavoidable; in fact, we conjecture that no one-way multihead finite automaton, no
matter how slow, can perform string-matching. There are techniques available for
proving apparently similar inadequacies of one-way multihead finite automata [16],
[18].

(ii) Suppose the algorithm stores [GATE(r)/k] instead of GATE(r) for each odd
r, as in the appendix. When it is needed, then, the increment [GATE(r)/k] can be
looked up rather than calculated; and this saves one of the auxiliary (two-way) pattern
heads in the multihead finite automaton implementation.

(iii) Equally fast string-matching can be performed by multihead finite auto-
mata which cannot sense which heads are coincident. For each pair of heads whose

430 ZVI GALIL AND JOEL SEIFERAS

coincidence is relevant to the algorithms of Theorem 3, we need only maintain an
additional head at a position equal to their separation; then coincidence will
be indicated when the additional head scans the left endmarker. Not every head has
to be compared with every other, and it turns out that the number of heads is still
O(1/e).

Implementations on Turing machines. M. Fischer and M. Paterson [6] showed how
to implement the Knuth-Morris-Pratt algorithm in linear time on a multitape Turing
machine, so it is natural to ask how efficiently our algorithms can be implemented on
Turing machines. Since the number of bits stored in each memory location by our
algorithms might be proportional to log Ix I, we will probably have to settle for space
proportional to at least (log Ixl)2 for a linear-time algorithm, and space proportional to
at least log]x for a nearly linear-time algorithm. Even so, input access remains a
problem. (With only one input head, in fact, the space-time product to recognize even
{xSxlx {0, 1}*} cannot be o(Ixl [43.) If we allow our multitape Turing machines to
have a one-way text input head and two two-way pattern input heads, however, we can
get the desired implementations.

THEOREM 4. For each e > O, a single-worktape Turing machine can recognize the
end of every instance of a pattern string x (accessible to two two-way input heads) as a
subword in a longer on-line text string y (accessible to lust one one-way input head) in time
proportional to Ixllyl and space proportional to log Ix[. The text input head shifts right
only, and it does so only after the Turing machine has decided whether the pattern is a

suffix of the text prefix read so far.
Proof. To get these implementations, we adapt the multihead finite automata of

Remark (iii) following the proof of Theorem 3. After the easy calculation of k, only two
of the pattern heads, at positions q + 1 and p +q + 1 during preprocessing and at
positions q + 1 and p + q + 1 -p0 during searching, ever have to read any symbol except
the left endmarker; all the rest are serving only as counters which can be incremented by
1, decremented by 1, and tested for 0. By Lemma 4 below, these counters can be
maintained by a single head on a single Turing machine worktape in time proportional
to the number of increments and decrements and in space proportional to the logarithm
of their largest contents Ix] + 1. [3

LEMMA 4. Consider counters which can be incremented by 1, decremented by 1, and
tested for O,

(a) A single-tape Turing machine can simulate any fixed number ofsuch counters in
linear time and in space proportional to the logarithm of their largest contents.

(b) A single-tape Turing machine can simulate one such counter in real time and in
space proportional to the logarithm of its largest contents.

Proof. (a) This simulation is described in detail by P. Fischer, A. Meyer, and A.
Rosenberg [8, pp. 276-277], but they do not point out the space bound. For each
counter, the simulation maintains separate binary counts of increments and decre-
ments, taking care to cancel corresponding l’s in the two binary representations. The
cancellation guarantees that the longer representation in a pair will be lengthened only
when the shorter one is all O’s.

(b) The one-dimensional version of the "origin-crossing problem" is simply to
simulate one such counter. The one-dimensional version of the real-time solution
described in detail by M. Fischer and A. Rosenberg [7] is the simulation we want, but
they do not point out the space bound. Like the one cited above, their simulation is
based on the idea of separate binary counts of increments and decrements. Whenever
the number of bits in the smaller count gets within 1 of the number of bits in the larger

FAST STRING-MATCHING 431

count, the simulation subtracts the smaller count from the larger, leaving the smaller
count at 0. This guarantees that the larger count is always at least twice the smaller
count, hence at most twice the difference. For details (especially how to get by in real
time), consult [7]. 71

Remark. In the simulation for part (b) above, the length of the nonblank portion of
the work tape is always proportional to a constant plus the logarithm of the current
contents of the simulated counter. It follows by the methods of Leong and Seiferas [14,
4] (using two "deque stacks") that a "stack" of such counters can be maintained in real

time and in space proportional to the maximum sum of the logarithms of the stacked
counters’ contents. (Only a counter containing 0 may be pushed or popped, and only the
top counter on the stack may be incremented, decremented, or tested.)

For the analogous linear-time Turing machine implementation to be sketched
below (Theorem 5), a more powerful counter simulation lemma will be useful.

LEMMA 5. For each increasing sequence of integers 0 Co < c < c2 <" < c,, B,
consider a B-bounded counter which can be incremented by 1, decremented by 1, testedfor
O, tested for B, and also tested for membership in {Co, ca, c2, , Cm}. Any such counter
can be described by the marked concatenation of the binary representations of the
successive differences Cl-Co, c2-ca,"’, c,-c,-l. There is a fixed multitape Turing
machine which, given any such description (on an auxiliary one-way input tape, say), can
simulate the corresponding counter in real-time and in space proportional to the length of
the description.

Proof. Let c be the current counter contents, and let c’=> c be the largest counter
contents so far. (Initially, c c’= 0.) The main idea is to use a Lemma 4(b) counter to
maintain the length of each nontrivial interval determined by c, c’, and the ci’s up to c’.
Since only the intervals adjacent to c can change in length, a pair of "counter stacks"
can be used for the purpose (see the remark following the proof of Lemma 4), one for
the lengths of the nontrivial intervals below c ,and the other for the lengths of the
nontrivial intervals above c. Finite-state memory can maintain whether c Co, whether
c c,,, whether c c’, whether c ci for any i, and whether c’= ci for any i. Then the
simulation is straightforward so long as c’ does not have to be incremented.

The only remaining problem is to increment the simulated counter contents c when
c c’. To make this easy, the simulator begins to quickly load an auxiliary Lemma 4(b)
counter with Ci+l--Ci as soon as c’ reaches C for <m. That same counter can be
decremented when necessary to increase c’ and c. Although the contents of the auxiliary
counter might occasionally go negative, it will be positive when the loading process is
completed, provided the loading requires fewer than Ci/l- ci steps. After the loading
process is completed, the next following 0 contents in the auxiliary counter will indicate
that c’=ci/l and free up to the counter to load ci+2-c+1 if + 1 <m.

Finally, we note that the auxiliary counter can be loaded sufficiently quickly from
the successive binary representations in the given counter description. The straight-
forward approach of successive subtractions takes time proportional to c+1- c [8], and
that time can be sped up to less than c/ ci by first recopying the binary representation
(of length only O(log (C+l-Ci))) sufficiently compactly [11]. (For Ci+l-Ci close to 0, a
more straightforward use of finite-state memory suffices.)

THEOREM 5. A multitape Turing machine can recognize the end ofevery instance of
a pattern string x (accessible to two two-way input heads) as a subword in a longer on-line
text string y (accessible to just one one-way input head) in time proportional to lY] and
space proportional to (log Ixl)2. The text input head shifts right only, and it does so only
after the Turing machine has decided whether the pattern is a suffix ofthe textprefix read so
far.

432 ZVI GALIL AND JOEL SEIFERAS

Remark. An immediate corollary is the weaker Fischer-Paterson result that an
ordinary multihead (and hence multitape [14]) Turing machine can perform string-
matching on-line in linear time. Galil’s techniques [9] can be used to convert either of
the two Turing machine algorithms to a real-time one.

Proo]:. Recall how we proved Theorem 4 by adapting the algorithms of Theorem 2
via Theorem 3 and Remark (iii). For this result, we adapt the k--3 algorithm of
Theorem 1 in an analogous manner.

To adapt the algorithm, we separately adapt the preprocessing and searching
phases. The searching algorithm is simpler, so we start with it. Input heads are
maintained at pattern positions q + 1 and p + q + 1 -p0 and of course at text position i.
The variable next and the parity of r are maintained in finite-state memory. Lemma 4(b)
counters are maintained for i-(p+q) and r. Finally, two Lemma 5 counters are
maintained, both with ci-set {GATE(0),. ., GATE(2/+ 1) Ixl / 2}, (The adaptation
below of the preprocessing algorithm will prepare the descriptions of these counters.)
The first of these is used to maintain q, and the second is used to count up to GATE(r)
for the calculation of [GATE(r)/3J when it is needed.

During the preprocessing phase, the Turing machine adaptation maintains two
more Lemma 5 counters, both with ci-set {GATE(0),..., GATE(R)}; and it also
maintains the full descriptions (growing with R) of these counters. (.At the end of
preprocessing, these descriptions can be completed (R 21 + 1) and supplied as the
necessary input to the searching algorithm.) .As in the searching algorithm, these
counters are used to maintain q and to count up to GATE(r) for the calculation of
[GATE(r)/3J when it is needed. Lemma 4(b) counters are maintained for the following
values:

i-(p+q),

p-[i/3J,

/-GATE(R).

The assignment G.ATE(R) := following R := R + 1 is executed by emptying the last
counter above and appending the binary representation of its contents to the back ends
of the two counter descriptions. (This calls for multihead tape units, but they can be
simulated without time loss by single-head tape units [14].) The parities of r and R are
maintained in finite-state memory, and input heads are maintained at pattern positions
q+l and p+q+l.

No counter contents or ci (GATE value) ever exceeds Ixl + 2, and the number of ci’s
is O(log Ixl). It follows by Lemmas 4 and 5 that the space used by the Turing machine
implementation we have sketched is O((log

As in the proof of Theorem 3, we adapt the original time analysis. Each test can be
performed in constant time, and each assignment can be performed in time propor-
tional to the largest mandated counter change. The only assignments which can
mandate more than a constant change in any counter contents are GATE(R) := and
those already analyzed in the proof of Theorem 3. The largest mandated counter
change for the first assignment is G.ATE(R)- G.ATE(R 1). The pattern length plus 2
is a bound on the sum of all such changes, so the total time spent on this assignment is
only O(Ixl).

FAST STRING-MATCHING 433

Appendix A: Analysis for more general k. If we relax the requirement that k can be
an integer and insist only that k exceed 2, no serious difficulties arise. It suffices to
reformulate Lemma 2 and Corollaries 1-3 as shown below. The only proof that changes
significantly is that of Corollary 3.

LEMMA A.2. If k >-2, then GATE(2r-1)= [k VAL(r)] for every r (1 <-r<-l).
(Since VAL(r) is an integer and k >- 1, it follows that VAL(r) [GATE(2r- 1)/k] for
every r.)

COROLLARY A. 1. If k > 2, then

VAL(r + 1) > [(k 1). VAL(r)]

for every r (1 <-_ r <= 1).
COROLLARY A.2. If k _-> 1 + x/ 2.4, then

GATE(2r) < GATE(2r + 1)

for every r (1 <= r <- 1).
COROLLARY A.3. If k > 2 and KMP(q) KMPk(q) VAL(r), then

GATE(2r + 2 2 [logk_l k _-< q KMP(q) < q < GATE(2r).

Proof. Assume the hypothesis. Only the leftmost inequality is not immediate. By
Lemma 3,

Similarly,

q >- k. KMP(q) > (k 1)(GATE(2r 2)- 1).

GATE(2r- 2i)- 1 > (k 1)(GATE(2r- 2(i + 1))- 1)

for 1, 2,.... For every i, therefore,

q > (k 1) (GATE(2r 2i)- 1).

In particular,

GATE(2r + 2-2 [log-i k])- 1 <q/(k 1)[lgt-’ k]-I

<=q -q/k
-< q- KMP(q).]

For k (3+x/)/22.6, it still follows from Corollary A.3 that at most one
decrement r := r-1 is necessary after the change q :=q- KMP(q). For smaller k, a
larger, but still bounded, number of decrements may be necessary.

For k >- 1 +/ 2.4, it still follows from Corollary A.2 that at most one increment
r :=r+l is necessary after the change q :=q+l. For smaller k, the number of
increments is at most two, since GATE(r + 1)> GATE(r) holds for every odd r, even
without Corollary 2 or A.2.

In addition, in the case that k < 1 +x/, one small change is needed in the
preprocessing algorithm. Since GATE(r + 1)= GATE(r) is possible (for r even), the
algorithm might have to add to its GATE sequence twice when it discovers KMP(i)
p. If the last element in the sequence so far is GATE(R), then this is necessary precisely
when R is odd and too should be an odd member of the GATE sequence. By Lemma
A.2, the latter is the case if and only if [k KMP(i)]. Shown below is the appropriate
revision of the last if-statement in the preprocessing algorithm.

434 ZVI GALIL AND JOEL SEIFERAS

if ((p <= i/k and R is even) or
(p > i/k and R is odd))-*
begin
R :=R+I;
GATE(R):=

end
(i [kp] and R is odd) [impossible if k -> 1 +/ 2.4]-*
begin
R :=R+2;
GATE(R 1) := i;
GATE(R):=

fi;

It is more difficult to relax the requirement that k be strictly greater than 2. For a
favorable analysis of our hybrid algorithm, we need a constant Ck strictly greater than 1,
such that VAL(r + 1)/VAL(r) > ck for every r (1 =< r =< l- 1). Only for k strictly greater
than 2 does Corollary 1 or A.1 to Lemma 3 above provide such a constant (ck k 1).
The analogous corollary to the following more difficult alternative to Lemma 3 provides
such a constant even for k 2 (ck 2k/3).

LEMMA A.3’. If KMP(q3)>KMP(q2) >KMP(ql) and KMP(qz)-<q2/2, then
KMP(q3) > [2ql/3].

Proof. Assume the hypothesis. By Lemma 1,

ql KMP(ql) + 1 KMP(q2).

Using the hypothesis KMP(q2)=< q2/2, we show below that

qx + KMP(ql) + 1 =< KMP(q2) + KMP(q3).

Adding these inequalities, we get

hence

2qx + 2 -< 2. KMP(q2) + KMP(q3)

=< 3 KMP(q3) 2,

KMP(q3) -> 2ql/3 + 4/3

> [2qa/3].

It remains only to prove the inequality

qx + KMP(ql) < KMP(q2) + KMP(q3).

Suppose, to the contrary, that

ql KMP(q2) _-> KMP(q3) KMP(ql).

Then let

u [KMP(ql), KMP(q2)],

v [KMP(q2), KMP(q3)]x,

w [KMP(q2), ql]x,

W’= [ql, q2]x.

FAST STRING-MATCHING 435

The string [0, ql]x has periods of both lengths KMP(ql) and KMP(q2), so

w [KMP(q2), q]x

[0, q- KMP(q2)]x

[KMP(qa), q KMP(q2) + KMP(q,)]x.

The last string is a prefix of uw, so u is a period of w. Similarly, v is a period of ww’, and
hence of w, too. The hypothesized inequality implies Iwl-->]u] +]vl, so u and v must have
a period z of length gcd(lul, Ivl), by the periodicity lemma. But then

v period of ww’=> z period of ww’

=), u period of ww’

=), u period of uww’= [KMP(q), q2]x.

In addition, since [0, q2]x has a period of length KMP(q2),

u period of ww’ [KMP(q2), q2], =)’ u period of [0, q2 KMP(q2)]x.

But q2-KMP(q2)>=KMP(q2), since KMP(q2)<-q2/2. Thus u is a period of both
[0, KMP(q2)], and [KMP(qx),qz],=[KMP(qz)-Iul, q2],, hence of the entire string
[0, q2]x. Therefore,

KMP(q2) <- lul
KMP(q2) KMP(q)

< KMP(q.),

a contradiction.
COROLLARY A.I’. If k >-2, then

VAL(r + 2) > [(2k/3) VAL(r)]

for every r (1 <- r <- 2).
COROLLARY A.3’. If k >-_ 2 and KMP(q) KMPk(q) VAL(r), then GATE(2r

12) _-< GATE(2r- 4 [log2k/3 (k/(k 1))]) _-<q KMP(q) <q < GATE(2r).
Proof. Use Lemma A.3’ rather than Lemma 3 in the proof of Corollary A.3.
By Corollary A.I’, <2. logan/3 Ixl O((log Ixl)/(log k)), even for k 2. In addi-

tion, this analysis is superior to the earlier one for 2 < k < (4 + /ff)/3 2.2.
Although Corollary A.3 in this appendix gives a bound on the number of

decrements r := r- 1 necessary after the change q := q KMP(q), that bound depends
on k and does not apply for k 2. Corollary A.3’ guarantees that eleven decrements
suffice regardless of k, even for k 2.

The generalizations above lead to a favorable analysis of our hybrid algorithm for
every rational k>_-2. The number of local memory locations is about 10+
2. rain {log_ Ixl, 2. log2/3 Ixl}, and the time is proportional to klyl. (This analysis
notwithstanding, minimizing k may not give the fastest algorithm. The while-loops
which increment and decrement r (at most twice and eleven times, respectively) can
iterate the most for very small values of k. Moreover, only for k _-> (3 + /)/2 2.6 > 1 +
/ 2.4 can both while-loops be replaced by if-statements to save additional time.
With these changes, the algorithm for k equal to (3 + x/)/2 (or some slightly larger
rational number) becomes a stronger candidate for our fastest hybrid algorithm.)

436 ZVI GALIL AND JOEL SEIFERAS

Finally, for completeness, let us note that the hybrid algorithm for 1 < k < 2 does
not save significant space. For k in this range, can be proportional to the pattern
length. In particular, is f((2-k)lxl/(k- 1)) for patterns x of the form a"ba

Appendix B: Hybrid algorithm taking mismatch into account. In the manner
described earlier, this most complete version of the hybrid algorithm for fixed k >-2
(Appendix A is a prerequisite here) takes into account the mismatch x(q + 1)
y(p + q + 1) when it increments p. More specifically, it increments p by KMP(q) only
when q+l =GATE(r) for some even r. For each odd r, this version stores
[GATE(r)/kJ VAL((r + 1)/2) instead of GATE(r). As above, we list the simpler
text-searching algorithm first:

(p, q, r) := (0, 0, 0); [r always even]
:=0;

loop:
:=i+l:[i=p+q+l]

read next; [next y(p + q + 1)]
po := p;
until p + q do

if ((p + q + 1 and x(q + 1) next) or
(p + q + 1 < and x(q + 1) x(p + q + 1 po)))

then
begin
q:=q+l;
if q => GATE(r + 2) then r := r + 2

end
else

if q 0--> (p, q, r) := (p+ 1, 0, 0)
l"l q + 1 GATE(r + 2)-->

(p, q):= (p+VAL(r/2+ 1), q-VAL(r/2+ 1));
while q < GATE(r) [impossible if k _-> (3 + /g)/2]
do r := r- 2 [at most five times]

[5] else-* (p, q, r):= (p + [q/k], 0, 0)
fi;

if q]x then declare match;
go to loop

Finally, here is the algorithm for preprocessing the pattern"

GATE(0) := 0;
(p, q, r) := (1, 0, 0);
i:=l;readx(i);R :=0;
loop:

:= i+ 1; read x(i); [i =p+q+ 1]
if x (i) $ then

begin
if R is even

then [R 2/] GATE(R + 2) := + 1
else [R 21-1] (GATE(R + 1), GATE(R + 3)) := (i, + 1);

return
end

FAST STRING-MATCHING 437

until p + q do
if x(q + 1) x(p + q + 1)

then
begin
q:=q+l;
if (r + 2 _-< R and q -> GATE(r + 2)) then r := r + 2

end
else

if q =O-->(p, q, r):= (p+ 1, O, O)
[:] (r + 2 <_- R and q + 1 GATE(r + 2)) -->

(p, q) := (p + VAL(r/2 + 1), q VAL(r/2 + 1));
while q < GATE(r) [impossible if k _-> (3 +,/g)/2]
do r := r- 2 [at most five times]

[:1 else+ (p, q, r) := (p + [qlk], O, O)
fi;

if (p <-_ ik and R is even) -+

begin
R:=R+I;
VAL((R + 1)/2):= p

end
71 (p > i/k and R is odd)-->

begin
R :=R+I;
GATE(R):=

end
[q (i [kp] and R is odd) [impossible if k -> 1 +

begin
R :=R+2;
GATE(R- 1):= i;
VAL((R + 1)/2):- p

end
fi;
go to loop

Acknowledgments. Ruth Zimmerman pointed out that the VAL sequence can be
inferred from the GATE sequence if k is large, Leo Guibas raised the question of how
the hybrid algorithm behaves for k 2, and Allan Borodin reminded us of Cobham’s
cited work.

A preliminary version of this paper was presented at the Eighteenth Annual
Symposium on Foundations of Computer Science, Providence, Rhode Island, Novem-
ber 1977.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] G. BARTH, One pass and extended string matching, manuscript, Fachbereich Informatik, Universitit
Kaiserslautern, Kaiserslautern, Germany, 1977.

[3] A. K. CHANDRA, Efficient compilation of linear recursive programs, 14th Annual Symposium on
Switching and Automata Theory, Iowa City, IA, 1973, pp. 16-25.

[4] A. COBHAM, The recognition problem for the set of perfect squares, IEEE Conference Record of 1966
Seventh Annual Symposium on Switching and Automata Theory, Berkeley, CA, 1966, pp. 78-87.

438 ZVI GALIL AND JOEL SEIFERAS

[5] E. W. DIJKSTRA, Guarded commands, nondeterminacy and formal derivation of programs, Comm.
ACM, 18 (1975), pp. 453-457.

[6] M.J. FISCHER AND M. S. PATERSON, String-matching and otherproducts, Complexity of Computation
(SIAM-AMS Proceedings, vol. 7), R. M. Karp, ed., American Mathematical Society, Providence,
RI, 1974, pp. 113-125.

[7] M. J. FISCHER AND A. L. ROSENBERG, Real-time solutions of the origin-crossing problem, Math.
Systems Theory, 2 (1968), pp. 257-263.

[8] P. C. FISCHER, m. R. MEYER AND A. L. ROSENBERG, Counter machines and counter languages, Ibid.,
pp. 265-283.

[9] Z. GALIL, String-matching in real time, J. Assoc. Comput. Mach., to appear.
[10],Palindrome recognition in real time by a multitape Turing machine, J. Comput. System Sci. 16

(1978), pp. 140-157.
[11] J. HARTMANIS AND R. E. STEARNS, On the computational complexity of algorithms, Trans. Amer.

Math. Soc. 117 (1965), pp. 285-306.
[12] J. E. HOPCROF’, W. J. PAUL AND t. G. VALIANT, On time versus space, J. Assoc. Comput. Mach. 24

(1977), pp. 332-337.
[13] D. E. KNUTH, J. n. MORRIS, JR. AND V. R. PRATT, Fast pattern matching in strings, this Journal, 6

(1977), pp. 323-350.
[14] B.L. LEONG AND J. I. SEI’ERAS, New real-time simulations ofmultihead tape units, J. Assoc. Comput.

Mach., to appear.
[15] R. C. LYNDON AND M. P. SCHOTZENBERGER, The equation at= brct’ in a free group, Michigafi

Math. J. 9 (1962), pp. 289-298.
[16] C. G. NELSON, One-way automata on bounded languages, Rep. TR-14-76, Center for Research in

Computing Technology, Aiken Computation Laboratory, Harvard University, Cambridge, MA,
July 1976.

[17] J. I. SEIFERAS AND Z. GALIL, Real-time recognition ofsubstring repetition and reversal Math. Systems
Theory, 11 (1977), pp. 111-146.

[18] A. C. YAo AND R. L. RIVEST, k + heads are better than k, J. Assoc. Comput. Mach. 25 (1978), pp.
337-340.

SIAM J. COMPUT.
Vol. 9, No. 2, May 1980

(C) 1980 Society for Industrial and Applied Mathematics
0097-5397/80/0902-0014 $01.00/0

CORRIGENDUM:
A FAMILY OF ALGORITHMS FOR

POWERING SPARSE POLYNOMIALS*

DAVID K. PROBST" AND VANGALUR S. ALAGAR"

On p. 629, the concluding sentence of Section 2 should read"

Our analysis of various algorithms leads us .to conjecture that algorithm BINF is opti-
mal for time and space within the entire family of sequential binomial-expansion algo-
rithms for computing integer powers of sparse polynomials.

* This Journal, 8 (1979), pp. 626-6.44.
Department of Computer Science, Concordia University, Montreal, Quebec, Canada H3G

1M8.

439

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

THE MATHEMATICS OF RECORD HANDLING*

HARTMUT EHRIG]" AND BARRY K. ROSEN$

Abstract. We propose a mathematical foundation for reasoning about the correctness and computational
complexity of record handling algorithms, using algebraic methods recently introduced in graph theory. A
class of pattern matching and replacement rules for graphs is specified, such that applications of rules in the
class can readily be programmed as rapid transformations of record structures. When transformations of
record structures are tormalized as applications of rules to appropriate graphs, recent Church-Rosser type
theorems of algebraic graph theory become available for proving that families of transformations are well
behaved. In particular, we show that any Church-Rosser family of transformations can be combined with
housekeeping operations involving indirect pointers and garbage collection without losing the Church-
Rosser property, provided certain mild conditions on the rules defining the family are satisfied. This leads to
suggestions for the design of record handling facilities in high level languages, especially when housekeeping
chores are to be performed asynchronously by service processes that run in parallel with the main process.
These results and the general theorems that support them can be used to analyze the behavior of a large record
structure that can be updated asynchronously by several parallel processes or users.

Key words, record structure, indirect addressing, garbage collection, asynchronous parallelism, Church-
Rosser property, category 1;heory, pushout, graph, production, derivation

1. Introduction. One major difference between record handling [17, 2.1], [30,
4.4] and numerical computing is the lack of a standard mathematical foundation.

Without precise but language independent definitions of record structures and the basic
operations on them, it is difficult to study language design issues for record handling.
Proofs of correctness or complexity bounds for record handling programs need a
mathematical foundation. Graph theory is the obvious place to look for appropriate
material, since a record structure is naturally viewed as a directed graph wherein each
record is a node and each pointer from one record to another is an arc. There is a
voluminous literature on algorithms involving graphs (as in [11], [16], [24], [27], [28]),
but the relevance of this literature to many record handling problems is doubtful.
Running time linear in the size of an input graph is ordinarily and rightly considered fast
in the literature. But processes requiring that an entire set of records be scanned are
ordinarily and rightly considered slow in record handling. This is not to disparage the
literature" we merely want to emphasize that different problems arise in record
handling. In particular, record handling algorithms often deal with local properties and
transformations on the graph, and with possibly unpleasant interactions between
transformations when several users can update a data base asynchronously. An
algebraic approach to graph theory has recently been introduced, partly to deal with
these concerns. This paper’s results are applicable to record handling, but the presen-
tation of these results is also a convenient occasion to explain the algebraic approach in
a new way. The earliest work [6], [21] had unusual prerequisites and some technical
complexities that were later eliminated [4], [7]. Enough results have now accumulated
to support an exposition that is intelligible and perhaps even plausible without large
prerequisites. Those who wish to read the proofs carefully will sometimes, need to
consult [20], [21], but only as indicated by citations. A two pass reading is recom-
mended, with proofs omitted on the first pass.

* Received by the editors September 27, 1978, and in revised form May 15, 1979.
’Fachbereich Informatik, Technische Universitit Berlin, 1000 Berlin 10, Federal Republic of

Germany. Part of the work of this author was done while visiting the IBM Thomas J. Watson Research
Center, with support from IBM Germany and IBM World Trade Corporation.

t Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, 10598.

441

442 HARTMUT EHRIG AND BARRY K. ROSEN

Section 2 reviews some well-known concepts from record handling and relates
transformations of record structures to "productions" that can be applied to graphs.
There is a similarity in ultimate intentions between this work and [19] without any
technical similarity. A specific record handling language receives an interpretive
semantics and validated proof rules in [19]. This language has the usual basic facilities
and is generally of lower level than our discussion. The effects of any "node assignment
statement" [19, p. 109] are readily obtained by applying an appropriate production, but
many of our productions can only be simulated by nontrivial programs in the language.
This paper complements [19]. After a very high level algorithm has been certified with
the aid of our methods, the correctness of a realization at the level of ALGOL W or
Pascal could be demonstrated with the aid of [19]. Section 3 presents fundamental
existence theorems that are applied here but are not limited to record handling.

The next two sections deal with housekeeping tasks in record structures: main-
tenance of indirect pointers in 4 and a simple form of garbage collection in 5. We
establish conditions under which housekeeping operations do not interfere with
whatever else is being done. For example, list processing should not be stymied because
a little garbage has been collected by a second processor, operating asynchronously in
parallel with the main processor. (The resulting suggestions for language design are
collected in 6.) Noninterference is formalized by the "Church-Rosser property"
(defined here essentially as in [20, Def. 3.2]), involving an arbitrary set of objects and a
single relation among the objects. Given a set Y3 and a relation >> on , consider any

Y3 such that is closed under >>: if G is in and G >> H then It is in -. Then the
system (, >>) is Church-Rosser iff

(VG, H, H# in -)
(1.1)

[(G >>*H & G>>*H#) implies (=IX in)(H >>* X & H# >>* X)],

where >>* is the reflexiYe transitive closure of >>. If G is in - and

(1.2) G>>*H and -a(=lXin)(H>>X)

then H is a normal form for G in (if, >>). The Church-Rosser property implies that
normal forms are unique when they exist at all. Our (1.1) is a special case of the more
general Church-Rosser property involving two relations as studied in [15, 1.3], [23],
[22]. By distinguishing @ from we gain some notational convenience over [15], [20],
[22], [23] in applications without changing the theory.

Staples [25] calls the pair (, >>) "subcommutative" if the following property
holds, where is the set of all G in that have normal forms in (Y3, >>) and >>= is the
reflexive closure of >>:

(VG, H, H# in)
(1.3)

[(G >>= H & G >>= H#) implies (:IX in)(H >>=X & H# >>= X)].
For any

_
5 such that is closed under >> and (1.3) holds, we will say that (o%, >>) is

strongly Church-Rosser. Because (1.3) implies closure under >> for the choice of in
[25], our property of being strongly Church-Rosser is a little more general than
subcommutativity. When interest centers on normal form computations and their
lengths, the concepts are interchangeable and have the significance explained in [25].
Strongly Church-Rosser systems will be important when we study indirection in 4
here, because there are frequently occurring conditions under which one system’s being
Church-Rosser follows from another (and simpler) system’s being strongly Church-
Rosser. Finally, note that the first two occurrences of >>-- in (1.3) could be replaced by >>

RECORD HANDLING 443

without changing the class of strongly Church-Rosser systems. This is helpful in
verifying the property. For using the property the given formulation is more convenient.

Notations are standard, except that we avoid unnecessary parentheses. The value
of a map [at an argument x is/’x. IfA is a subset of the domain of/" then/’A is {Ix Ix A}.
A bare minimum of categorical machinery is used, and most of the ideas are explained
when introduced here. The few exceptions are widely known basic concepts that need to
be set in a broad context such as is provided by the introductory chapters in books like
[1] or [14]. The reader should have a slight familiarity with obfects and morphisms in
categories [1, pp. 29, 30], [14, p. 16] and with isomorphisms 1, p. 35], [14, p.35] and
commutative diagrams [1, pp. 2, 4], [14, pp. 3, 17]. The usefulness of these basic
concepts is like the usefulness of procedures in programming. Elaborate computations
can be invoked by a simple procedure call, and elaborate calculations with large
combinatorial objects can be summarized by simple diagrams. Some of the calculations
can even be avoided, thanks to simpler calculations that establish the hypotheses of
categorical lemmas. Adding procedures to a programming language makes the
language a little harder tQ learn but a lot easier to use. Adding categorical ideas to a
theory of record handling has a similar effect, though we do not claim as dramatic a ratio
of benefit to cost. Neither do we claim that category theory is a panacea. We do claim to
have proved some interesting theorems about record handling, such that the theorems
are extremely difficult to prove without categorical ideas. (After the fact, one can
laboriously translate our proofs into ones that formally avoid category theory. This is
not helpful.)

2. Record structures and expression graphs. Complex information can be
represented in a computing system’s memory by distributing it over many "records",
each of which has a relatively small number of "fields". A field may directly contain a
little information, such as a short string of characters or an integer that can be
represented with 15 bits, or it may contain a "pointer" to another record that must be
consulted if more information is desired. (In some applications a pointer might loop
back to the same record.) Records are often divided into "classes", so that all records in
a class have the same number of fields, the same names for the respective fields, and the
same kinds of direct or pointer data in their fields. (Different fields may contain different
kinds of data.) These concepts are well known [17, 2.1], [30, 4.4] but appear in many
places under many names. We will speak as above. A set of records such that each
pointer is to a record in the set is a record structure. We formalize the intuitive concept of
record structures with the mathematical concept of colored graphs. Such a graph is a pair
(G, mG), where G is a finite direct graph. A node in G corresponds to a record. There is
an arc from node x to node y whenever record x has a field that points to record y. (If
there are two such fields then there are two such arcs; we db not assume that arcs are
pairs of nodes.) Nodes and arcs are both called items, and rn maps items to packets of
information called colors. The color of a node tells how many fields it has and what their
names are and what data is stored directly in fields that do not contain pointers. The
color of an arc from x to y indicates which field of x is responsible for the arc’s being in
G. Mathematically, we just have nonempty sets of node colors and arc colors with mG
mapping nodes to node colors and arcs to arc colors. We will be casual about the
distinction between the intuitive concepts like "record" and the mathematical concepts
like "node" whenever there is no danger of confusion.

We begin our study of transformations of record structures with an example.
Suppose RD1 is a record and we wish to replace all pointers to RD1 in the record
structure with pointers to another record RD2. In many situations it is expensive to find

444 HARTMUT EHRIG AND BARRY K. ROSEN

all pointers to RDI: only pointers [rom RD1 are stored as fields of RD1. It is also
intuitively plausible that we only really need to change whatever pointers will actually
be followed in the future. In this context it is natural to simply replace RDI’s data
without moving it. We change RD1 so that it has just one pointer field, pointing to RD2.
The direct data at RD1 is changed to indicate that RD1 is now merely a dummy record,
so that pointers to RD1 will be treated as indirect pointers to RD2. In the future,
whenever we follow a pointer from RD3 to RD1, we will update the appropriate field of
RD3 so as to point directly to RD2 if the pointer is followed again. One of the contexts
where this natural use of indirection is especially appropriate is in the efficient
evaluation of recursively defined functions, as is discussed in [18, Appendix A]. The
discussion above and in 18, Appendix A] can be formalized easily. We assume there is
a distinguished node color I such that any node colored I in a record structure has
exactly one outarc, and this outarc carries the distinguished arc color ind. Formally, a
colored graph is a record structure here iff it uses the special colors L ind in this way. The
record structures that actually arise in any one application will of course satisfy many
additional constraints because of the meanings of other colors.

For an arbitrary arc color c, suppose our record structure (G, ma) includes an arc z
whose target (the node it points to) is colored L This node tz has a unique outarc with a
target w, and w is the record indirectly pointed to by pointers to tz. Thus z should be
replaced by a new arc sr with the same color c and the same source (the node it points
from) that z has in G. In the new record structure (H, mH), the target of r is w.
Otherwise the new structure is like the old one. For example, consider (G, ma) as shown
on the left in Fig. 2.1. Then (H, mH) is as shown on the right in Fig. 2.1. The role of the
colored graph (D, rnD) in the figure is explained below.

C2

b

(G,mG) (D,mD) (H,mH)

FIG. 2.1. In (G, me) the field c of record RD3 points indirecdy to RD2. In (H, mr4) the pointer data has
been changed so as to point directly to RD2.

To specify the transformation precisely without committing ourselves to any one
programming language, we use a "production" in the sense of algebraic graph theory.
We pass from (G, too) to (H, mH) by applying a production p-
[(BI, ml)-K (B2, mE)] consisting of a graph K, colored graphs (Bi, mi), and maps
bi: K - Bi. These maps are required to be graph morphisms: if x is an arc in K with
source stcx and target tcx, then the image arc bix in Bi has sources and targets

(2.1) $ibix biSKX and tibix bitKX.

Readers with an algebraic background will note that this coincides with the usual notion
of a (homo)morphism of algebraic structures whose carriers are collections of sets. In
our case, a graph is a finite algebra carried by a set of nodes and a set of arcs. The
operations are the source and target maps s and t from arcs to nodes. The specific
production Pind(C) that retargets an arc colored c whose target is colored I appears in

RECORD HANDLING 445

ind "’Qb2x2

(Bi,ml) "K (B2,m2)

FIG. 2.2. A production consists of an interface graph K, left and right colored graphs (Bi, mi), and graph
morphisms bi K Bi.

Fig. 2.2. In addition to the node color I and the arc colors c, ind already introduced, we
use node colors u, v in (Bi, mi) as variables to represent whatever color may actually
appear on the nodes in G. The first step in applying p to (G, me) is to "recolor" the
variables u, v to appropriate node colors ru, rv. The resulting production rpina(C) has
colored graphs (Bi, rm) wherein any node x in B has the color rmx. (As a map from
colors to colors, r leaves all colors but u, v fixed.) For the example (G, me) in Fig. 2.1,
we use ru RD3 and rv RD2. Why do we not use a single production pi,a, with a
variable arc color that can be recolored to each arc color c of interest? Intuitively, this
would be preferable to having a different production Pina(C) for each c. Technically,
however, it is very convenient to avoid having variably colored items in Bi that are not in
biK. It is also very convenient to have the arcs colored c in pina(c) be outside biK. We
hope that latter convenience will be obviated by future developments, but for the
present a multiplicity of productions provides a good deal of technical convenience at a
moderate cost in intuitive naturalness.

Figure 2.3 summarizes the algebraic constr,uction that applies rpina(C) to (G, me) to
the arc z with moz c. The horizontal arrows at the top of Fig. 2.3 come from the
production rpina(C), and we have added colorings mK, of K such that bl and b. are
colored graph morphisms now: they preserve colors as well as sources and targets. In this
example m:,l mK.2, but in general a production might change some colors: some x in
K has rmlblX rm2b2x. The colored graph morphism g: (B1, rml)-(G, me) picks out
the "three" nodes and "two" arcs in G where the production is to be applied. (We use
the quotation marks because there is no requirement that g or any other morphisms
here be injective.) The image subgraph gB1 in G may have connections with the rest of

(B1, m,)z (K, m:,,)(K, m:,) -(B2, m2)
bl b2

(G, m6) (D, mo,,)(D, mo,2) (H, ran)
C1 C

FIG. 2.3. A derivation consists of two pushouts in the category of colored graphs that share a graph
morphism d: K D.

446 HARTMUT EHRIG AND BARRY K. ROSEN

G: an arc in G gB1 may have a source or target in gB1. We require that such a source
or target be in gblK, so that the connections can be displayed by graph morphisms
d:KD and Cl:D- G such that the composition Cld is equal to the composition
gbl. These connections are retained when (B2, rm2) replaces (B, rrna) to form (H, mH):
there is a graph morphism c2 with c2d hb2, where h displays how B2 fits into H after
the transformation. Thus Fig. 2.3 is a commutative diagram in the category
GRAPHS[C] of (finite directed) graphs together with colorings m: (items in G) C,
where C is the set of colors used. (Actually, C is a pair of sets, one for nodes and one for
arcs.) The morphisms in this category are of course the colored graph morphisms
defined above.

For any recolored production rp, not just our example ?’Pind(C), Fig. 2.3 is called a
direct deviation (G, rn) (H, mH) via rp based on g provided that two conditions hold.
First, mz,,1 only differs from too,2 as required by color changes specified in p"

(2.2.1) mD.lY mD,2Y for all y in D dK.

Second, the two squares in Fig. 2.3 completely describe (G, m) and (H, mH) in the
following precise sense"

(2.2.2) both squares are pushouts in GRAPHS[C].

See Appendix B for an explanation of the intuitive significance of pushouts, followed by
the algebraic definition. Much of this paper can be read with only the knowledge that
pushouts are commutative squares.

For the example (G, ma) in Fig. 2.1, there is a direct derivation (G, rna)
(H, mH) via ?’Pind(C) based on g: B1 G, where Ba is from Fig. 2.2. The morphism g
maps the arc colored c in (BI, rma) to the arc colored c in (G, m) and it maps the arc
colored ind in (BI, rma) to the arc colored ind in (G, m). The horizontal arrows at the
bottom of Fig. 2.3 are shown in detail in Fig. 2.1, with mo, too.2 in this example. In
general, derivations via /’Pind(C) will have rno, too,2 but derivations via many other
productions will not. In this example the morphisms are all injective, but this is not
required in general. We could easily have g#baxo g#bx2 in an application of t’Pind(C)
to some other graph (G #, m). Of course a derivation is a sequence of direct
derivations, and it is via the sequence of productions used. The qualifier "direct" is
often omitted when confusion is unlikely. Of special interest are the natural deriva-
tions" those with cl injective. In our example ba is injective, and this implies (by an
elementary property of pushouts) that any derivation via FPind(C is natural.

The finiteness of graphs will sometimes be helpful here, so we restrict attention to
finite graphs at the start. Because of our interest in manipulating large record structures,
however, we want to avoid productions such that the work required to apply rp to
(G, ma) depends on the size of G. In particular, suppose there is a node y in Ba- baK.
Then we cannot apply rp with g" B1 - G unless the node gy in G has no inarcs or outarcs
beyond those in gB1. This is a property of pushouts in GRAPHS[C] reflecting the
intuition that such arcs would be left "dangling" when B2 replaced Ba. To check that gy
has no unwanted inarcs or outarcs without scanning G, we want to represent G in such a
way that the indegree or outdegree of a node can be found in "one" step, or at worst in
time independent of the size of G. In record handling the outdegree of a node is simply
the number of nonnull pointer fields. The indegree is simply the value of the reference
count if each record is maintained with such a count of how many pointers to the record
are currently in the record structure. Programs for finding and maintaining indegree and
outdegree information are easily written in this context. The general theory is not
concerned with how this is done. (In the very common special case where ba is surjective

RECORD HANDLING 447

on nodes, there is no worry about dangling arcs and hence no need for indegrees and
outdegrees.) Given rp and g: BI- G, it should be possible to determine whether a
natural derivation via rp based on g can be constructed (and then construct one if the
answer is yes) in such a way that the costs depend on the sizes of graphs in rp but not on
the size of G. Mathematically, p is said to be fast iff

(2.3) and b2 are injective.

Indirect productions Pind(C) and all productions in [7, 7] are fast. Before showing that
fast productions can be applied rapidly, we prove a useful general lemma.

LEMMA 2.4. Given an in]ective graph morphism bl: K - B1 and a colored graph
morphism g: (B1, ml)+ (G, raG), consider the pair (nodes, arcs) of sets

(1) (No, Ao) G gB1.

There is a pushout of the form

(2) g

(B1, m 1) (K mR)

(3)

(4)

(G, mG) (D, mo)

SGAo Y tAo
_
No’U gblK;

(Vy, y’ in B)[gy gy’ implies (y y’ or y, y’ in blK)].

In that case (2) is unique up to isomorphism.
Proof. For bl injective the only pushouts (2) are those with cl injective: pushing out

from an injection yields an injection on the opposite side of the square. That (2) exists iff
(3) and (4) hold now follows from [21, Lemma 4.1]. Uniqueness follows from [21,
Lemma 4.2].

An intuitive explanation of the "only if" part of Lemma 2.4 is helpful in under-
standing the significance of pushouts. In Lemma 2.4(2) we "glue" B and D together to
form G, as discussed in Appendix B. If gy gy’ for y y’ then y and y’ are both
involved in gluing. For items in Ba, to be involved in gluing is to be in big, so it is to be
expected that Lemma 2.4(4) holds when Lemma 2.4(2) is a pushout. For Lemma 2.4(3),
consider any arc z in A0. Because z is not in gnl it must be cl y for some arc y of D. The
target toy has cltoy tcy taz. We want this to be in No U gblK. We may assume tz
is not in No and hence is in gB1 as well as cD. But the intersection of these images is
gblK because G is as close to being a disjoint union as gluing will allow. The detailed
calculations" in the proofs in this paper often use this characterization of pushouts in
categories like SETS or GRAPHS as well as the universal property (see Appendix B)
that defines the pushout concept for any category.

THEOREM 2.5. There is an algorithm that, given a colored graph (G, mG), a
recoloring r: C -+ C, a fast production p, and a graph morphism g: B1 -+ G, determines
whether there is a derivation (G, ma) (H, mH) via rp based on g and transforms
(G, ma) to the resulting (H, mH) when the answer is affirmative. The derivation is unique

448 HARTMUT EHRIG AND BARRY K. ROSEN

up to isomorphism and the number ofsteps required by the algorithm is independent of the
size of G provided that evaluations of relevant maps (g, me, s, ta) can be done in time
independent ofthe size ofGandprovided that the indegree and outdegree ofany node in G
can be found in time independent of the size of G.

Proof. It is easy to reduce the existence problem for derivations to the existence
problem for "analyses" (the left square in Fig. 2.3). More precisely, an analysis of
(G, me) for rp based on g is any pushout as in Lemma 2.4(2) such that

(1) (/x, x’ in K)(gblX gbx’ implies rm2b2x rm2b2x’).

Given g and rp, we can test whether (1) holds in time independent of the size of G.
By [21, Thm. 3.7], an analysis determines a unique derivation. When such a derivation
is known to exist, injectivity of be allows us to pass from (G, me) to (H, mn) directly
without explicitly constructing the derivation. (The time to copy parts of G that are
merely carried along unchanged would of course depend on the size of G, so we must
avoid the explicit construction.) Thus the whole problem reduces to the problem
addressed in Lemma’2.4. Whether Lemma 2.4(3) holds can be checked by comparing
indegrees and outdegrees in G with those expected from B1 for nodes in gB gblK. (If
bl is surjective on nodes then Lemma 2.4(3) is trivially true.) Whether Lemma 2.4(4)
holds can also be checked in time independent of the size of G. [3

Graph morphisms g: B - G provide a flexible way to say where we are applying a
production, but in most examples .we only need the values of g on a few items of B to
determine the rest. In particular, let y be the arc colored c in Fig. 2.2. Because nodes
colored I have unique outarcs in the colored graphs we consider, g is determined by gy.
The pair (Pin(C), Y) is a rule, as is any pair consisting of a production p and an item y in
B1. In a derivation based on g the rule is applied at gy. This wording has no theoretical
significance, but it enhances brevity and clarity whenever the rule is such that g can be
recovered from knowledge of gy alone.

We restrict the set R of recolorings r: C- C a little more than necessary rather
than burden the statements of theorems with assumptions about R that are weak but
difficult to remember. Specializing (5.5) and (5.7) from [7] for technical convenience
here, we consider the fixed colors Cnx and the variable colors Cvar:
(2.6.1) Cnx={C in C[(VrinR)(rc=c)} and Cvar---f-ffix.

Now R is assumed to contain everything it might conceivably contain, with no
correlation between the recolorings of different colors"

(2.6.2) R {r: C --> Cl(/c in Cnx)(rc c)}.

With this choice of R, derivations via Rpind(C) (which is to say, derivations via rpind(C) for
some r in R) have the intended effect: any indirect c-pointer is retargeted to the record
that its old target points to, as soon as we apply (Rpind(C), y) at the pointer in question.

3. Existence theorems for derivations. This section presents fundamental exis-
tence theorems for derivations among colored graphs. The proofs appear elsewhere, as
indicated for each result. The pure mathematics applied in this paper is developing
rapidly, and the results presented here are not the strongest known. This section
contains just enough of the mathematics to support the applications in the following
sections. We have tried to avoid formulations that might become significantly outdated
by likely developments in the future, while resisting the temptation to rely on future
work or to wait for the theory to mature without the benefit of experience in
applications.

RECORD HANDLING 449

Given a derivation from (Go, too) to (Gn, mn) and a morphism 3/0: (Go, mo)-
(Fo,/xo), we would like to construct a "corresponding" derivation from (Fo,/xo) to a
colored graph (F,/x,), with an "embedding" 3/: (G, mn) (F,/xn). Moreover, details
of the intermediate steps between (Go, too) and (G,, m) should not affect (F,/xn) and
3/, unless they also affect (G, m,). For every with 0_<-i_-<n, there should be an
embedding 3/i: (Gi, mi) (F/,/xi), with which we can describe Fi as the result of gluing Gi
to an invariant graph E that specifies the context of Go as embedded in Fo by 3/0. The
invariance of E (it is the same for all i) and the details of the gluing construction will lead
to the desired conclusion that intermediate steps can only affect (F,,/xn) insofar as they
affect (Gn, m,). To formulate this intuition precisely requires some ingenuity, but the
effort buys the ability to draw conclusions about infinite sets of large graphs from
calculations with a few small graphs. A typical application is in 4.

The mathematical notion of gluing here is of course the pushout construction. The
interface between ai and E in the desired pushout to Fi will be denoted S and will be a
subgraph of Go without arcs. The nodes of $ will be called "boundary" nodes, and we
will need assurances that these nodes persist throughout the given derivation. Consider
a derivation via fast productions

(3.1.1) (Go, mo) z::), (Ga, ml) (Gn, m.) via (Pl,""", Pn),

a colored graph (Fo,/xo), and a morphism 3/0" (Go, too) (Fo,/xo). The residue map ri
from certain nodes of Go to nodes of Gi is defined inductively by roz z and

-1(3.1.2) riz c2]clj rj-lZ for l <--j <--n,

where c1. and c2] are from the step via p. in (3.1.1). Thus r.z is only defined if ri_lZ is
defined and is in c ljDj. Let the persistent nodes of Go be those z with r,z defined. On the
other hand, a node z in Go is a boundary node iff either

(3.1.3) 3/oZ has an inarc or outarc in Fo that is not in 3/oGo

or there is a node z’ in Go such that

(3.1.4) yoZ 3/oZ’ and z z’.

With these notations the hypotheses of the embedding theorem can be stated briefly.
THEOREM 3.2. Let there be a derivation via fast productions

(1) (Go, roD) :=)’ (G1, ml) ’" (G,, m,) via (Pl,"" ", Pn).

Suppose there is a colored graph (Fo,/xo) and a morphism 3/0" (Go, mo)- (Fo,/Xo) such
that (where residues of nodes, persistent nodes, and boundary nodes are as in (3.1))

(2) yo is infective on arcs;

(3) all boundary nodes are persistent;

(4) (Vz, z’ nodes in Go)[3/oZ 3/oZ’ implies (Vj)(mjriz miriz’)].

Then there are colored graphs (Fi,/xj) and a natural derivation

(5) (ro,/.1,o) (1-’1,/.1,1) ([’n, [d,n) via (Pl,""", Pn). [-]

See [8, Thm. 3.5] for the proof, which also formalizes our intuitive remarks on Fi as
the result of gluing Gi and an invariant context Y_. together. Specifically, the proof has the
following corollary.

COROLLARY 3.3. As in Theorem 3.2, there are graphs S and and morphisms
fo: S Go and o’: S -. E, depending only on 3/0, such thatfor every with 0 <- <- n there is

450 HARTMUT EHRIG AND BARRY K. ROSEN

a pushout

(Gi, mi) (S, hi)

(1)

(Fi,

with colorings ni and b’ that depend only on 3’0, tZo and on miri. There are no arcs in S andfi
is lust fifo on nodes.

Theorem 3.2 and Corollary 3.3 are essentially special cases of the embedding
theorem for derivations in a category STRUCT that has GRAPHS[C] as a subcategory.
The more general theorem and some other properties of STRUCT appear in [5].
Because the pushout in Corollary 3.3(1) is determined (up to isomorphism) by fi and o’,

we have a further corollary when two derivations that reach the same place are
embedded in larger derivations.

COROLLARY 3.4. As in Theorem 3.2, suppose there is also another derivation

(Go, mo) (G, m) ::> (G, m’) ::>(# # #Gn,mn) via (p’,...,p,#)

satisfying the same hypotheses. Suppose r# r and (G#n, m)= (Gn, ran). Then a
single colored graph (F,/xn) has derivations

(F0,/xo)::),(F,,/x) via (pl,"’,pn) and (Fo,/zo):(F,/x) via (p, pn%).

Suppose a colored graph G (G, me) can be changed in two ways, as indicated by
derivations G ::> H via rp and G ::), I-I# via r#p #. Instead of having to decide which
change we prefer, perhaps we can make both changes. Perhaps p can still be applied to
I-I# and p# can still be applied to H, with no need to choose between the order (p, p#)
and the order (p#, p) in applying the two productions in sequence to G.

DEFINITION 3.5. Derivations G =), H via rp and G => H# via r#p# commute iff
there are recolorings p, p# and a colored graph X such that It => X via pep# and
He ==)> X via pp.

Weak but complicated sufficient conditions for commutativity are presented in [7,
4]. Here we will consider stronger but simpler conditions that are still weak enough to

hold in many situations. The proper productions defined by four conditions (5.6.1)-
(5.6.4) in [7] will be helpful. The last of the conditions is made trivially true by (2.6)
here, so we restate only the first three conditions here for ease of reference:

(3.6.1) (/x, y in B1)(mlx rely in Cvar implies x y);

(3.6.2) (’y in Bz)(my in Cvar implies y in b2K);

(3.6.3) (’x in K)(mbx or m2b2x in Cvar implies mxbx m2b2x).

A biproper production satisfies these three conditions and their mirror images, with 1
and 2 subscripts reversed. Indirect productions Pina(C) are biproper, as are all the
productions in [7, 7]. Productions with only fixed colors are trivially biproper.
Theorem 4.5 in the next section will deal with biproper productions because it will need

RECORD HANDLING 451

the mirror image of (3.6.2) as well as the following general theorem about com-
mutativity of derivations via proper productions.

THEOREM 3.7. [7, Thm. 5.9]. Consider proper productions p, p# and natural
derivations G It via rp and G H# via r#p #. Suppose that

(1) gB1 g#B’ c__ gblK f-) g#bK#.

Suppose that all x in K and x # in K# such that

(2) gblx g#b’x# and m.bex Cnx and me be x Cnx
have

(3) mlblx rnebex and mbx#= me be x

Then the derivations G It and G H# commute. [3
Another property shared by indirect productions and all productions in [7, 7] will

be helpful in the next two sections. A production p is rooted in a node r in K iff

(3.8.1) every node in Ba is reachable from blr;

(3.8.2) mlbX m:bex for all rodes x in K with x r;

(3.8.3) mlblX m:bex for all arcs x in K with sKx r.

Apart from the special node r and its outarcs, all items in K have the same colors rn b
in B1 that they have in B2. Applying p may delete some items and add others, but it can
only change the colors the root node and its outarcs. The production p is rooted iff it is
rooted in some node of K.

Finally, we will use some elementary properties of pushouts in GRAPHS and many
other categories. Lemma 3.9 below is valid for an,y category 14, Exercise 21El. Lemma
3.10 is valid for any category that has pushouts: given two morphisms with a common
domain (such as b and d in Fig. 3.1), we can always form a pushout incorporating these

K E

(3)

D

(2) c (1)

G

FIG. 3.1. Diagram for Lemma 3.9 and Lemma 3.10 on combining pushouts.

452 HARTMUT EHRIG AND BARRY K. ROSEN

K

D

b’K’ B’

D

FIG. 3.2. Diagram [or Lemma 3.11 on restricting pushouts.

morphisms (such as the subdiagram (2) in Fig. 3.1). All categories considered in this
paper have pushouts. Both lemmas use only the universal property of pushouts
(Appendix B). In Lemma 3.11 the universal property interacts with special considera-
tions for the category SETS whose objects are sets and whose morphisms are total
functions.

LEMMA 3.9. Let Fig. 3.1 be a commutative diagram in GRAPHS such that
subdiagram (2) is a pushout. Then subdiagram (1) is a pushout iff the outer square is a
pushout.

LEMMA 3.10. Let the outer square in Fig. 3.1 be a pushout in GRAPHS and let Fig.
3.1(3) commute. Then there are G, c, g, cp such that the entire diagram commutes and
subdiagrams (1) and (2) are pushouts.

LEMMA 3.11. LetFig. 3.2 be a commutative diagram in GRAPHS[C] such that the
outer square is a pushout and all diagonal arrows are inclusions ol subobfects. Suppose
B’= h-l(H’) and D’= c-l(H’) and K’= d-(D’) b-l(B’). Then the inner square is a
pushout in GRAPHS[C].

Proof. Because a commutative diagram in GRAPHS[C] is a pushout iff the
corresponding diagrams in SETS for nodes and arcs separately are pushouts, it will
suffice to prove this in SETS. Suppose fl’: B’
then B’ D’= 3, so H’= and we have a trivial pushout. Therefore we may assume
X # . Choose sc X. Let fl: B X with fly fl’y if y B’ and fly sc otherwise. Let
8: D X similarly. Direct calculation (using the hypothesis on K’) shows that fib 8d,
so there is a unique r/" H -X such that
to H’. Then r/’h’is the restriction of fl to B’, which is fl’. Similarly, r/’c’ is the restriction
of 8 to D’, which is 8’. Uniqueness of r/’ follows from uniqueness of r/ and the
hypotheses on B’ and D’.

4. Indirection. For each fixed arc color c the production Pind() shown in Fig. 2.2
uses variable node colors u, v and fixed node color L As in 2, a record structure is a
colored graph such that any node colored I has a unique outarc, and this arc is colored

RECORD HANDLING 453

ind. Let y be the arc colored c in Fig. 2.2, so that applying the rule (Pind(C), y) at z gy
in (G, rna) has the effect of following the indirect c-pointer from sz and changing the
pointer field at sz so as to point directly to the node in G corresponding to the node
colored v in Fig. 2.2. Given any record structures G (G, m) and H (H, ran), let
6 >>ind I-I iff there is a fixed arc color c, a recoloring r in R, and an arc z in G such that

(4.1) G ==)> H via FPind(C at z.

Given any family H of structures for which indirection makes sense, we can try to
establish the Church-Rosser property (1.1) for the system (H, >>ind), no matter what
other properties o may have. The family o should be closed under >>ind"

(4.2.1) (G is in H and G >>ind H) implies H is in .
There should be nothing analogous to the tight loop (LABEL" goto LABEL) in
programming" for all G in @ and all arcs x in G,

(4.2.2) masax =I implies tax Csex.

In particular, (4.2.2) holds if all graphs in @ are acyclic. Families that satisfy (4.2) are
said to allow indirection.

LEMMA 4.3. If 0% allows indirection then every member of 0% has a unique normal
form in (, >>ind).

Proof. By induction on cycle lengths, (4.2) implies that no graph in @ has a cycle
whose nodes are colored L For each G in @ there are finitely many paths having only
nodes colored I as targets of arcs in the path, so there is a finite nonnegative "weight"

(1) wG= (length of 0)
all such paths 0

such that, for all G, H in H,

(2) G>>ind H implies wG> wH.

This implies the existence of normal forms. As is well-known [15, Lemma 4] and easily
demonstrated by induction on weights, (2) also implies that the Church-Rosser
property will follow from the usually weaker property

(3)
(VG, H, He in H)

[(G >>ind H & G >> ind H#) implies (=IX)(H >> ind* X & He >> ind* X)].
We prove (3) by assuming that G, H, It# are as.above and deriving the existence of

an appropriate X. Consider the derivations (4.1) for G >>ind I-I and (4.1 #) for G >>ind
If Z Z

then It I-I# and we may let X be H also. (As usual, we say It He in
situations where all we really have is that H is isomorphic to He, provided that the
distinction between equality and isomorphism is only a nuisance and conceals no real
difficulty.) We may assume z z #. If gB g#B

_
gblK g#b’K then Theorem 3.7

provides the desired X (X, rex). Otherwise we may assume z # gblX3 where x3 is the
unique arc in K, so that gB and g#B’ overlap as shown in Fig. 4.1 (top). Note that c #

here is ind. The nodes colored ru and r#v # in the picture might actually be one node in
G, but (4.2.2) requires that all other seemingly distinct nodes in the picture be truly
distinct in the graph G. The relevant parts of H and He are pictured in Fig. 4.1 (left) and
Fig. 4.1 (right). As suggested by Fig. 4.1 (bottom), there is a colored graph X with
H >>ind >>ind X by applying Pind(ind) and Pind(C) and with He

>>ind X by applying Pind(C).
To show this we apply Corollary 3.4 to embed Fig. 4.1 into derivations

454 HARTMUT EHRIG AND BARRY K. ROSEN

G >>ind H)>ind >>indX and G))ind H)>indX. Hypothesis (4) in Theorem 3.2 follows from
the fact that mlibli mEib2i for all the productions Pi.

As in the diagrammatic proofs in category theory or in [20, 3], use of Fig. 4.1
enabled us to avoid a tedious procession of stipulations like "let zs be..." and to

FIG. 4.1. Difficult case in the proo[ofLemma 4.3.

display the intuitive naturalness of our proof. But no geometric intuition or tacit
assumptions were smuggled into the reasoning, and the relevance of the intuitive
picture to the mathematical problem was rigorously established by Theorem 3.2.

The good behavior of >>ind is not in itself very interesting. Given some other
well-behaved relation >>1 on @, perhaps induced by productions that add I nodes to
record structures, we would like to show that the union >>, with G >> H iff (G >>11-I or
G >>ind l-i), still behaves well. Some mild restrictions on >>1 will be needed. We are
concerned with situations where >>1 is induced by a set of fast productions.
Productions that delete (or Change the colors of) I nodes or ind arcs could destroy
opportunities to apply Pind(). On the other hand, applying indirect productions could
destroy opportunities to apply productions in such that (BI, rex) includes an I node
with an inarc. We will therefore restrict to contain only productions wherein no node
in B1 is colored I and no arc in Bx is colored ind. Because variables in (B1, rex) may be
recolored to I or ind, there is still some need for caution, and the full hypothesis of the
theorem is somewhat elaborate. Before stating the theorem we state an easy general
Church-Rosser lemma that will be used.

RECORD HANDLING 455

LEMMA 4.4. Let @
_

be closed under a relation >> on . Suppose))4 is a relation
on 3 such that

()

(2) (VG, H in @)[G>>*H implies (=IL)(G>>4*L & H>>*L)];

(3) (, >>4) is Church-Rosser.

Then (@, >>) is Church-Rosser.
Lemma 4.4 has a well known special case [20, Lemma 3.4] with many uses.

Intuitively, consider members of 0% to be possible states of a computer system. Some
transitions G >> H introduce user requests while others service these requests. Let
G >>4H if there is a sequence G X0 >>X >> >> X, H where the first transition
introduces at most one request and the remaining n-1 transitions do everything
necessary to service it along with any outstanding requests in G. The system (o%, >>) is
difficult to analyze because arrivals of new requests are interleaved with actions to
service old requests. The system (, >>4) is simpler because each request is fully serviced
before another request arrives. It may well be Church-Rosser, as required by Lemma
4.4(3). Lemma 4.4(2) is one way to express the idea that (, >>) is free of deadlock: no
matter how actions are interleaved in G >>* H, the system can continue (with H >>* L) so
as to reach a state wherein it looks as if each request was fully serviced before the next
one came in (with G >>4*L). Lemma 4.4(1) is trivially true for >>4 as specified in this
intuitive discussion. By adding it to the other conditions we obtain a precise lemma
without needing precise concepts of "request" or "service" or "deadlock". The lemma
can now be applied to many different situations.

THEOREM 4.5. Let be a family of acyclic record structures that allows indirection.
Let >> be a relation on colored graphs such that,]:or some set of rooted biproper fast
productions wherein no node in B1 is colored I ahd no arc in B1 is colored ind or in Cvar,

(1) G >>1 It iff (3p in)(r in R)(G ::)> It via rp);

(2) (, >> 1) is strongly Church-Rosser.

Then (, >>) is Church-Rosser, where >> is the union of >> and >>ind. Moreover, (, >>4) is
strongly Church-Rosser, where

(3) G >>2 H iff G >>

(4) G >>3H iff [G has normalform H in (, >>i.d)];

(5) G >>4 H iff (=iX)(G >>X >>3 H).

Proof. We will apply Lemma 4.4. Intuitively, think of G ::> X via rp as introducing a
single request, that all indirect pointers created by applying rp be retargeted so as to
point directly to interesting nodes rather than nodes colored L Think of X "indH as
servicing requests, with complete servicing when H has no more indirect pointers.
Assume for the moment that

(6) (G>>2H& G>>3H#) implies (:IW, X)(H>>3X& H# >>2W >>3 X).

Figure 4.2 is an example of what (6) says when p corresponds to the LISP rule that
cdr(cons(u, v))= v. The figure is also a counterexample to the stronger assertion one
might be tempted to use, with H# >>2X instead of H# >>2W >>3X. The assumption (6) is
diagrammed in the style of [20, 3] on the left in Fig. 4.3. The diagram on the right in
Fig. 4.3 may be verified as follows: (a) because normal forms exist and are unique in

456 HARTMUT EHRIG AND BARRY K. ROSEN

G

H

X

mult

/

"muir mult ’)

W

FIG. 4.2. ;Example of the assumption (6) in proving Theorem 4.5. This is a pure LISP metaexpression that
will evaluate to 9.

(-, >>ind), then (b) because of (6), and then (c) because normal forms are unique in
(-, >>ind)- Let be composition of relations, so that (>>4) ()>2) (>)3). The diagram just
verified implies that

(>>ind) (>>4) (>>3) (>>4) (>>4).

By (>>)
_

(>>2), a similar argument with two uses of (6) shows that

(>>1) (>>4) (>>2) (>>4) (>>3) (>>4) (>>4) (>>4).

RECORD HANDLING 457

FIG 4.3. The diagram on the left is equivalent to Theorem 4.5(6). In general, filled circles correspond to
x, x2, and open circles correspond to y, Y2,’ in a formula (Vx, x2,’" .)[HYP implies (ly, ya,...)
(CON)], where HYPand CONare con]unctions offormulas a such that a, are in {x, y, xa, ya,. .} and

is in {>>a, >>, >>ind, =,’ "}. The diagram on the right is used in proving the theorem.

But >> is the union of >>ind and >>1, so

(7)

We can now verify the three hypotheses of Lemma 4.4. Lemma 4.4(1) is trivial.
Lemma 4.4(2) will be verified by induction on n in G >>" H. For n 0 it suffices to let L
be G. To pass from n to n + 1, suppose G >> X >>" H. By the induction hypothesis there is
Y with X >>4*Y and H >>*Y. Let L be the normal form of Y in (@, >>ind), SO that Y >>4 L.
Lemma 4.4(1) implies Y>>*L, and so H>>*L. We must show that G>>*L. But
G>>X>>*Y>>4L, so (7) implies G>>4*L. For Lemma 4.4(3)we verify Fig. 4.4 (which

2 2

(a)

(b) (c)

3 3

FIG. 4.4. Verification ofLemma 4.4(3) in the proof of Theorem 4.5.

implies that (o%, >>4) is strongly Church-Rosser), with (a) because (@, >>1) is strongly
Church-Rosser and then (b), (c) because of (6) and uniqueness of normal forms in
(,-, >>ind)- By Lemma 4.4, (@, >>) is Church-Rosser.

All that remains is to prove (6). Suppose G >>2 It and G >>3 If G H then we
may letW and X be It, so we may assume G H. Therefore there is a direct derivation

(8) G :ff H via rp based on g

for some p in , r in R, and g" Ba--> G. We want to construct a similar derivation

(9) He :: W via r#p based on g#

such thatW and H have the same normal form X in (-, >>ind). With colorings suppressed
for readability, Fig. 4.5 summarizes how (9) will be obtained. The pushouts Fig. 4.5(1)
and Fig. 4.5(2) in GRAPHS are from (8). The other squares are also pushouts, but in a
category TARGRAPHS that is like GRAPHS but has only the target operation
mapping arcs to nodes. We may consider G, D, H to be objects in this category by
simply forgetting about sources of arcs. Categorical ideas and results help us see the
forest despite all the trees, while the hypotheses of categorical lemmas are obtained by

458 HARTMUT EHRIG AND BARRY K. ROSEN

K B2bl bz

(1) d (2) h

D -H
Cl C2

(3) 8 (4) q

D W
C1
#

C2

FIG. 4.5. Solid arrows are maps thatpreserve sources and targets, as are the compositions g# dpg, d d, and
h#= dzh. Dashed arrows are maps that only preserve targets.

calculations that involve reasoning about paths in graphs and inductive proofs of
properties of recursively defined functions. The details appear as Appendix A.

Instead of assuming that (o%, >> 1) is strongly Church-Rosser, we could assume that
>> is induced by derivations wherein g is close to being injective. Specifically, if gy gy’
then either y y’ or both are colored in Cvar. The corrected version of [8, Thm. 4.2] that
is needed here appears in [9] for the case of color preserving productions. A proof for
this case appears in [10]. The general case can probably be handled by essentially the
same methods, but a formal statement of the alternative version of Theorem 4.5 is
omitted here, pending resolution of all details.

5. Garbage collection. In any record structure there are a few records directly
accessible to the external world. Often there is just one external record, the "root". The
other records can only be reached by following paths from external records. To model
this distinction we may assume that the fixed node colors have been classified as external
or internal. The distinction has no effect on the preceding sections, unlike the use of
triples (G, me, e), with e being the root, in the earlier version [8] of this paper. The
distinction is important now because we wish to delete internal nodes that are not
reachable from external nodes, where nodes are classified by their colors. Only a simple
form of such garbage collection will be treated here. Given an internal fixed node color
Cin and a string A (A AN) of fixed arc colors we consider a production Pgar(Cin, A as
shown in Fig. 5.1. The rule (Pgar(Cin, A), y), where y is the node colored Cn in Fig. 5.1,
may be used to delete a node colored ci, with outarcs colored A 1, , Av and with no
inarcs. Let G >>gr H iff there are an internal fixed node color Cin, a string A of fixed arc

RECORD HANDLING 459

colors, a recoloring r in R, and a node z in G such that

(5.1) G =)> H via rpear(Cin, k) at z.

N

blX blXN x N b2x b2xN

(Bi,mI) K (B2,m2)

FIG. 5.1. The node colored in in the production Pgar(in, / is collected as garbage i[it has no inarcs and has
no other outarcs beside those colored A 1, , AN. The drawing has N 2.

LEMMA 5.2. If is closed under garbage collection then every member of @ has a
unique normal form in , >>ear).

Proof. If G >>gar H and G >>gar I"I# and I-I I-I#, then Theorem 3.7 provides X with
I-I >>gar X and I-I# >>gar X. This clearly implies the Church-Rosser property. Existence of
normal forms follows from the fact that >>ear decreases the size of a colored graph. [q

It is easy to define a family @ and relation >>1 on o such that (-, >>1) is
Church-Rosser and is closed under garbage collection, but the union system (, >>) is
not Church-Rosser. Premature garbage collection may destroy opportunities to add
arcs between nongarbage nodes. Considering the recent interest in collecting garbage in
parallel with list processing [2], [3], 12], 13], [26], [29], we seek simple conditions such
that the union will inherit the Church-Rosser property from (@, >> 1). Let si and ti be the
source and target maps of ni in a production p. Then p is treelike iff

(5.3.1) B2 is acyclic and m2(B2- b2g)nodes
_

(internal node colors)

and there is a node r in K such that

(5.3.2)

(5.3.3)

p is rooted in r;

mlblr is external iff m2b2r is external

and, for 1, 2 and for every arc z in Bi and node x s r in K,

(5.3.4) bix $iZ implies (::ly arc in K)(biy z).

All productions Pind(’) are treelike. So are all productions considered in [7, 7].
LZMMA 5.4. Let (, >> 1) and (, >>2) be Church-Rosser systems such that, whenever

G)>1 H and G >>2H# in ,
(1) (::IX)[H >> 2* X and (H# >> X or H# X)].

Then (o, >>) is Church-Rosser, where >> is the union of >>1 and >>2.
Proof. Direct application of [20, Lemma 3.6] and then [20, Thm. 3.5]. 71
THEOREM 5.5. Letbe closed under >>gar and let >>1 be a relation.on colored graphs

such that, for some set oftreelike properfastproductions wherein each bl is surjective on

460 HARTMUT EHRIG AND BARRY K. ROSEN

nodes,

(1) G >>1 I-I i (Zip in)(3p in R)(G :ff H via pp)

(2) (’-, >>1) is Church-Rosser.

Then (, >>) is Church-Rosser, where >> is the union of >>1 and
Proof. By (2), Lemma 5.2, and Lemma 5.4, it will suffice to show

(3) (::iX)[H *>>gar X and (H# >>1X or H# X)]

under the assumption G >> H and G >>garH#. Let G H via pp in (1) and let G H#

#p#via p in (5.1). There are two cases to consider. We begin with the easier one.
Case 1 [z # is not in gB1]. Then no arcs are in gBlflg#B]# and we have

gB1 (q g#B’ c_ g#bK#. Consider any node gy g#y# in gB1 fq g#B#l We claim that
gy is ingblK as well asg#bK# Byg#y#z # some arcx#inB1# has targety#
Therefore g#x # is an arc of G with target g#y# that is not in gB1 because gB1 fq g#B
lacks arcs. By Lemma 2.4(3) for the pushout to G in G =:), H, gy is in gblK. We have
shown that

gB1 (-] g#B
_
gblK (3 g#bK#,

which is the first hypothesis of Theorem 3.7. But mbx# is in Cvar for all x # in K #, so
the second hypothesis holds trivially. Theorem 3.7 yields X with H >>gar X and I-I# >> X,
so (3) holds.

Case 2 [z # is in gB1]. This is the difficult case because part of gB1 is garbage that has
already been collected when we try to apply p to H#. Instead of applying p we will.collect some garbage by a derivation H>>garX, and then (3) will follow as soon as we
show that X is (isomorphic to) H#. The first step is to relate z # to the node r from (5.3).
Because z # has no inarcs in G, (3.8.1) implies that z # gblr and gyl z # for all yl : blr
in B1. It then follows that dx dr for all x : r in K and hence that hy2 hb2r for all
y2 : b2r in/32. For future reference we summarize these observations by saying that the
derivation G :ff H via pp treats r infectively. Because z # lacks inarcs in G, gblr z #

implies that blr lacks inarcs in B1 and dr lacks inarcs in D. This implies that r lacks inarcs
in K, which implies by (5.3.4) that any inarc of b2r has source in/32 b2K. By (5.3.3) and
the fact that mz# is internal, we also know that pmlblr and pm2b2r are internal. (We
also use (3.6.3) if mxblr is in Cvar.) For future reference we summarize these obser-
vations by saying that r is almost garbage in the production pp, the "almost" being a
concession to any inarcs of b2r in/32.

We will construct a sequence of derivations G[j] H[j] via pp[j] for j=
0, 1, , L with L I(B2- b2K)nodesl + 1, wherein each graph in the jth derivation for
j > 0 is a subgraph of the corresponding graph in the (j-1)th derivation and each
morphism is a restriction of the corresponding morphism. For j 0, the derivation
G[j] ::), H[j] via pp[j] is the given G H via pp. For X H[L] we will have H >>gar X
because H[]’-I] >>gar H[f] for all/’>0. There will also be/’# -<L such that

(4) (V/ < /#)(G[/] G) and (V/_>-/#)(G[/] H#).

Finally, X will be isomorphic to H# because H[L] will be isomorphic to G[L].
Because/32 is acyclic there is a listing of the nodes of B2 such that every inarc of a

node is an outarc of a previous node in the listing. Extracting the nodes in N
(B2 b2K)nodes I..J {b2r} from this listing, we get (y 1, , YL) such that, by (5.3.4) and the
property of the original listing, every inarc of yj is an outarc of yi for < j. Let j# be such
that Yi b2r for/’ =/’#. For each j with 1 =< j -<L the fth derivation is constructed from

RECORD HANDLING 461

the (/’ 1)th derivation by collecting some garbage and restricting some morphisms. For
all we collect garbage in B2[]" 1] and in H[/" 1]. For/" =/’# we also collect garbage in
the other graphs. (Colors are just carried along.)

Consider the case :/’# first. By induction on/" and the property of the listing
(y 1, , YL), we may assume that y. is garbage in B2[/’- 1 even though it may have had
inarcs in B2. We remove y. and its outarcs from B2[]’ 1] to form B2[]’]. We also remove
hyi and its outarcs from HI/’-1] to form H[j], as is indeed possible by garbage
collection because each inarc of hy. in H is an outarc of hyi for i</’. Because
B2[/’] h-l(H[/’]), we can restrict h[j-1]" Bz[j-1]-H[/’-1] to define h[j] from
B2[/’] to H[/’]. Let K[]’] be K[j-1] and let D[j] be D[]-I]. Because K[]]=
2 (B2[/’]), the (argument, value) pairs for b2[/’-1] also define bz[j]" K[/’]-,Bz[j].

Similarly, D[/’] c (H[/’]) and we have c2[j]: D[/’]- H[j]. Finally, let d[/’] d[j- 1].
All hypotheses of Lemma 3.11 hold, so the right square in Fig. 2.3 is a pushout for/" as
well as for /’-1. Leaving the left square unchanged, we have two pushouts that
constitute the desired G[j] z H[/’] via pp[]].

Now consider/" =/’#, so that y. bzr and is garbage in B2[/" 1]. Because r is almost
garbage in OP, we can form Bi[/’] for 1, 2 by collecting bit, K[j] by collecting r, D[]]
by collecting dr, G[j] by collecting gblr and H[/’] by collecting hb2r. Because gblr -’-Z

we do have (4). Because the original derivation treats r injectively, we do have
B2[]] h-l(H[j]) and D[]] c (H[]]) and K[]] b (B2[]]) d-a(D[]]). Restric-
ting morphisms appropriately, we obtain the hypotheses of Lemma 3.11 and find that
Fig. 2.3 is a pushout for/" as well as for/’ 1. Similarly, the new left square is a pushout by
Lemma 3.11. We have two pushouts that constitute the desired G[j] : H[j] via pp[j].

We must show that H[L] is isomorphic to G[L]. By (3.8.2) and (3.8.3), any/" >-/’#
has m:,l[/’] mK,2[/’] and mD,l[]’] mo,2[]’], SO it will suffice to show that c[L] and c2[L]
are isomorphisms. Because pushing out from an isomorphism yields an isomorphism, it
will suffice to show that bl[L] and bz[L] are isoorphisms. We already have injectivity,
so only surjectivity needs to be checked. Nodes and arcs will be treated separately.
Because ba is surjective on nodes, induction on/’ shows that each ba[/’] is surjective on
nodes. For ->]#, (5.3.4) then implies surjectivity of bliP] on arcs. For] 0 there are
L- 1 nodes in (B2-bzK)[/’] and each step with/" :/’# removes one of these nodes, so
bz[L] is surjective on nodes. By (5.3.4) and L _->/’#, it is also surjective on arcs.

We conjecture that Theorem 5.5 is still true without the assumption that ba is
surjective on nodes. Without this assumption, there are cases where G >>1 It and
C >>gar I# but Theorem 5.5(3) is not true. The weaker statement

Xand(He>> XorIt# * X)](::IX)[H >> gar >> gar

is true, but we have not been able to show that this suffices for proving the theorem.
COROLLARY 5.6. Let be a family of acyclic record structures that allows

indirection and is closed under garbage collection. Let >> be a relation on colored graphs
such that, for some set 9 of productions satisfying the hypotheses of Theorem 4.5 and
Theorem 5.5,

(1) G >>1H iff (p in 9)(p in R)(G :: H via pp);

(2) (@, >> 1) is strongly Church-Rosser.

Then (@, >>) is Church-Rosser, where >> is the union of >>1, >>ind, and >>ear.
Proof. By Theorem 4.5, (o, (>>1) U (>>ind)) is Church-Rosser. The union of 9 and all

the productions pind(c’) satisfies the hypotheses on 9o in Theorem 5.5, and the
conclusion follows.

462 HARTMUT EHRIG AND BARRY K. ROSEN

6. Language design suggestions. Results like Theorem 4.5 and Theorem 5.5 can
be interpreted as suggestions for the low level language programmer or for the high
level language designer. Their significance is clearest in a multiprocessing context. One
or more main processes under user control manipulate a record structure while service
processes operate asynchronously in parallel with the main processes. The service
processes follow paths of ind pointers or collect garbage. For the sake of definiteness,
consider garbage collection and suppose that a list of backpointers is maintained for
each record. Writing at low level, the user can inspect and manipulate backpointer
information. Without some synchronization between the user and the garbage collec-
tor, a very unpleasant interaction can occur. The user looks at a backpointer and decides
to follow it to a record RD. Then the garbage collector deletes RD. Then the user
follows the invalid pointer. To prevent this interaction the user should lock out the
garbage collector during some user computations, but locked out periods should be
kept brief to obtain the benefits of parallelism. Theorem 5.5 suggests that the garbage
collector be locked out during computations that correspond to applications of produc-
tions, but that garbage collection between applications of certain productions can do no
harm. The user could apply a production, give the garbage collector free rein while he
does a long private computation not involving the record structure, and then apply
another production. If other user’s activities during the private computation do not
cause trouble [the Church-Rosser property for (, >>1)], then no combination of other
user’s activities and garbage collection during the private computation can cause
trouble [the Church-Rosser property for (o, >>)]. This is a slight overstatement, in that
"trouble" is an intuitive concept and does not perfectly coincide with any precise
mathematical concept like lack of the Church-Rosser property. As in our backpointer
example, many particular troubles do correspond to failures of the Church-Rosser
property.

Of course it is difficult to correlate low level code with the definition of treelike
proper fast productions. Low level programming is always difficult, especially with
asynchronous parallelism. Rather than ask programmers to write at low lev61and keep
Theorem 5.5 in mind, we would ask language designers to ensure that the record
handling facilities of high level languages have the same net effect when high level
programs are compiled. Garbage collection can take place "during" execution of a
single high level operation, provided that the compiled code corresponds to a sequence
of applications of treelike proper fast productions interspersed with private compu-
tations. The garbage collector is only locked out during each application of a produc-
tion. Similar but more complex recommendations can be made for user communities
with several record structures, for synchronization mechanisms that can lock the
garbage collector out of a region rather than the whole structure, and so on. In practice
it may be necessary to give programmers more flexibility, so that some high level
programs will be such that the compiler does not guarantee good interaction with the
garbage collector. In that case the language facilities that put the burden of assuring
good interaction on the user should be very clearly visible whenever they occur in a
program. The facilities for which good interaction is guaranteed should be rich enough
that only expert programmers with stringent performance goals will ever feel a need to
use the dangerous facilities. This is |ike the consensus that is beginning to emerge
regarding control structures: goto should be provided, but a varied collection of more
disciplined control structures should be provided to serve the needs of most program-
mers most of the time. The main limitation on the significance of Theorem 5.5 for
language design is the simplicity of the garbage collection considered here. Unreach-
able cycles are not recognized as garbage, so we needed to assume that B2 is acyclic in a

RECORD HANDLING 463

treelike production. The basic theory has no such limitation, but its role in the more
complex situation remains to be worked out.

Appendix A: Proof of Theorem 4.(6). We begin by recalling what is hypothesized
by Theorem 4.5. Let o be a family of acyclic record structures that allows indirection.
Let >> be a relation on colored graphs such that, for some set of rooted biproper fast
productions wherein no node in B is colored I and no arc in Ba is colored ind or in Cvar,

(A.1) G >>I H iff (::lp in)(::lr in R)(G => H via rp);

(A.2) (,))1) is strongly Church-Rosser.

Under these hypotheses the theorem claims that (, >>4) is strongly Church-Rosser,
where

(A.3) G>>2H

(A.4) G >>3 I-I

(A.5) G >>4 I"I

iff G >>,=H;

iff [G has normal form H in (, >>ina)];

iff (:IX)(G >>2X >>3 H).

The proof in 4 proceeds under the assumption that, for arbitrary G, H, He in ,
(A.6) (G >>2 H & G >>3 He) implies (::iW, X)(H >>3 X & He

>>2 W >>3 X).

All that remains is to prove (A.6). Suppose G >>2 H and G >>3 I-I#. If G H then we
may let W and X be H#, so we may assume G H. Therefore there is a direct derivation

(A.7) G => H via rp based on g

for some p in , r in R, and g" B1 -’ G. We want to construct a similar derivation

(A.8) H# => W via r#p based on g#
such that W and It have the same normal form X in (, >>ind)- A closer look at such
normal forms will be helpful. From G >>3 It# it follows that It# has the same (under the
obvious bijection between pairs of sets) nodes and arcs as does G. The colorings and the
source maps are the same. Targets of arcs, however, are different"

(A.9) tx (if rntx I then tx else ty),
where y is the outarc from tx in case rntx I. With colorings suppressed for
readability, Fig. 4.5 summarizes how (A.8) will be obtained. The pushouts Fig. 4.5(1)
and Fig. 4.5(2) in GRAPHS are from (A.7). The other squares are also pushouts, but in
a category TARGRAPHS that is like GRAPHS but has only the target operation
mapping arcs to nodes. We may consider G, D,/-/to be objects in this category by
simply forgetting about sources of arcs.

To obtain Fig. 4.5(3) we begin by defining qb as a map from items of G to items of
H#. For each node sr in G let

(A.IO) b’= (if rn6sr # I then " else ty),
where y is the outarc of sr in case msr L Let q6 be the identity map on arcs. Defining
g bg yields a map from items of B to items of H#. We claim that

(A.11) preserves targets and g# is a graph morphism.

Given an arc x in G, let r tx and let y be the outarc from sr in case msr L Then
(A.10) and (A.9) imply btx =tx tbx, so 4 preserves targets. By g#= bg, this
implies that g# preserves targets. We must show that g# preserves sources. Let z be an

464 HARTMUT EHRIG AND BARRY K. ROSEN

arc in B1. Then megz rm1z ind and so mesegz # L Applying (A. 10) to r segz
gslz, we find that

#g S1Z Cgsaz segz se&gz segez,
so ge preserves sources and the proof of (A.11) is complete.

The analog of Lemma 2.4 for TARGRAPHS is obtained by forgetting about
sources and colors. To obtain Fig. 4.5(3) as a pushout in TARGRAPHS we must check
that

tAo

No [.J ClD for (No, Ao) He- &G;

(Vy, y’ in G)[y Cy’ implies (y y’ or y, y’ in caD)].

Because is the identity on arcs, Ao and the inclusion is trivial. The second
condition will be derived from

(A.12) (&r implies mef=I=m(implies

To prove (A.12), suppose sr r. Then sr is a node and (A.10) implies ruesr L while
mn= me. The mirror image of (3.6.2) implies that no node in Ba blK colored in Cvar,
while no node in B1 at all is colored L Therefore no node y in BI-blK can have
rmay L Since G gB1 ClD as a set of items and gba Cld, me(I implies that r is
in caD. By (A.9) and (A.10), it also implies that r is not in CG. Therefore (A.12) holds.

Our first use of (A. 12) is in dealing with the situation where Cy Cy’ but y : y’. We
may then assume y Cy, which implies that y is a node in ClD. If y’ Cy’ also there is
nothing more to show, so we may assume that y’= y’= &y. There is a nonnull path
from y to y’ in G using arcs colored ind. But no arc in B1 is colored ind or in Cvar, SO

these arcs are not in gBa. By Lemma 2.4(3) for the pushout Fig. 4.5(1), the last arc in the
path has target y’ in (G-gB1)t_J gblK and hence in ClD. Lemma 2.4 in TARGRAPHS
yields Fig. 4.5(3).

Now Fig. 4.5(1) and Fig. 4.5(3) are both pushouts in TARGRAPHS, so Lemma 3.9
implies that the large square Fig. 4.5(1, 3) is a pushout from ba and de= 6d to formHe.
To obtain the first pushout needed for (A.8) we must bridge the gap between
TARGRAPHS and GRAPHS[C]. It will be helpful to know that ClD

_
cDe (an

inclusion that makes sense because G and H have the same set of items). Any y in D
with cay cay has cly c’6y. By (A.12), any y in D with cay qCly has cly in He

but not in &G, so it must be in cDe. Thus caD cDe.
To define s: (De)arcs-- (De)nodes, consider any ye in (De)arcs There is a unique

arc y in D with ye 3y because is the identity map on arcs. Now sy e may be defined
to be

e e -1 -1
SDy (C) ClSDy (C) SeCly (C)-lsGcy e,

where (c)-acasoy is well-defined because caD
_

cDe. Because se sn, c becomes
a graph morphism when so is taken to the source operation on De. By (A.11),
c(de= geba is a graph morphism. But c is an injective graph morphism, so de must
be a graph morphism also. Fig. 4.5(1, 3) is now a pushout in GRAPHS.

For colors we need an appropriate recoloring re. Let rec rc except when c is in
Cvar and rc =L In that case c mlz for a unique node z in Ba by (3.6.1). Let
e e e ge emr C=mHg Z then. Now "(Bl, r a)-(He, m) in GRAPHS[C]. When K is

colored by m.x r mlbx and D is colored by mo.1 mz-lC’ the maps bl and c
preserve colors, and then de preserves colors because cde geb1. Figure 4.5(1, 3) is
now a pushout in GRAPHS[C].

RECORD HANDLING 465

We claim that any x, x’ in K with d#x d#x have r#m2bzx r#m2b2x ’. Suppose
d#x d#x and let c mzbzx and c’ mzbzx’. If x is an arc then dx dx’ because 4 is
the identity on arcs, and then rc rc’ because colors are assigned consistently in (A.7).
But (3.6.3) and the lack of variable colored arcs in B1 imply that c, c’ are in Cnx, so
#

__Cr c c rc rc’ r#c. On the other hand, suppose x is a node. We may assume x
is not the root node in (3.8.2). Therefore

x =mHCdr c r mxblX m-ICd# # #x,

so r#c r#c will follow as soon as we show that x’ is not the root node. We suppose x’ is
the root and derive a contradiction. By (3.8.1), blX is reachable from blx’ # blX inB1, so
there is a nonnull path from g#blx’ to g#blX in He. But d#x d#x implies that
g blX g blX, contradicting the fact that He is acyclic. Our claim does hold, and so

D# # # #Kthere is a coloring mD,2 of that agrees with mo, on D -d and makes d e

preserve the coloring m :,2 r#m2b2 of K. Pushing out from b2" (K, m :,2) (B2, r#m2)
and de. (K, m/<,2) - (De, too,2) in GRAPHS[C] yield W in GRAPHS[C] to complete
(A.8). By Lemma 3.10 in TARGRAPHS, the pushout to W can be factored as Fig.
4.5(2, 4) in TARGRAPHS.

We must show thatWand Hhave the same normal form X in (@, >>ina). Specifically,
we will construct an isomorphism/3" It-W in the category SOUGRAPHS[C] that is
like GRAPHS[C] but has only the source operation mapping arcs to nodes. When/3 is
used to identify items of It with items of’W, only targets of arcs can be different in the
two colored graphs. We will also show that the differences in targets are not too severe.
Specifically, each x in (H)arcs--(W)arcs will be shown to have

(A.13) (mntnx I & twx tHX) implies (twx twz for z the outarc of tHX).

Another helpful property of/3 will be that flz z unless z is a node in c2D. Thus 6 will
resemble the identity map, much as & resembles the identity map in (A.12), when is
used to identify items of H with items of W. Assuming fl and (A. 13) for the time being,
we can now prove that the normal form X of H is the same as the normal form X# of W
in (@, >>ind). Putting objects into SOUGRAPHS[C] by forgetting about targets of arcs,
we already have X H W X#. Thus the only wayX# and X might possibly differ is in
targets of arcs. Consider targets in X. The relation analogous to (A.9) but between tx
and tn leads to a recursive procedure for computing tx by inspecting nodes of It and
following outarcs when the nodes are colored L For each arc x in H, the sequence T,x
of nodes encountered is easily described. If mntnx I then Tnx is the sequence (tnx) of
length 1. Otherwise mntnx I and tx has a unique outarc z in H. Then T,x is the
concatenation (tnx). Tnz. Note that txX is the last node in T,x. There is a similar
sequence Twx for finding targets in X#, and X X# will follow as soon as Tnx and Twx
have been shown to end with the same node. We use induction on the length of Tnx.
Suppose first that the length is 1, so that mnt,x L We claim that Otx tx. If tx is
not in c2D this is trivial. Otherwise mGclc-(tHX [(by (3.6.3) and the lack of I nodes
in B1), so Otnx =tnx because (A.12) implies CClCltnx cc tnx. But Ot,x =t,x
implies that twX tnx and so Twx (tnx) Tnx. To pass from length 0 to length 0 + 1,
consider Tnx (tx). Tnz with mtt4x I and z the outarc of t,x. If twX t,z then z
is also the outarc of twx in W and Twx (twx) Twz. If twx tnx then (A.13) implies
Twx Twz. In both cases Twx has the same last node as Twz, which has the same last
node as Tnz by the induction hypothesis. But (tx). Tnz T,x, so Twx has the same
last node as Tnx. This completes the proof that W and H have the same normal form,
assuming that/3 exists and (A. 13) holds.

466 HARTMUT EHRIG AND BARRY K. ROSEN

All that remains is to construct/3 and verify (A. 13). Because caD
_
c(D #, there is

an injective SOUGRAPHS morphism r" D- W with r c (c)-ac There is also a
SOUGRAPHS morphism r: B2 --> W that agrees with rdb on b2K and with h # 6h
on B2- b2K. (The only nontrivial point about - is checking that an arc in B2- b2K with
source in b2K has the source operation preserved by r. But this follows because & is the
identity on arcs.) By the universal property of Fig. 4.5(2), there is fl: H--> W in
SOUGRAPHS with flh z and tic2 o-. Note that flz z unless z is a node in c2D.
Because r is injective while r is injective on B2-b2K and never collapses items in
B2- bzK with items in b2K, fl is injective. For showing that fl is surjective it will help to
know that cD# c caD. For arcs the inclusion is trivial. Consider any node y# in D#,
and let sr be cy-. If sr -&sr then r is in cDG (’IceD #, which implies that sr is in cad
because Fig. 4.5(3) is a pushout. If sr &sr then (A. 12) implies that sr is in ClD. Therefore
c’D# _ClD. As a set of items W= h#(Bz-b2K)k_JcD #, so fl is surjective because

h #(B2- b2K)
_
rB2 c_ fill;

cD# c(c)-lcD#

_
c(c)-a)cdaD o’D fill.

Therefore/3 is an isomorphism in SOUGRAPHS. To pass from SOUGRAPHS to
SOUGRAPHS[C] we must show that any z in H has mnz mwz.

Case A.1 [z hy for y in Bz with m2y in Cnx]. We claim Oz flz. This is trivial
unless y is a node in bzK. In that case let bzx y. By (3.6.3), mlblX is in Cnx and
mogblx rmlblX mlblX I. By (A.12), d/z =c(c)-ackgbax =c’(c)-agbax
r dx flz. Now we calculate:

rnnz rm2y rn2y r#m2y mwh#y rnwbZ mwflZ.
Case A.2 [otherwise]. By (3.6.2), (3.6.3), and H hB2 (_J c2D as a set of items,

z czy for y in D with mD,ay mD,y. Moreover, let y# (c’)-acay. Then mD,ly
#

mD,2Y can be shown as follows. Suppose ’otherwise. Then y d x for x in K with

mablx mzb2x. By (3.6.3), mlbax and mzb2x are in Cfix. But
ca dx, so (A. 12) implies rmabax tncl dx I. But Ba lacks I nodes, so mablx is in Cvar,

#a contradiction. Therefore mD,ay mp.2y in addition to mp,ly mp,2Y. We cal-
culate"

#mnz mocly mHcay =mp,ly mD,2Y mwc2 y mwfry mwflz.
This completes the proof that fl is an isomorphism between It and W in
SOUGRAPHS[C].

To show that (A.13) will hold when fl is used to identify I-I with W in
SOUGRAPHS[C], suppose mntnx land twflX fltnx. We need twflX twflZ for z
the outarc of tnx. Let y taX. Because ff preserves targets and fl agrees with g on arcs
and on nodes in h(B2-b2K), we have y in c2D with fly Sy. For r/= cacay we have

c2 n=flyg/y=c(c)-an,
so (A. 12) implies mr/= L The outarc sr of r/in G must be in clD because Ba has no arcs

--1colored ind or in C,,,r, SO CC-I" is an outarc of y in H. Hence cc z and z is in cD
--1with cac z ’. We calculate:

twflX twx tnx ZY
C (C f)-lcT]
c (c)-atsr by (A. 1 O)

-1--tWCff (Cf)-Ic1c2 Z

RECORD HANDLING 467

This completes the proof of (A.13) and hence of (A.6). The debts incurred while
proving Theorem 4.5 have all been paid.

Appendix B: Pushouts. Intuitively, a pushout displays how one large graph results
from "gluing together" two smaller ones. In the diagram (B.2) below we "glue" B and
D together to form G. The morphisms b and d tell how the parts B andD fit together to
form G. For each x in K, the items bx in B and dx in D are fused to form one item
gbx cdx in G. Apart from this gluing, G resembles the disjoint union of B and D. The
morphisms g and c have images gB and cD such that anything in G is in one of the
images. As a set of items, G satisfies

(B.1) G gB kJ cD.

For K some items are in both images because gb cd, but G is as close to being a
disjoint union as the gluing specified by b and d will allow. The only items in gB cD
are those in gbK, and the only departures from injectivity present in g and c are those
incidental to gluing. Thus g should not have gy gy’ for y : y’ unless y and y’ are both
involved in gluing.

Instead of defining pushouts by an elaborate construction that formalizes the
intuition directly, we will say that pushouts do for us in the categories of interest here.
Specifications of objects in terms of what they do at a categorical level are known as
universal properties. As is to be expected when category theory is applied rather than
pursued for its own sake, this paper is sometimes concerned with interactions between
universal properties and the concrete constructions that yield objects with these
properties. As in [1, p. 44], [14, p. 139], a pushout is any commutative diagram of the
form

K -b- "B

(B.2) a

such that, whenever an object X and morphisms/3 B X, : D X satisfy

(B.3) fib gd,

then there is a unique morphism 3’: G X such that

(B.4) yg=/3 and 7c=6.
This definition makes sense in any category, but it leaves open the question of whether
there are any such diagrams in the category under discussion. We speak of pushing out
from the morphisms b and d in (B. 12). If there is any pushout from b and d at all, then it
is unique up to isomorphism in the usual way [1, p. 45], [14, p. 135]. If there is a pushout
from any morphisms b and d that start from the same object, the category under
discussion is said to have pushouts. This paper considers the category GRAPHS[C] and
some other categories that are helpful in proofs, such as the category SETS whose
objects are sets and whose morphisms are maps between sets. All the categories we
consider have pushouts.

The explicit construction showing that SETS has pushouts is well-known and is
reviewed in [21, 2], which also notes that this construction leads to pushouts in

468 HARTMUT EHRIG AND BARRY K. ROSEN

GRAPHS and GRAPHS[C]. Given b:KB and d:KD in GRAPHS or
GRAPHS[C], we push out in SETS from b and d as maps from nodes to nodes and also
from b and d as maps from arcs to arcs. These two pushouts in SETS yield G as a pair
(node set, arc set), and the natural choice of source and target maps (defined by the arc
set pushout) yields a graph structure. If b and d are originally colored graph morphisms
then the natural choice of coloring (defined by the two pushouts in SETS) yields a
colored graph structure. It is easy to check that the two diagrams (B.2) in SETS
correspond to one diagram (B.2) in GRAPHS or GRAPHS[C] with this structure on G,
and that this diagram is a pushout. Writing out the details can be recommended as an
exercise in relating explicit constructions to universal properties. The reader should try
to construct pushouts in SETS from the intuitive hints about gluing that began this
appendix. If necessary, [21, 2] can be consulted.

Acknowledgment. The authors appreciate the comments on drafts of this paper by
J. Staples. Many improvements were suggested by one of the referees in a very detailed
and helpful report. A condensation of an earlier version of this paper was presented as
[8] at the 4th International Colloquium on Automata, Languages, and Programming,
Turku, Finland, July, 1977.

REFERENCES

1] M. A. ARRIB AND E. G. MANES, Arrows, Structures, and Functors, Academic Press, New York, 1975.
[2] L. P. DEUTSCH AND D. G. BOBROW, An efficient incremental automatic garbage collector, Comm.

ACM, 19 (1976), pp. 522-526.
[3] T. W. DOEr’’NER, Parallel program correctness through refinement, Proc. 4th ACM Symp. on Principles

of Programming Languages, Santa Monica, January 1977, pp. 155-169.
[4] n. EHRIG, Introduction to the algebraic theory of graph grammars, Bericht Nr. 78-28, Fachbereich

Informatik, Tech. U. Berlin, August 1978; Proc. Internat. Workshop on Graph Grammars and their
Applications to Computer Science arid Biology, Bad Honeff, October 1978, to appear.

[5] H. EHRIG, H. J. KREOWSKI, A. MAGGIOLO-SCHETTINI, B. K. ROSEN AND J. WINKOWSKI,
Deriving structures from structures, Lecture Notes in Computer Science, 64 (1978), pp. 177-190.

[6] H. EHRIG, M. PFENDER AND H. J. SCHNEIDER, Graph grammars: An algebraic approach, Proc. 14th
Ann. IEEE Symp. on Switching and Automata Theory, Iowa City, October 1973, pp. 167-180.

[7] H. EHRIG AND B. K. ROSEN, Commutativity of independent transformations on complex objects, IBM
Research Rep. RC 6251, October 1976.

[8] ., The mathematics of record handling, Lecture Notes in Computer Science, 52 (1977), pp.
2O6-220.

[9] ., Concurrency of manipulations in multidimensional information structures, Lecture Notes in
Computer Science, 64 (1978), pp. 165-176.

[10] ., Concurrency of manipulations in multidimensional information structures, Bericht Nr. 78-13,
Fachbereich Informatik, Tech. U. Berlin, May 1978; Revision, Theor. Comput. Sci., to appear.

[11] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.

[12] D. GRES, On believing programs to be correct, Comm. ACM, 20 (1977), pp. 49-50.
[13] An exercise in proving parallel programs correct, Comm. ACM, 20 (1977), pp. 921-930.
[14] H. HERRLICH AND G. STRECKER, Category Theory, Allyn and Bacon, Rockleigh, NJ, 1973.
[15] G. HUET, Conluent reductions Abstractproperties and applications to term rewriting systems, Proc. 18th

Ann. IEEE Symp. on Foundations of Computer Sci., Providence, October 1977, pp. 30-45.
16] D. B. JOHNSON, Finding all the elementary circuits ofa directed graph, this Journal, 4 (1975), pp. 77-84.
[17] D. E. KNUTH, The Art of Computer Programming, Vol. (2nd ed.), Addison-Wesley, Reading, MA,

1973.
[18] M. J. O’DONNELL, Computing in systems described by equations, Lecture Notes in Computer Science,

58 (1977), pp. 1-111.
19] D. C. OPPEN AND S. m. COOK, Proving assertions aboutprograms that manipulate data structures, Proc.

7th Ann. ACM Symp. on Theory of Computing, Albuquerque, May 1975, pp. 107-116.

RECORD HANDLING 469

[20] B. K. ROSEN, Tree-manipulating systems and Church-Rosser theorems, J. Assoc. Comput. Mach., 20
(1973), pp. 160-187.

[21],Deriving graphs]’rom graphs by applying a production, Acta Informat., 4 (1975), pp. 337-357.
[22], Correcmess o]parallel programs: The Church-Rosser approach, Theor. Comput. Sci., 2 (1976),

pp. 183-207.
[23] R. SETHI, Testing [or the Church-Rosser property, J. Assoc. Comput. Mach., 21 (1974), pp. 671-679.
[24] P. M. SPIRA AND m. PAN, On finding and updating spanning trees and shortest paths, this Journal, 4

(1975), pp. 375-380.
[25] J. STAPLES, A class o] replacement systems with simple optimality theory, Bull. Austral. Math. Soc., 17

(1977), pp. 335-350.
[26] G.L. STEELE, Multiprocessing compactilying garbage collection, Comm. ACM, 18 (1975), pp. 495-508.
[27] H. R. STRONG, A. MAGGIOLO-SCHETTINI AND B. K. ROSEN, Recursion structure simplification, this

Journal, 4 (1975), pp. 307-320.
[28] R. E. TARJAN, Finding dominators in directed graphs, this Journal, 3 (1974), pp. 62-89.
[29] P. L. WADLER, Analysis o] an algorithm]’or real time garbage collection, Comm. ACM, 19 (1976), pp.

491-500.
[30] N. WIRTH AND C. A. R. HOARE, A contribution to the development o] ALGOL, Comm. ACM, 9

(1966), pp. 413-431.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0002 $01.00/0

CONDITIONS FOR OPTIMALITY OF THE HUFFMAN ALGORITHM*

D. STOTT PARKER, JR.5"

Abstract. A new general formulation of Huffman tree construction is presented which has broad
application. Recall that the Huffman algorithm forms a tree, in which every node has some associated weight,
by specifying at every step of the construction which nodes are to be combined to form a new node with a new
combined weight. We characterize a wide class of weight combination functions, the quasilinear functions, for
which the Huffman algorithm produces optimal trees under correspondingly wide classes of cost criteria. In
addition, known results about Huffman tree construction and related concepts from information theory and
from the theory of convex functions are ticd together. Suggestions for possible future applications are given.

Key words. Huffman algorithm, optimal tree construction, weighted path length, tree height, quasilinear
functions, convex functions, R6nyi entropy

1. Introduction. Although Huffman’s algorithm was primarily developed for a
problem in discrete coding as early as 1952 [16], it has recently been undergoing a
considerable amount of research as more applications for it are uncovered. Most
recently, Itai [17], van Leeuwen [19], Glassey and Karp [12], and Golumbic [13] have
presented new perspectives on how the algorithm works and how it can be employed in
new ways. Until now, all research has concentrated on two variations of the algorithm,
which respectively minimize (i) the weighted path length, and (ii) measures akin to tree
height, of the constructed tree. Modern applications for weighted path length mini-
mization include (1) construction of optimal search trees [31], [15], [17], (2) merging of
lists [8], [20], (3) minimization of absolute error bounds in sums of positive numbers [6],
[29] and relative error bounds in products [26], (4) text file compression [25], and (5)
optimal checking for leaky pipelines and water pollution [12]. Applications for tree
height minimization include the determination of the minimum execution time for
fanning-in data (in limited task-scheduling gystems, and in arithmetic/Boolean sum- or
product-accumulation, etc.) and problems related to speed in parallel processing [13].
This is by no means a complete listing.

Our interest in the algorithm comes mainly from its import for generating optimal
evaluation trees in the compilation of expressions. Not only does the algorithm build
optimal trees with respect to execution time, space usage, and roundoff error for many
classes of limited expressions, it does so very efficiently. If N is the number of leaves in
the tree to be constructed, Huffman’s algorithm can be implemented in time
O(N log N) when a fast priority queue is used. Moreover, van Leeuwen has shown that
this time bound can be reduced to O(N) if the leaf weights are given in sorted order
[19]. (This suggests that the complexity of the algorithm is 19 (N log N), since sorting is
at least that difficult.)

The two variations of the Huffman algorithm mentioned above are based on the
same construction process, but use different tree cost functions and node merging
methods. In the construction process each node has some associated weight, and these
nodes are combined along with their weights to form a new weighted internal (parent)
node in the tree. Construction terminates when all nodes have been combined into a
final root node. The weighted path-length variation produces parent nodes having

* Received by the editors July 6, 1977, and in final revised form May 14, 1979.
Department of Computer Science, University of Illinois at Urbana-Champaign. Now at Department of

Computer Science, University of California, Los Angeles, California 90024. This research was supported in
part by the National Science Foundation under Grants MCS 76-81686 and MCS 75-21758, and by an IBM
Fellowship.

470

OPTIMALITY OF THE HUFFMAN ALGORITHM 471

weights equal to the sum of the weights of its sons, while the tree-height variation uses
the maximum of the son weights plus some nonnegative constant. This will all be
discussed in greater detail below.

It is not immediately apparent why these two apparently unrelated incarnations of
the Huffman algorithm both produce optimal trees. From the point of view of compiling
it would be nice if we could use instances of the same construction to obtain trees
optimal with respect to yet other cost measures besides tree height and path length. For
example, suppose we wish to construct parse trees for parallel evaluation of sums of
positive numbers, optimal with respect to some measure of both roundoff and time
used. Since error bounds in this case correspond to path-length, and execution time to
tree height, an optimal parse tree cannot be constructed using the Huffman algorithm
unless a node-merging method more complicated than the two above is used. This
problem raises the following question addressed and investigated in this paper: for
which problems will the Huffman algorithm produce optimal trees under exactly which
cost? We will identify a wide class of weight combination functions (encompassing the
two standard methods above) which all produce optimal tree with the Huffman
algorithm under corresponding classes of tree cost functions. We also tie together some
results from information theory and the theory of convex functions in studying the
optimality in these instances.

2. Basic machinery for Huffman tree construction. This section defines the nota-
tion to be used for the rest of the paper. The exposition here is not really introductory
and readers seeking more background are referred to [18, 2.3.4.5] or [1]. For the time
being we confine ourselves to binary trees until the essential results are established. The
extension to r-ary trees follows in an analogous way.

In the "binary tree construction problem" one is given a set of n + 1 leaves having
corresponding weights {Wa, w2, , wn+a}. The.weights need not be normalized so that
their sum comes out to be unity; we require only that they be nonnegative and given, for
convenience, sorted by index:

0_-<wa_-<w2<-... --<wn+a.

Although in some problems a particular ordering is to be enforced on the leaves (e.g.,
[15]) we presume in this paper that there are no constraints on the final order of the
leaves in the constructed tree. Construction of a (full) binary tree on these leaves is then
effected by n merges of pairs of "available" nodes. Each node in the pair is marked
unavailable after a merge and their father (the result of the merge) is marked available,
having as his weight some function F of the weights of its sons. Leaves are initially all
marked available, of course. Note that n merges are necessary and sufficient, since
binary trees on n + 1 leaves have n internal nodes.

Each internal node defines the root of a binary subtree of the constructed tree,
which implies that tree construction can be defined inductively in terms of forests
(collection of trees) in the obvious way. The construction begins with a forest of n + 1
one-node trees and repeatedly reduces the number of trees by 1 via root merge
operations until only one tree is left.

Notation.
wi--jth smallest leaf weight (i.e., W1 is smallest, w,+a largest);
/ipath length (distance from the root) of wi;
W/ith smallest internal node weight.
The name of the tree or forest in question will be added in parentheses to each

quantity whenever it is not clear from context which tree or -forest is meant.

472 D. STOTT PARKER, JR.

DEFINITION. A weight space U for a weighted tree construction problem is a
connected interval of the nonnegative reals R+. All weights in the tree are elements
of U.

DEFINITION. A weight combination function F: U2- U is any symmetric function
which is closed as a binary operator on U. F is used to produce the weight of internal
nodes generated by a merge operation in tree construction (cf. Fig. 1).

FIG. 1. Weight combination function F(x, y).

DEFINITION. A tree costfunction G: U -R for all trees having n internal nodes is
any symmetric mapping of U into the real numbers R. For such a tree T, the cost of T
will be

G(WI(T), We(T),..., W,(T)),

i.e., the value of G applied to the internal node weights of T. Note that if such a tree cost
is to be generally useful, it should be extensible to arbitrary numbers of arguments and
not be dependent on some fixed value of n.

Huffman’s algorithm for binary tree construction is now simple to state" To build
the Huffman tree given a weight combination function F, merge at each step the two
available nodes of smallest weight (with ties resolved arbitrarily) until only one node is
available.

Example. If F(x, y)= x + y and G sum with U R/, then it is not hard to show
that the cost of any tree T in this system is

wj(T)lj(T),
l<jn+l

which is called the weighted path length of T.
Example. IfF(x, y) =max (x, y) + c(c _->0) and G maxwith U R+, then the cost

of any tree T in this system is

max (wj(T) + c li(T)).
lj--n+l

We call this a tree-height measure of T because when c 1 and wi=O for]=
1,. , n + 1 then this cost is exactly the height of T.

The importance of Huffman’s algorithm is that it produces optimal trees for both of
these examples. The optimality in the weighted path length system (the one originally
considered by Huffman) is proved, e.g., by Zimmerman [31]. Zimmerman’s proof
mutatis mutandis will work for the tree-height example as well. Examples of the
construction are shown in Fig. 2. In both cases the trees illustrated are the unique
optimal-cost trees; note that although they have identical initial weights their structures
are entirely different.

OPTIMALITY OF THE HUFFMAN ALGORITHM 473

1
(a) weight (root)= weight (left son)

+ weight (right son)
(b) weight (root)=max (weight (left son),

weight (right son))+ 3.14

FIG. 2. Tree construction.

3. Motivation: "Quasilinear" weight combination functions. This section explores
the properties of quasilinear functions, and shows that whenever F is quasilinear then
the Huffman algorithm will produce a "good" tree. This result motivates the work of
4, in which the behavior of quasilinear F with Huffman’s algorithm is analyzed in

detail.
Let b: U R be a real-valued function on the weight space.
DEFINITION. is:

i) positive if b (x) _-> 0 for all x in U;
ii) negative if -b is positive;

iii) sign-consistent if b is positive or negative;
iv) monotone if (b (x) b (y))(x y) is a positive function of x for every fixed value

y in U; and
v) strictly monotone if b is monotone and x y implies b (x) b (y).
DEFINITION. A weight combination function F: U2-> U is:

i) increasing if y_-<z implies F(x, y) <-_F(x, z) for all x, y, z in U;
ii) path-length monotone if y_-<z implies F(F(x, y), z)<-F(F(x, z), y) for all

x, y, z in U;
iii) nonshrinking if F(x, y)>_-max (x, y) for all x, y in U;
iv) strictly shrinking if F(x, y)_-<min (x, y) for all x, y in U; and
v) quasilinear if F(x, y) b-l(hb(x)+ hb(y)) where h is a nonzero constant and

b: U-> R is invertible. (Note F is symmetric, and conjugate under b to the linear map
; (x + y).)

The quasilinear functions have a number of interesting properties. They have been
studied in the context of functional equations by Acz61 and others [1]. We will be
concerned with their properties as weight combination functions. In particular, when
h 1 and 4 (x) x the quasilinear function F obtained is

F(x, y) x + y,

which is the weight combination function for the weighted path-length construction
system. Also when h exp (pc) [c >= O] and b(x)- exp (px), then

lim F(x, y) max (x, y) + c,

which is the weight combination function for the tree-height system. Thus the class of
quasilinear functions F is broad enough, in the limit at least, to encompass the two
known Huffman-optimal ones.

474 D. STOTT PARKER, JR.

AssumingF is quasilinear, further restrictions must be imposed on it before useful
results can be proved. We require F to have the following characteristics:

(1) F must be continuous;
(2) F must map U U into U;
(3) F must be path-length monotone.

These conditions lead to restrictions on b and A. The first is achieved by restricting 4 to
be continuous. We may also assume without loss of generality that b is strictly
increasing, since b must be strictly monotone to be invertible, and F is invariant of
changes to the sign of b.

The second and third conditions may be simultaneously satisfied by making the
restrictions on b and A stated in the following Lemma.

LEMMA 1. Let qb: UR be strictly increasing and >0. If F(x,y)=
b-a(,b(x)+,b(y)) is to satisfy F: U2U and be path-length monotone, then
necessarily >- 1, and cb U) must be unbounded.

Proof. Since b is increasing, b -a is also increasing. If F is path-length monotone
then for all x, y, z in U with y -< z we find

F(F(x, y), z)<-F(F(x, z), y),

X e(x) + ; (y) + he(z) _<- ; 6(x) + ; 6(z) + ;6(y),

0 _-< (;-;)((z)- (y)).

Since b is increasing we must have (,-)-> 0, implying 0 (trivial) or -> 1, as
desired. Similarly if F: U2 U then we must have h(c(U)+4(U))_cb(U). Since

=> 1, b(U) must be unbounded.
Taking under consideration the restrictions posed by Lemma 1, we have the

following list of properties enjoyed by quasilinear F for all u, v, x, y in U"
QL1. (Symmetry) F(x, y)= F(y, x);
QL2. (Increasingness) F(u, x)<=F(u, y) if x =< y;
QL3. (Path-length monotonicity) F(F(u, x), y) <-F(F(u, y), x) if x _<- y;
QL4. (Bisymmetry) F(F(u, v), F(x, y)) F(F(u, x), F(v, y)).
Property QL4 is very important, since it leads to the proof of the following lemma.
LEMMA 2. Fis a quasilinear weight combination function satisfyingLemma 1 if and

only if F satisfies conditions QLI-QL4.
Proof. The only if part is now obvious. Acz61 establishes the other part of the proof

in 6.4 of [1], by showing that the continuous solutions of the bisymmetry functional
equation QL4 are in fact quasilinear functions.

LEMMA 3. LetFbe as in Lemma 1. Then Fis nonshrinking or strictly shrinking ifand
only ifc is sign consistent. Specifically, Fis nonshrinking iffcb is positive (increasing), and
F is strictly shrinking iff cb is negative (increasing).

Proof. Since b is increasing we have

F(x, y)_->max (x, y)

F(x, y)_-<min (x, y)

iff Ab (x) + Ab (y) b(x)

iff Ab (x) + Ab (y) b(x)

for all x => y in U,

for all x =< y in U.

Neither of these can be true if b is not sign-consistent, for then the connectivity of the
interval U and the continuity of b imply a neighborhood of zero would exist in b (U);
consequently we could contradict the first inequality above by selecting

b(x)>O, b(y)=-b(x), giving, O=O=>b(x).

OPTIMALITY OF THE HUFFMAN ALGORITHM 475

We conclude that must be sign-consistent, and find the nonshrinking/strictly
shrinking condition of F is satisfied when

6(x)
h -> sup

x, (x) + (y)
and b is negative [F =< min],

b is positive IF _-> max],

which is always true since h _-> 1 by Lemma 1.
DEFINITION. A weighted tree is an F-tree if the weight of each internal node is the

F-value of the weights of its sons.
DEFINITION. A weight combination function F is Huffman monotone if for all

F-trees T:
(a) When R is an F-tree obtained by interchanging any two of T’s leaves which

have the same path length (and then recomputing internal node values) the root weight
of R equals the root weight of T.

(b) When S is an F-tree obtained from T by interchanging a node having weight u
with a node of lesser depth having weight v _>- u (resp. v _-< u), then the root weight of S is
greater (resp. smaller) than the root weight of T.

THEOREM 1. IfF is Huffman monotone, then Huffman’s algorithm produces a tree
with the minimal root weight.

Proof. By induction on the number of leaves in the tree. As a basis the theorem is
true for 2 leaves, so assume it true for n. Let T be a tree with n + 1 leaves such that T is
better than the Huffman tree S. Assuming the leaf weights are

then T cannot contain the subtree

since the Huffman tree S contains this subtree and has, by hypothesis, the minimal root
weight for the n-weight set {F(Wl, w2), w3, , w,+l}. Let wr and ws be the leaf weights
of the binary subtree of maximal depth in T. That is, let Wr and ws have maximal path
length in T. Then since F is Huffman monotone the tree T obtained from T by first
interchanging W and wr, then w2 and ws, cannot have a root weight any greater than
T’s. But as we just showed the induction hypothesis says the root weight of S is no worse
than that of T. This contradicts the assumption that T was better than $.

THEOREM 2. F is Huffman monotone if and only if F satisfies properties QL3
and QL4.

Proof. The only if part follows by definition. The converse may be shown by direct
manipulation of "F-expressions", using induction on the depth of the tree.

Note that QL3 and QL4 give the converse’s basis for trees of depth 2. Assume
inductively that if u and v are leaf weights of equal depth in an F-tree T of depth n or
less, then interchanging u and v does not change T’s root weight. Denote this fact by

F(TI[u], Tz[V])=F(Tx[v], Tz[U]),

where T1 and T2 are subtrees of T of depth n 1 or less containing u and v, respectively.
Now consider a tree T’ of depth n + 1 with leaf weights u, v of equal path length n + 1.

476 D. STOTT PARKER, JR.

(If their path length is less than this, it is obvious from the induction that they can be
exchanged without altering the root weight of T’.) T’ then has 4 subtrees T1, T2, T3, T4
of depth n- 1 or less. Suppose without loss of generality that T2 contains u and T3
contains v (again, if u and v are in the same subtree then the interchange property
follows from induction). But then the root weight of T’ is

F(F(T1, T2[u]),F(T3[v], T4))=F(F(T1, T4),F(T2[u], T3[v]))

F(F(T1, T4), F(T2[v], T3[u]))

F(F(rl, T[v]), F(T3[u], T4))

which says precisely that interchanging u and v does not affect the root weight of T’.
This establishes the (a) part of Huffman monotonicity; the (b) part may be proved
analogously.

Lemmas 1 and 2 and Theorems 1 and 2 finally give us the following corollary.
COROLLARY 1. F is Huffman-monotone if and only ifF is quasilinear and satisfies

the restrictions o[Lemma 1.
The Huffman-monotonicity property is important in that it guarantees (Theorem

1) a minimal root weight for the Huftman tree. If the cost of a tree is determined by its
root weight, clearly the Huffman tree will be optimal. Corollary 1 provides the incentive
for the examination in the next section of the properties of F-trees for quasilinear F.

4. General characterization of Huffman tree construction. We begin this section
with a result from Glassey and Karp 12], and show how it can be extended in a natural
way to characterize the weight structure obtained in trees constructed with the general
Huffman algorithm.

DEFINITION. A weight sequence a is a row of nonnegative numbers
[al, a2, am] such that al a2 a3 am.

DEFIYIWIOY. Given two weight sequences a=[al, a2,...,am] and b=
Ibm, b2,’’’, b,], we write a N b if /k__ ai <= ki= be holds for all k, 1 =< k _-< m.

THEOREM 3 (Glassey and Karp). Let W(S)= [WI(S), W2(S), , W,(S)] be the
weight sequence for the internal nodes in a tree constructed by the binary Huffman
algorithm in the weighted path-length system, and let W(T)=[WI(T),
W2(T), , W, (T)] be the weight sequence for the internal nodes ofany other tree on the
same leaf weights. Then W(S)-<_W(T).

Glassey and Karp 1-12, pp. 371-373] prove Theorem 3 for general r-ary tree
construction, where r may be greater than 2 and the trees need not be full. The proof
establishes by induction on k that k kW/ (S) <---- S’- W/(T),for l_-<k_-<m. The theorem is a
sharpening of the earlier result by Hu and Tucker that "Huffman’s algorithm gives an
optimal m-sum forest" in the weighted path-length case [15, p. 518]. Anyway it is an
important characterization of the traditional Huffman algorithm and will be the clue to
most of the more general results in this section.

DEFINITION. A function &" U -> R is convex if U is a convex subset of R and for all
x, y in U and in [0, 1], b (tx +(1-t)y)<-t (x)+(1-t) (y); isconcave if-& is
convex.

THEOREM 4. Let a and b be two weight sequences of length m such that a <-_ b. If qb is
any concave, strictly increasing function and we define &(a) to be the weight sequence
[&(al),’’’, &(a,)] and similarly for &(b), then &(a)=< &(b), i.e.,

k k

E qb(ai) <= 2 qb(bi)]:or 1 <-- k <- m.
i=1 i=1

OPTIMALITY OF THE HUFFMAN ALGORITHM 477

Proof. This result is typical in the theory of convex functions. An elegant proof can
be adapted from that of Fuchs [9] (see also [21]) for the analogous case where b is
convex, and will be omitted here.

It is instructive to note that our partial order a=<b on weight sequences is
equivalent to the "majorization" relation a>b of [14], which appears widely in the
literature, if and only if ’ ai--t hi.

We now extend Theorem 3 for tree construction with a quasilinear weight
combination function

F(x, y) 6-1(A6(x) + A6(y)).

Section 3 showed that when F is of this form and several other conditions (Lemma 1)
are met, Huffman’s algorithm produces a tree with minimal root weight. In fact we will
make a much more general statement concerning all of the constructed internal node
weights. First, however, we must make some observations about construction with
quasilinear functions restricted by Lemmas 1 and 3.

Note that when b is positive increasing, the tree constructed by the Huffman
algorithm (for any positive A) on the leaf weights {Wl,"’, Wn/l} is topologically
isomorphic to the tree that would be built by the Huffman algorithm with

F(x, y) h (x + y)

on the leaf weights {6(Wl),""", t(Wn+l)}. (The values of the internal node weights
would also differ by b from tree to tree.) If b is positive decreasing, by contrast, the tree
constructed by the Huffman algorithm on {Wx, , Wn+l} is topologically isomorphic to
that which would be built by the anti-Huffman algorithm (the tree construction
procedure in which the two nodes of greatest weight are merged at each step) with
F(x, y) h (x + y) on the leaf weights {b(wl), , b(w+l)}. This all follows from the
"order-preserving" properties of monotone furictions. It should be pointed out that
when 4 is positive decreasing and h _-> 1 the Huffman algorithm could always produce
the tree in Fig. 3, because then by Lemma 3 F(x, y)_-< min (x, y) and the smallest weight
is always selected.

FIG. 3

This is also the structure of the tree that would be produced if b were positive
increasing, , ->_ 1, and the anti-Huffman algorithm were used, for then we would have
F(x, y) _->max (x, y) and the largest weight would always be selected. This type of tree
construction is not particularly interesting but will be covered here for the sake of
completeness.

Lemma 3 gives the restrictions on & necessary for F to be nonshrinking or strictly
shrinking, i.e., F(x, y) _->max (x, y) or F(x, y) =<min (x, y). In some sense the restriction
to nonshrinking F is "natural", but here it is made to guarantee that the smallest

478 D. STOTT PARKER, JR.

internal node weights are always found near the leaves of the tree. More precisely, if
F(x, y _>- max (x, y), then it is clear that the k smallest internal node weights
[WI(T), , Wk(T)] of a tree T define a subforest of T. (Suppose some weight W/(T)
in this weight sequence corresponds to an internal node whose son’s weight W.(T) is not
also contained in the weight sequence. Then W(T)< W.(T), for otherwise W.(T)
would be contained in the weight sequence. But this is impossible because F(x, y)>-
max (x, y) implies W(T)=> W(T).) Thus Lemma 1 asserts that if b is positive (resp.
negative) increasing and A => 1, the resulting internal node weights will have this
subforest characterization: Every collection of least (resp. greatest) node weights define
some subforest.

Lemma 3 also shows that, for nonshrinking or strictly shrinking F, we can assume b
is positive (and strictly monotone) instead of assuming it is increasing. This is true since F
is invariant of sign changes to b, and b must be sign-consistent. This assumption seems
to be the natural one to make because of the following result.

THEOREM 5. Let F(x, y) b-l(Ab(x) + Ab(y)) be the weight combination function
of the tree construction where c is convex, positive, and stricdy monotone and A >- 1. If, as
in Theorem 3, W(S) and W(T) are the weight sequencesfor the internal nodes ofthe trees S
and T, constructed respectively by the Huffman algorithm and by any other way, then

W(S) =< W(T).
(The same results hold if c is concave, negative, and strictly monotone.)

Proof. The proof has two cases, accordingly as b is strictly increasing or strictly
decreasing.

Case 1. c convex, positive, and strictly increasing. We accomplish the proof in two
steps: using the notation of Theorem 4, we first show that the weight sequences b (W(S))
and b(W(T)) satisfy

b (W(S)) <- b (W(T))

and then, since b -1 is concave increasing in this case, we can apply Theorem 4 to get
W(S) _-< W(T) as desired.

If there are n +1 initial leaf weights Wa,’", wn+a we have as above W(S)=
[WI(S),..., Wn(S)] and W(T)=[W(T),..., Wn(T)] as the internal node weight
sequences where W/is the ith-smallest such weight. In particular since W(S) designates
the weight of some internal node which is the root of some subtree Si of the Huffman
tree S, if we define

.Z9 {jlWj is a leaf of Si},

l](Si) path length of weight wj in the subtree Si,

ai= Y A,s) 4(w)
Ji

then W/(S)= b-l(ai). (This equation follows from the remark made after Theorem 4,
concerning the topological isomorphism of the Huffman tree here with the Huffman
tree using F(x, y)= A (x + y) on the weight set {b(wj)}.) Defining and l-(T) in an
analogous manner, if we set

bi Z A liT)qb(wi)

then W/(T) 4-a(bi).
We now claim that a=[a,..., an] and b=[ba,..., bn] are weight sequences

satisfying a b. First of all since b is positive increasing and W(S), W(T) are weight

OPTIMALITY OF THE HUFFMAN ALGORITHM 479

sequences, we know that a &(W(S)) and b= (W(T)) are weight sequences; in fact
since & "preserves order", if W/(S) < W/.(S) then ai (W/(S)) < (W(S)) a/., and
similarly for W(T) and b. Second, by Lemma 1 we know that F(x, y) >=x, y in this case,
so the k smallest node weights [W1,’", Wk] for either S or T correspond to a
subforest Fk of S or T. This implies

k k

E bi E E , li(ri)(wj)
i=1 i=1 -n+l

Z (++
j=l

E (l’(Fk)-- 1)(w/.) if A > 1,
/’---1

n+l

l/.(fk)b(w/.) if A 1,
j=l

with a similar expression holding for =a ai.
We can now directly apply Glassey and Karp’s method of proof for Theorem 3. The

proof proceeds by induction on k, proving a b by showing for all k that Z i= ag-<
EL1 hi.

Basis" k 1 is trivial. Induction step" there are two possibilities, depending on the
relationship between al (Wi(S)) and bl--(W(T)).

Subcase 1. al b. In this case we know -1(al) b-l(bl) F(wl, w2) and we are
reduced to the proof on the set of leaf weights {F(Wl, w2), w3, , Wn+l}, for which we
have by induction that

k k

E ai <- E be.
=2 --2

k k

i=1 i=l

Subcase 2. a < b. As in [GK 76] we will show there is a tree T with internal
weights Wi()=&-l(ci) where c=[cl,’", cn] satisfies EI<=i<kCi <l<__i<__kbi and, in
addition, cl al so we have (by reduction to Subcase 1)

ai <. ci E bi
i=1 i=1 i=1

completing the proof that a_-< b. Take the forest Fk corresponding to the least k weights
WI(T), , W(T)] of T and define as before the maximum path length in this forest

kma max 6(F).

Then choose an internal node having weight Wp(T) q-l(bp) F(wr, Ws) whose 2
(leaf) sons have path length /max inF and have leaf weights Wr and ws. Since a < bl _-< b,
we know {wr, ws} # {wl, w2}. Assuming w,-<_ ws, let T be the tree constructed exactly
like T but with the leaf weights wr and wl, w and w2 interchanged. Then Fk is still a
subforest of T (topologically T and T are isomorphic) and determines a subset of k of
T’s internal node weights, and consequently some k-subset of the weight sequence c.

480 D. STOTT PARKER, JR.

Specifically, if we define T, /, l.(T/) exactly as above so that

Ci 2
:Y-i

and W/(P)- -1(ci), then Fk defines the set

s {i1-(c) is the weight of some internal node in Fk}

and Isl- k. Moreover we must have

k

2 c-< Y’, c
i=1 i

since the first k weights ci are the least such weights. But we also have

k

Y. c; _-< E b.
i5 i=1

To show this we write for convenience

Cr=--(Wr), , --= (W,), ---- (Wl),

Therefore

and in the case A > 1, since

we have

_-->. and 2,

kl(T),12(T)<lmax(T)

6--6(w).

A 1
[((A A1)(bl- Cr) "- (Am A2)(2- Cs))]

A trivial modification of this argument gives the proof for A 1, so we omit it here. Thus
we have shown

k k

2 Ci 2 Ci 2 bi
i=1 i i=1

but since Cl -1(W1(’))--&-l(F(wl, W2))= al we have, by reduction to Subcase 1,
that

k k

Z ai < Z Ci.
i--1 i=1

A1 -<A and A2--< A.,.

So, if A > 1,

,,.2 Ci- 2 bi-- [(Ambl + Arnt2 -t- Albr + A2ts) (Alibi + A2q2 at- Am)r + Ambs)]
i=1

OPTIMALITY OF THE HUFFMAN ALGORITHM 481

Therefore

k k

i--1 i=1

and Theorem 5 follows for Case 1, since we have shown that a b, and, since here 4-x is
concave increasing we can apply Theorem 4 to get immediately

W(S) b-(a) _--< b-(b) W(T).

Case 2. c convex, positive, strictly decreasing. Actually in this case a statement
stronger than Theorem 5 can be made. We are comparing here the weight sequences

W(S) [WI(S), Wn(S)]=[c-(an), b-(a)]
and

V(T) =[WI(T), , Wn(T)]=[-l(bn), -(bl)],
where a=[al, ", an] and b=[b, ., b,] are weight sequences as in Case 1. From
the discussion following Theorem 4 we see that a would be the internal node weight
sequence formed using the anti-Huffman algorithm on the leaf weights
{b (w), , b (w,,+a)}. It follows that a _-> b for 1 -< k -< n, and thus we easily have both
a >" b and W(S) < W(T) as consequences.

Theorem 5 is possibly the most general result of its kind. To show what can happen
when b is not convex, we consider an example where b is concave positive. Let
b(x) x/, A 1, and U R+ so that

F(x, y)= (/ + x/;)2,
and suppose we are to build a tree given the leaf weights {1, 2, 3, 4}. The Huffman
algorithm produces the tree S in Fig. 4a

FIG. 4a

for which we have 23
i=1 W/(S) 5.83 + 13.93 + 37.78 57.73, while the tree T in Fig.

4b

FIG. 4b

482 D. STOTT PARKER, JR.

has 2--1 W/(T) =9+9.90+ 37.78 56.68 so W(S) ;W(T) That this phenomenon will
always happen when b is not convex is a result of the converse of Theorem 4, which says
that

, c(ai) <- . c(bi) for all a_-<b::4, concave increasing.
i=1 i=1

The proof is easy and we omit it.
An interesting problem is to determine, given only an expression for F(x, y),

whether F satisfies the conditions of Theorem 5. Lemma 2 can be used to establish
whether F is quasilinear; but it may be hard to determine whether the function b
defined by F is convex positive, since explicit form for b may be hard to produce. A
good solution to this problem remains to be found. Currently the only method known is
to derive a power series for b-1 either by repeated differentiation of the functional
equation

F(-(x), -l(x))=

followed by equating of coefficients, or (better) by using iterative methods like the ones
in [3] to converge to truncated series, and finally to analyze the sign of this series and of
its second derivative. This approach assumes, of course, that F and & are analytic
functions.

There is a test that can be made, however. We claim that if F is differentiable
then

THEOREM 6. OF/Ox and OF/Oy must be bounded on U ifFis to satisfy the conditions
of Theorem 5.

Proof.
dck- (Ack(x) + Ack(y)) A-x (X0F(x’ y)
dx

dck /dCk (F(x,))y

because dcb-X/dx 1/(dcb/dx)(cb-l(x)). If & is strictly increasing positive then (Lemma
3) F(x, y)_->max (x, y) and dc/dx >0; if b is strictly decreasing positive then F(x, y)-<
min (x, y) and dO/dx < 0. So if b is convex increasing positive then d!dx is positive
increasing, in which case

dk /dk(F(x y))-< Ax(x) (max (x, y))-<_ A.

If b is convex decreasing positive we obtain the same bound using min (x, y) since then
Id4ffdxl is positive decreasing.

Unfortunately, the condition of Theorem 6 does not imply b must be convex, since
it is true for lumpy, but near-convex, functions. It does appear to be a fairly potent test,
however; for the example in Fig. 4, we find OF/Ox 1 + (y/x) 1/2, which is unbounded on
U R+. This condition seems to characterize when the Huffman algorithm works: If F
grows too quickly, then the algorithm makes mistakes in its "greedy" selection of nodes
to merge.

Theorem 5 and Theorem 1/Corollary 1 will be exploited in 5. We finish this
section by formulating the above characterization for the r-ary case.

OPTIMALITY OF THE HUFFMAN ALGORITHM 483

THEOREM 7. Let everything be defined as in Theorem 5, with the exception that we let
F" Ur U be the r-ary function (r >= 2),

F(xl, x2, Xr) qb-l(A (/)(xi)).
i=1

Then the results of Theorem 5 and Theorem 1/Corollary 1 still hold.
We omit the proof, which is virtually identical to that of these theorems, with the

changes that we must now define F on less than its full r arguments in the natural way. In
the binary case all constructed trees are full, but that is no longer true in the r-ary case.
If n + 1 leaf weights are provided, the Huffman algorithm selects exactly the 2 +
[(n 1) mod (r- 1)] smallest weights for the first weight combination, and this quantity
is not necessarily equal to r; however choosing this many weights guarantees that all
future weight combinations can merge r weights. The details of showing that a tree T
gives us inequalities like W(S)=<W(T)_<-W(T) are slightly more complicated but no
different in method. These details are covered in Glassey and Karp’s proof in [12].

5. Cost functions under which Huffman trees are optimal. In 3 and 4 we
described the properties of the internal node weights in Huffman trees with quasilinear
weight combination functions F. In this section we exploit these results as much as
possible and exhibit several classes of tree cost functions for which the appropriate
Huffman trees are optimal. As indicated above in 2, we are considering cost a function
of the constructed internal node weights, so formally

Cost (T)= G(W(T))= G(WI(T),..., Wn(T)).

Thus G: UnR is to be a function under which Huffman internal node weight
sequences have smallest image. We show now that cost functions that are "Schur
concave" (defined momentarily) are important when all the internal node weights
W/(T) are to be taken into consideration. If one is only interested in max W/(T) or
min W(T) (thus: W,(T) or W(T), depending on whether Ibl is increasing or decreas-
ing, where b is the usual function defining F), then the cost function need only be
increasing. These cost functions are apparently the most general possible for the
Huffman construction to be optimal when the weight combination function F is
quasilinear. Applications will be discussed in the next section.

DEFINITION. A function G: U --> R is $chur concave if

_-< 0 for all Xb Xj e U, i, f e {1,. , n}.

THEOREM 8. (Schur and Ostrowski). G(a) _-< G(b) for all weight sequences a <= b if
and only if G is Schur concave.

A proof adapted from [27] and [23] appears in Appendix A. It is worth mentioning
that all strictly concave functions G (so G"< 0) are Schur concave--see [27, p. 12].
Generally speaking the importance of this theorem has not been properly appreciated;
recently Wong and Yue have found a number of uses for it in storage applications. See
for example [30].

The next three theorems follow as corollaries from Theorem 8 and 3 and 4. In
each we compare the cost of trees $ and T built using a quasilinear weight combination
function F, where S is the tree built by the Huffman algorithm and T is any other tree.
As usual, W(S)=[WI(S),..., W(S)] and W(T)=[WI(T),..., W(T)] denote the
internal node weight sequences for these trees.

484 D. STOTT PARKER, JR.

THEOREM 9. Let F be as in Theorem 5. Then the Huffman tree will have least cost
when G is any Schur concave function of the internal node weights.

Proof. This is a simple corollary of Theorem 8, since Theorem 5 guarantees
W(S) W(T), so G(W(S)) <- G(W(T)).

THEOREM 10. Let F(x, y) b-l(Ab(x) +Ab(y)) with A >-1 and ck positive mono-
tone continuous, as in Lemma 3. Then the Huffman tree will have least cost when G is a
function of the following form"

If ck is increasing, G 4) where is Schur concave.
If 4) is decreasing, G= G. 4) where G is monotone decreasing (i.e., G(Xl," .,
Xi, ,Xn)O(X1, ,Xi, ,X) if xixi).
Proof. Note G(W(T))-G(4(W(T)))-G([k(Wx(T)),’", &(W(T))]). Using an

argument as in the proof of Theorem 5, it is clear that if 4 is increasing then
4 (W(S)) 4 (W(T)), and, if & is decreasing, then not only 4 (W(S)) = 4 (W(T)) but also
4 (W(S)) 4 (W(T)) for 1, , n. Theorem 8 gives us the first part of the theorem;
the second follows from the monotonicity of G.

THEOREM 11. LctFbe as in Lemma 1. The Huffman tree will have least cost when G
is of the form G(W(T))- 6(max W(T)) or G(W(T))-6(rain W(T)), where / is any
monotone increasing function.

Proof. Immediate from Theorem 1/Corollary 1.
Although Schur concave G’s are the only cost function we discuss here, it should be

clear that there may be other Huffman-optimal ones. The functions here prey on the
properties of the Huffman tree internal node weights; discovery of other properties
could lead to other cost criteria favorable for Huffman trees. We emphasize also that
varying the weight space U can greatly affect the performance of the Huffman
algorithm. Consider the weight combination function F(x, y)- xy. On U-[0, 1] we
can take &(x)=-log (x), a positive convex decreasing function (the base of the
logarithm is immaterial); from Theorem 9 we know that under cost functions like
G sum, Huffman trees will be optimal. However, on U- [1, oo) we have 4(x)--
+ log (x), a positive concave increasing function, so under the cost G sum there is no
guarantee that a Huffman tree will be best. Even worse, if we chose U [0, oo) there is
then no sign-consistent, strictly monotone function & determined by F. This shows
that some of the above theorems are more restrictive than they appear at first.

6. Applications and open problems. We have just shown that for wide classes of
tree construction systems the Huffman algorithm produces optimal trees. We shall now
discuss applications.

We prove first that Huffman construction in the tree height system

F(x1,..., Xr) max (Xl, ", x) + c (c > 0),

G(W(T)) max W/(T)

is optimal. The demonstration was hinted at in 3" Consider the family of functions

F(X, Xr)-- -I(A ((xi))
i=l

and

G(W(T))=b-(Y b(W/(T))) or G(W(T))=max W/(T),

where 4 (x) ,x ,cr A r Then b is convex increasing and A -> 1, so Theorems 10 or 11
imply Huffman trees will have least cost. Since in the limit as p-> oo we approach the

OPTIMALITY OF THE HUFFMAN ALGORITHM 485

max functions F and G of the tree height construction system, we have established that
Huffman’s algorithm is in this case optimal.

Another application of Huffman tree construction is the generation of codes which
are optimal under criteria other than Huffman’s original one, equivalent to weighted
path-length [16]. A moderate literature has grown up around this subject ([4], [5], [2],
[22], etc.). It is surprising that no corresponding analogue of Huttman’s algorithm has
also been developed. We outline several known results, including interesting bounds on
average codeword length like that of the noiseless coding theorem, and then present
these Huffman analogues.

In the context of coding, the leaf weights {Wl," ", wn+l} are probabilities (so
Yw. 1), representing the relative frequencies of occurrence of a set of (n + 1) messages
which are to be encoded into r-ary codewords (r _-> 2). Let the length of the message with
probability wj be called l.; we are then interested in minimizing the "quasiarithmetic
mean codeword length" [2], [5],

L(, {w}, {;})= 2 w(l)
/=1

or some similar code cost measure; here/x is a continuous, strictly increasing function
on R+. For example, when/x(x) x we get the traditional weighted path-length; other
"translative" forms of L have been considered in [5], [2] and [22]. Although this
measure of codeword length is quite general, most special cases treated in the literature
can be handled by the extended Huttman construction presented here. We consider
three cases one by one; each is based on RGnyi’s entropy of order c

1
logH(wl,"’, wn+l) =l_c "i

Here r is the size of the code letter alphabet, i.e., codewords can be viewed as r-ary
numbers. RGnyi’s entropy has the interesting property that its limit, as a - 1, is the usual
Shannon entropy

n+l

H(w, w,+)= 2 w log (w;).
j=l

Campbell [4] now defines an exponential codeword length average L(t) by setting
(x)= rtx so that

1
L(t) logr (Y wir tlj) logx (Z wiA

where > 0 and , r > 1. He then proves that

1 lira L(t) 2 wili,
t--,0

(2) lim L(t)= max l.,
tc

(3) H(w, ", wn+l) <=L(t) where a
1 1

l+t l+logr(A)

with equality holding when r-li --w/(w). Now consider general Huffman con-
struction as discussed in 2 with F(x, y) A (x + y and G(W(T)) logx (W,(T)). Then

Cost (T) G(W(T)) L(t) L(log (A)),

486 D. STOTT PARKER, JR.

so Huffman construction with this weight combination function F produces optimal
exponential-length-cost trees by Theorem 11.

Acz61 [2], besides citing results of Campbell for the degenerate case < 0 (A < 1)
above, considers the result when/x(x) (A 1)/(A 1) (again, A rt) and shows that

L(/z) E wi
=1

satisfies ((w)/ 1)/(h 1) (L()), where again a 1/(1 + t)= 1/(1 +logh).
But notice that when F(x, y) h (x + y) and G(W(T)) -((1/) (T)), then
because (m) 1 + + + - (m Z+),

Cost (T) G(W(T)) L().

So, by Theorem 9, since G is Schur concave, Huffman construction with this function F
again produces the optimal code tree (identical to the one constructed for Campbell’s
average codeword length).

Lastly, Nath has come up with nice results by defining what he calls the average
codeword length of order (a > 1) [22],

log w A w
]=1

where w=w and A =r-. He shows that H(w,..., w+)L(a) with
equality iff w =r-1 for all]. Now when F(x, y)=(Ax +Aye)/ and G(W(T))=
logx (W(T)/w) we find Cost (T)=G(W(T))=L(a). So by Theorem 11 Huffman
construction with this function F produces ptimal trees here, i.e., produces code trees
of least average length L().

In addition to this unification of abstract coding problems, we have the following
bounds on the costs of Huffman trees:

THEOREM 12. IfF(x, , x) xi, then the weightedpath length wl
the Huffman tree satisfies

w H< wil< w (H+ 1),

where H=H(w/w, w/w,..., w+/w), w=w and l, l,..., l+ are the path
lengths ofw, , W+l in theHuffman tree. Equality on the left is achieved iffw
all].

Proof. This is the noiseless coding theorem. See, e.g., [10, pp. 50-55].
THEOREM 13. If W is the root node weight produced by Huffman construction with

i=1

where is a positive, increasing unction, then

-() w -(+),
where H=H((w)/w, (w+)/w), 1/(1+1og (I)) and w =2 (w),
with equality holding iff

/" (n+l for all i.

OPTIMALITY OF THE HUFFMAN ALGORITHM 487

Proof. Given in [24], it follows easily from Campbell’s proof of his lower bound in
[5].

COROLLARY 2. If Wis the root node weightproduced by r-ary Huffman construction
with the weight combination function F(xa, , x,) max (Xl," , x,) + c, then

B<=W<B+c,

where B logr ((_-+1 rWj/C)C). Moreover, equality holds on the left if and only if

lj=(B-wi)/c.

Proof. Take b (x) pxr h rpc in Theorem 13 and let p c. This extends the work
of Golumbic 13], who derived this bound for the case where c 1 and all weights w. are
nonnegative integers.

Another application of this generalized construction is in the generation of optimal
search trees. Hu and Tucker [15] showed that a constrained version of the Huffman
algorithm using the sum .weight combination function determines the structure of an
optimal binary search tree. Tamaki [28] has extended this result by proving an analogue
of Theoreml/Corollary 1/Theorem 11" If cost is determined by the tree’s root weight,
then the Hu-Tucker modification of Huffman’s algorithm produces an optimal binary
search tree whenever a nonshrinking weight combination function F satisfying condi-
tions QL1, QL3, QL4 of 3 is used. Thus (Lemma 2) when F is quasilinear,
Huffman-like construction still produces the best binary tree.

Other possible applications of this theory being investigated currently include the
construction of optimal restricted-height trees (a harder problem than that of restric-
ted-height search trees discussed in 11 and 17-1, since no obvious dynamic program-
ming solution exists) and the construction of optimal weighted trees where the weights
are vectors with multiple components.

There are several open problems. First it would be nice if there were some criterion
better than Theorem 6 which would enable us to determine whether F satisfies the
requirements of Theorem 5 without having to know explicitly what the conjugation
function b is. Secondly, it is natural to ask whether there are other nontrivial
construction systems, apart from those considered here, which are optimal under the
Huffman algorithm---or whether we have categorized the most general circumstances
under which Huffman construction is optimal. That F must necessarily be quasilinear if
G is Schur concave, etc., is plausible from 3 yet seems difficult to prove.

Appendix A.
Proof of Theorem 8. G(a)_-< G(b) is true for all a_<- bc:>G Schur concave.
(::),(Schur)). Select any a=[al,," ,an] such that ax_-<... -<_an, and set ha=

(1-e)al+ea2, b2=eal+(1-e)a2, and bi=ai for i>2. Then for e 1/2 we have
b _<-b2 and a_-< b. Moreover,

G(b)- G(a) G((1-e)al+eag.,eal+(1-e)a2, a3,. ")-G(a,a2, a3,. .)
E E

__1 ((OGlOxl)(Cel, a2, a3, an) e(a2 al)
E

+(OG/Ox2)((1-e)ax +ea2, a2, a3,’’ ")’ e(al-a2)),

where a[aa,(1-e)al+ea2] and a2[a2, eaa+(1-e)a2], by the mean value

488 D. STOTT PARKER, JR.

theorem. As e approaches zero the right hand side approaches

-(a2-al). (O--G-G (a) O--G-G (a)).OX2 OX1

Thus if we are to have G(a) -< G(b) this quantity must be positive, so G must be Schur
concave, since this argument can be repeated for all pairs of indices and/" (not just 1
and 2).

((= (Ostrowski)). Given G is Schur concave, fix b and assume that there is an a b
such that G(a)> G(b). In particular there will be a maximum such auso assume
without loss of generality that G(a) is a maximum. Select indices k, l, i, and/’ such that
bk > bl and ai <-ai, and define a weight sequence such that a_-<b by setting
di=ai+e(b-bl) di=ai+e(bl-b), and d,n=a for rn #i,j. [Note: if there are no
indices k and such that b > bl, we can construct a new weight sequence b such that
a =< b =< b which does have such indices and which can be used to replace b in this proof.]
Now set b(e)=G(h). Then qb’(e)=(b,-bl)((OG/Oxi)()-(OG/Oxi)(h))>O which
contradicts the supposition that a was a maximal point. So there can be no point a b
such that G(a) > G(b)we must have G(a) =< G(b).

Acknowledgment. The author gratefully acknowledges the aid of Dr. David Kuck,
who posed the problem examined here, pointed out its pitfalls, and encouraged all the
research along these lines. Dr. C. K. Wong made me aware of the results of Schur
functions. Thanks are also due to Drs. A. H. Sameh and M. B. Pursley for many
enlightening discussions, and to one of the referees whose outstanding suggestions
produced Theorems 1 and 2 of the current 3 and significantly improved the organiza-
tion of this paper.

REFERENCES

J. ACZL, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[2], Determination of all additive quasiarithmetic mean codeword lengths, Z. Wahrscheinlich-

keitstheorie und Verw. Gebiete, 29 (1974), pp. 351-360.
[3] R. BRENT AND H. T. KUNG, Fast algorithms]:or manipulating formal power series, J. Assoc. Comput.

Mach., 25 (1978), pp. 581-595.
[4] L. L. CAMPBELL, A coding theorem and Rdnyi’s entropy, Information and Control, 8 (1965), pp.

423-429.
[5], Definition of entropy by means of a coding problem, Z. Wahrscheinlichkeitstheorie und Verw.

Gebiete, 6 (1966), pp. 113-118.
[6] O. CAPRANI, Roundoff errors in floating-point summation, Nordisk Tidskr. Informationsbehandling

(BIT), 15 (1975), pp. 5-9.
[7] S. EVEN, Algorithmic Combinatorics, Macmillan, New York, 1973, Ch. 7.
[8] W. D. FRAZER AND B. T. BENNETT, Bounds on optimal merge performance, and a strategy for

optimality, J. Assoc. Comput. Mach., 19 (1972), pp. 641-648.
[9] L. FUCHS, A new proof of an inequality of Hardy-Littlewood-Polya, Mat. Tidsskr., B(1947), pp.

53-54.
[10] R. G. GALLAGER, Information Theory and Reliable Communication, Wiley, New York, 1968.
[11] M. R. GARE, Optimal Binary Search Trees of Restricted Maximal Depth, this Journal, 3 (1974), pp.

101-110.
[12] C. R. GLASSEY AND R. M. KARP, On the optimality of Huffman Trees, SIAM J. Appl. Math., 31

(1976), pp. 368-372.
[13] M. C. GOLUMBIC, Combinatorial merging, IEEE Trans. Computers, TC-25 (1976), pp. 1164-1167.
[14] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge University Press,

Cambridge, 1934.
[15] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetical codes,

SIAM J. Appl. Math., 21 (1971), pp. 514-532.

OPTIMALITY OF THE HUFFMAN ALGORITHM 489

[16] D. A. HUFFMAN, A method]:or the construction of minimum-redundancy codes, Proc. IRE, 40 (1952),
pp. 1098-1101.

[17] A. ITAI, Optimal alphabetic trees, this Journal, 5 (1976), pp. 9-18.
[18] D. E. KNUTH, Fundamental algorithms: The art of computer programming, Vol. 1, Addison-Wesley,

Reading, MA, 1968.
[19] J. VAN LEFUWFN, On the construction of Huffman trees, Proc. 3rd International Colloquium on

Automata, Languages, and Programming, Edinburgh, July 1976, pp. 382-410.
[20] J.W.S. LIU, Algorithmsforparsing search queries in invertedfile document retrieval systems, ACMTrans.

Database Systems, (1976), pp. 299-316.
[21] D. S. MITRINOVIC, Analytic Inequalities, Springer-Verlag, New York, 1970.
[22] P. NATH, On a coding theorem connected with Rdnyi’s entropy, Information and Control, 29 (1975), pp.

234-242.
[23] A. OSTROWSKI, Surquelques applications desfonctions convexes et concaves au sens de I. Schur (offert en

homage P. Montel), J. Math. Pures Appl., 31 (1952), pp. 253-292. (In French.)
[24] D. S. PARKER, Combinatorial merging and Huffman’s algorithm, IEEE Trans. Computers, TC-28

(1979), pp. 365-367.
[25] R. RUBIN, Experiments in text-file compression, Comm. ACM, 19 (1976), pp. 617-623.
[26] A. H. SAMEH, Unpublished manuscript.
[27] I. SCHUR, Ober eine Klasse yon Mittelbildungen mit Anwendungen auf die Determinantentheorie,

Sitzungsber. Berl. Math. Ges., 22 (1923), pp. 9-20. (In German.)
[28J J. K. TAMAKI, Optimal binary trees and sequences realized by Eulerian triangulations, Ph.D. thesis,

Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, October 1977.
[29] K. Ushijima, Steps to an efficient program]’or floating-point summation, Software-Practice and

Experience, 7 (1977), pp. 759-769.
[30] C. K. WONG AND P. C. YuE, A ma]orization theorem for the number of distinct outcomes in N

independent trials, Discrete Math., 6 (1973), pp. 391-398.
[31] S. ZIMMERMAN, An optimal search procedure, Amer. Math. Monthly, 66 (1959), pp. 690-693.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0003 $01.00/0

STORAGE MODIFICATION MACHINES*

A. SCHNHAGES"

Abstract. In 1970 the author introduced a new machine model [A. Sch6nhage, Universelle Turing
Speicherung, D6rr, Hotz, eds., Automatentheorie und Formale Sprachen, Bibliogr. Institut, Mannheim,
1970, pp. 369-383] now called storage modification machine (SMM). This paper gives a comprehensive
presentation of our present knowledge of SMMs. It contains a complete description of the SMMmodel and its
real time equivalence to the so-called successor RAMs. The preliminary version [A. Sch6nhage, Real-time
simulation of multidimensional Turing machines by storage modification machines, Technical Memorandum
37, M.I.T. Project MAC, Cambridge, MA, 1973] of our proof for the real time simulation if multi-
dimensional Turing machines is now worked out in its details. Moreover we show the existence of an SMM
that performs integer-multiplication in linear time. The final discussion contains a brief comment on the
relationship between SMMs and Kolmogorov algorithms [A. N. Kolmogorov and V. A. Uspenskii, On the

definition ofan algorithm, Uspehi Mat. Nauk, 13 (1958), pp. 3-28; AMS Transl. 2nd ser. vol. 29 (1963), pp.
217-245].

Key words. Turing machines, random access machines, real time simulation, integer-multiplication

Introduction. What is the "true" concept of cornputability?--In the qualitative
sense this question is answered by the general consensus about Church’s thesis that
effective calculability should be defined by recursiveness or, equivalently, by A-
definability (cf. [2, p. 346]). For the quantitative analysis of algorithms the Turing
machine concept is especially suited to provide intuitively appealing measures for the
time and space requirements of computations, and it seems in fact to lead to a
satisfactorily universal notion of complexity, as long as we adopt the rather rough
measure of polynomial reducibilities, since it is well known that complexity classes like
P or NP remain unaffected within a wide range of variations of the underlying machine
model.

With regard to lower order complexity, however, the situation is quite different.
Many of the concrete algorithms given in the literature are (at least implicitly) designed
for multitape Turing machines, sometimes the higher flexibility of random access
machines (with a variety of instruction sets) is required, and frequently it is totally left to
the reader’s imagination what the model of computation should look like. We may say
that so far no unified and generally accepted measure for the time complexity of
algorithmic problems has been established.

In 1970 the present author introduced a new machine model (cf. [11]) now called
storage modification machine (SMM) and posed the intuitive thesis that this model
possesses extreme flexibility and should therefore serve as a basis for an adequate notion
of time complexity. In [12] a sketchy proof was supplemented that in fact real time
simulation of multidimensional Turing machines by SMMs is possible; Schnorr’s
observation that SMMs are real time equivalent to so-called successor RAMs (see [10,
Chap. 8]) added further support to our thesis. As was pointed out to us by several
colleagues Kolmogorov and Uspenskii have introduced a machine model very similar to
the SMM model much earlier (in 1958, cf. [7]) already. The main object of their paper
was to reach extreme flexibility in a descriptive sense. The clumsy presentation of
Kolmogorov algorithms makes it very elaborate, however, to handle them in a detailed
way. Therefore we will restrict ourselves to a brief comment on their relationship to
SMMs in the final discussion. At the moment we should merely state that Kolmogorov

* Received by the editors February 15, 1979, and in revised form June 24, 1979. This research was
supported in part by the National Science Foundation under Grant GJ-34671.

" Mathematisches Institut, Universitfit Tiibingen, Tiibingen, Germany.

490

STORAGE MODIFICATION MACHINES 491

algorithms are different from SMMs and that they are certainly not stronger but perhaps
weaker than SMMs.

After that preliminary phase of consolidation the aim of this paper is now to give a
comprehensive presentation of our present knowledge about storage modification
machines. For reference purposes it seems to be overdue to have a complete description
which replaces the fragmentary information scattered in the literature. So 1-4 will
cover the notion of A-structures which serve as storage devices, the instruction set of
SMMs, the related successor RAMs and the corresponding real time equivalences.
Section 5 contains our proof for the real time simulation of multidimensional Turing
machines worked out in its details. In 6 we present our most recent result that there
exists an SMM which can perform integer-multiplication in linear time. Some further
comments will follow in the final discussion.

Before going into details we should make clear our general attitude towards the
problems under consideration. No attention is paid to the question whether a physical
realization of our constructs is possible. Such investigations would require a totally
different approach. It is the atomistic nature of logical steps which will guide our
analysis. Thus, for instance, a A-structure can be regarded as a collection of a bounded
number of finite functions, which can be modified step by step for single arguments. Our
notion of "real" time does not relate to seconds or years. Since it is arbitrary to some
extent what we call a single step of a machine, we will admit bounded slow-down. For
comparing rather heterogeneous machine models our notion of simulation will refer to
their input/output behavior only.

DEFINITION A. A machine M’ is said to simulate another machine Min real time,
denoted byM - M’, if there exists a constant c such that for every input sequence x the
following holds: if x causesM to read an input symbol, or to print an output symbol, or
to halt at time steps 0 to < tl <" < tl, respectively, then x will cause M’ to act in the
very same way with regard to those external ihstructions at time steps 0

’- < (ti ti_l for l <-] < l.< t}, where ti ti_l --C

DEFINITION B. For machine classes /, J//’ real time reducibility tt - ll’ is defined
by the condition that for each M /there exists an M’ J//’ such that M M’. Real
time equivalence At J/l’ means A/- J//’ and

Using these terms we can restate our main thesis in the following way" J//& SMM
holds for all atomistic machine models //. Of course we are not able to give an ultimate
definition of this intuitive notion. The idea is to exclude all kinds of machines which are
equipped with powerful compound instructions in any unfair manner.

1. -struetures. Conceptually the storage device of a Turing machine consists of
squares statically arranged in a regular pattern, thus forming a tape, or several tapes, a
rectangular grid, or other configurations of higher dimension. Each square can store
one symbol of the working alphabet. Associated with the storage pattern there is
another alphabet containing the shift instructions for the work head(s) of the machine,
e.g. {R, L} for "right" and "left" on a tape or {N, W, S, E} for the directions "north" etc.
on a plane.

Similarly, the data structures to be processed by a storage modification machine are
based upon a finite alphabet A of directions, i.e. h is an individual feature of that
particular machine. Such a A-structure is defined as a finite digraph, where the arcs are
labeled with the elements of A in such a way that, in 1-1 correspondence to A, exactly
A many pointers originate from each node (we always assume # A => 2). In addition,
there is one distinguished node, called the center of the structure. It allows immediate
access from the outer world in analogy to the head on a tape of a Turing machine. In
contrast to the storage squares of a Turing machine, however, here the nodes do not

492 A. $CH6NHAGE

bear any extra information; it is the particular pattern of the pointers in the A-structure
which comprises the stored information.

Formally, a A-structure is defined as a triple S (X, a, p), where X denotes the
finite set of nodes, a X is the center of S, and p (p Ic A) is the family of pointer
mappings p X X; p (x) y means that the pointer with label c originating from x
goes to y. The center can also be considered as the endpoint of an additional pointer
coming from outside.

In a natural way every word W A* determines a path in the structure S starting at
the center and following the labeled arcs according to the sequence of symbols in W.
This induces a map p*: A* X recursively defined by

(1.1)
p*([--q) a, where I---1 denotes the empty word,

p*(Wa)=p,(p*(W)) for all c cA, WA*.

It can happen that the image p*(A*) is a proper subset of X; but in this case, by
definition of the opbrating mode of SMMs, the rest will remain inaccessible forever.
Therefore we will admit only structures S (X, a, p) with full accessibility p*(A*) X.

Furthermore the map p* induces an equivalence relation in A* defined by

(1.2) U.--- V iff p*(U)=p*(V),

with the obvious property

(1.3) U---V : UW---VW for allU, V, WA*.

Conversely, any finite equivalence relation in A* that fulfils condition (1.3) can be

understood as a A-structure: the equivalence classes are the nodes, the class containing
is the center, and up to isomorphisms all A-structures are representable in this way.
Let :(d, n) denote the number of different A-structures with n nodes, where

d # A. We do not know how to express these numbers in a simple closed form, but a

fairly simple combinatorial analysis shows how to compute them from certain recur-
rences ((2, n), for instance, takes the values 1, 12,216, 5248, 161175, .). In order to
estimate how much information can be stored in n nodes by using an alphabet with d
elements we use the bounds

(1.4) n nd-n+l -<(d, n)< n=dn+l\ n
nd-n+l

They are obtained by the observation that n 1 of the dn many pointers must form
a labeled spanning tree for the n nodes while each of the dn n + 1 remaining pointers
can be directed arbitrarily to one of the n nodes. Taking logarithms to the base 2 in (1.4)
now yields the desired measure of information"

log tj(d,n) (d- 1)n log n + O(n log d).

2. The SMM model. The storage of a storage modification machine (SMM) with
internal alphabet A is at any time represented by one A-structure accessible via its

center. The finite control of the SMM is given as a program written in a formal language
like ALGOL, on a very basic level, however. Syntactically such a program is a sequence
of labels and instructions. Labels are written as in ALGOL. Their names can be used in

goto statements and similar instructions which transfer control to other places in the

STORAGE MODIFICATION MACHINES 493

program. If a name A is used in this way it has to occur exactly once followed by a colon,
whereas an instruction always ends with a semicolon.

Each instruction begins with one of the following codes"

(2.0) input, output, goto, halt, new, set, if,

in most cases followed by additional specifications. The machine starts its work with the
first instruction of the program and an empty storage, i.e. the initial A-structure has only
one node. The effect of the program has to be defined recursively by explaining the
effect of the different instructions on the instantaneous A-structure, or on the flow of
control, respectively. At first we explain the common instructions, which will be same
for all machine models considered in this paper.
(2.1) input A O, A

this branching instruction causes the next input symbol/3 {0, 1} to be
read and transfers control to label A; if the input string is exhausted, the
next instruction is executed.

(2.2) output [3
/3 {0, 1} is sent to the output.

(2.3) goto A;
control is transferred to label A.

(2.4) halt;
the machine stops working; implicitly this also happens when the control
passes the end of the program.

In addition there are the following internal instructions"

(2.5) new W;
The instantaneous storage structure S (X, a, p) is modified by creating
a new node y; the resulting structure is S (X, , p), where X X U {y }.
W A* determines where the new node shall be located. If W VI, then
d=y, and/(y)=a for all 6A. If W=Ua with UA*, aA, then
d a, (p*(U))= y, and ,6(y) p*(W) for all 8 A. All other pointers
remain unchanged.

(2.6) set W to V;
here S (X, a, p) is modified into S (X, d,/)* by new assignment of a
pointer. W and V A* determine which pointer shall be directed where,
and it is X -X. The asterisk indicates that S is obtained by reduction to
that part of X (and /7) which is accessible from ti. If W =7-], then
d=p*(V), =p. If W= Ua, then i=a, (p*(U))=p*(V), and again
all other pointers remain unchanged.

(2.7) if U V then r;
Here tr denotes an instruction of one of the previous types which is
executed iff in the instantaneous storage structure p*(U)=p*(V) is
fulfilled (otherwise tr is skipped).

(2.8) if U V then
here tr is executed iff p*(U) p*(V).

Obviously this list of instructions is redundant to some extent. The test U V, for
instance, could easily be accomplished by means of the test U V; similarly it would be

494 A. SCHNHAGE

sufficient to have the instruction new with W only, but there is no point in doing
without such conveniences.

With respect to the descriptions of the codes new and set it is quite tempting to
expect that after execution of new W (or set W to V) the relations iO*(W)=y (or
(W)-p(V), respectively) will hold, but this is not true in general. A counter-
example is provided by the program

start: new AA; set BB to A; halt;

it produces the {A,B}-structure S=({a, y},a,p) with pA(a)=pB(a)=y, PA(y)
pB(y) a; this implies p*(AA) p*(BB) a y p*(A).

Dependent on the input string we define the running time of an SMM program as
the number of instructions performed including halt. The conditional instructions
i[. then are always counted regardless of the outcome of the test. A more precise
and realistic measure could be obtained by weighing instructions like set W to V
proportional to one plus the length of W plus the length of V, but for each particular
program this would increase the time by at most a constant factor and therefore lead to
an equivalent concept.

3. Related RAM models. Another concept which allows us to get rid of the
restrictions imposed by the inflexibility of Turing storage devices is that of a random
access machine (RAM). We assume the reader to be familiar with at least one of the
RAM models given in the literature (see e.g. [1, pp. 5-11]). Since, however, the
computational power of a RAM model seems to depend rather sensitively on the scope
of its instruction set, we nevertheless will have to go into detail.

One important principle will be to admit only such instructions which can be said to
be of an atomistic nature. We will describe two versions of the so-called successor
RAM, with the successor function as the only arithmetic operation. Our RAM1 model
follows the common pattern of all RAM concepts, whereas the RAM0 version deserves
special attention for its extreme simplicity; its instruction set consists of only a few one
letter codes, without any (explicit) addressing.

Both models have countably many storage locations with addresses 0, 1, 2,...
(and one or two extra registers) each of which can store an arbitrary natural number.
This seems to be an unrealistic assumption, as long as we think of integers in binary
representation. We prefer, however, to consider such a storage in terms of pointers.
Then each location n is a node with two pointers, one leading to the successor n + 1, the
other pointing to an arbitrary node in this infinite chain, which is denoted by (n) usually
called the contents of location n. With this perception in mind we must mistrust our
every day intuition, as may be demonstrated by an example: Whether (n) is even or odd
can no longer be decided in one step but requires some extra programming.

Programs for our RAM models can be written in the same manner as for an SMM.
We adopt the common instructions for input, output, and control, as described in
(2.1)-(2.4). Further explanations have to be given for the internal instructions of our
two models. In order to avoid double addressing the RAM1 has an extra register
(without an address) which serves as an accumulator. Its current contents is denoted by
z. Initially z 0, and (n)= 0 for all n. Each of the internal instructions begins with an
operation code which is followed by an explicit address n written in decimal notation.
A complete listing of the internal instructions together with their meaning is given in
Table 3.1.

In order to avoid any explicit addressing the RAM0 has the accumulator with
contents z and an additional address register with current contents n (initially 0). The
internal instructions are expressed by one letter codes, given in Table 3.2.

STORAGE MODIFICATION MACHINES 495

TABLE 3.1
Internal RAM1 instructions.

Instruction Effect Verbal explanation

LDA n z := n load address
LDD n z := (n) load directly
LDI n z := ((n)) load indirectly
STD n (n) := z store directly
STI n ((n)):= z store indirectly
COM n z (n)? compare: the next instruction is executed if[equality holds*
SUC z := z + compute successor

* For simplicity it is assumed that COM n must not be followed by a label or by another COM instruction.

TABLE 3.2
Internal RAMO instructions.

Code Effect Verbal explanation

Z z := 0 set to zero
A z := z + add one
N n := z set address n
L z := (z) load
S (n) := z store
C z 0? compare: the next instruction is executed iff equality holds*

* C must not be followed by a label or by C.

4. Real time equivalences. Now we are ready to present the first main result.
THEOREM 4.1. The machine models SMM, RAM1, RAMO are real time

equivalent.
Proof. The proof is by showing the real time reducibilities

(4.1) RAM1 - RAM0- SMM- RAM1,according to Definition B.
We begin with the perhaps most surprising fact that the rudimentary RAM0 model

offers (at least) the same computational power (up to a constant factor) as the RAM1
model. For this let M* be a given RAM1. We have to exhibit a RAM0M that simulates
M* in real time. In order to be distinct let (k)* denote the contents of the kth memory
location of M*, z* the contents of its accumulator, whereas without asterisk the
corresponding data of M are meant.

Since both models have the same common instructions (2.1)-(2.4), it is sufficient to
show how to replace each internal RAM1 instruction by a finite sequence of RAM0
instructions in such a way that the outcome of the implicit branching by comparisons
COM n is simulated correctly. This is achieved by a suitable mapping of the stored
information of M* into the storage of M. During the step by step simulation the
relations

(4.2) 2. z* (1),

(4.3) 2" (n)*=(2n) for all n N

will always be preserved, i.e. all M*-addresses are doubled and stored in storage
locations of Mwith doubled addresses; location 1 is used to simulate the accumulator of
M*, and the locations 3, 5, will serve to simulate comparisons. The technical details

496 A. SCIJ6YIJAGE

of the simulation are given in Table 4.1. The instruction or* after COM n has to be
skipped in case of ; correspondingly its simulation o- will be skipped iff the C-
instruction finds z 0., This explains the technique employed for the simulation of
COM n. For the real time reduction RAM0 - SMMwe similarly show how to represent

TABLE 4.1
Simulation o]: internal RAM instructions.

M*-instruction Simulation Effect of M

LDA n ZANZA2nS (1) := 2n
LDD n ZANZAanLS (17 := (2n7
LDI n ZANZA2nLLS (17 := ((2n }7
STD n ZA2nNZALS (2n) := (1)
STI n ZAanLNZALS ((2n)) := (1)
COM n; tr* ZALA3NZS ((17+ 3):=0

ZAaLA3NS ((2nT+3):=x (x ->_3)
ZALA3L z := ((1) + 37

C; goto A or; A:
SUC ZANLAAS (1) := (17 + 2

an instantaneous storage configuration of a RAM0 by a suitable A-structure, where we
choose A {A, B}, and then how to simulate the internal RAM0 instructions (cf. Table
3.2). The A-structure consists of nodes 0, 1,. , m, which represent a finite section of
the RAM0 storage to be extended when required, and two extra nodes c and a, where c
is the center. The pointer mappings are given by

pA(C)=O, pB(c)=a, pA(a)=z, pB(a)=n,

(4.4) pA(k)=k+l forO<=k<m, pA(m)=O,

ps(k)=(k) forO<=k<_-m.

Table 4.2 shows the simulation of the internal RAM0 instructions by updating the

A-structure in order to preserve the conditions (4.4). Initially the SMM performs the

steps new; new B; the first one creates c and puts (0) := 0, the second one creates a with

z :- n := 0. Extension of the A-structure is required when the RAM0 instruction A has
to be simulated and z m holds.

TABLE 4.2
Simulation of internal RAMO instructions.

RAM0 SMM
code simulation

Z setBA to A;
A ifBAA A then new BAA;

set BA to BAA
N set BB to BA;
L set BA to BAB;
S set BBB to BA;
C ifBA A then

Finally we give a sketchy outline for the reduction SMM - RAM1. Without

restriction we can assume that the alphabet of the given SMM is A {0, 1, , d- 1}
with some d _-> 2. Each node of the instantaneous A-structure is represented by means of

STORAGE MODIFICATION MACHINES 497

d consecutive storage locations of the simulating RAM1. More precisely the node with
serial number k _-> 0 is put into locations kd + 4, kd + 5, , (k + 1)d + 3, and kd + 4 is
its address. For any A the destination of the 8-pointer from node k is stored in
location kd + 4 + 8. The address of the center of S is always stored in 0, and location 1
contains the current address of the free storage domain to be increased by d with each
new instruction. Location 2 and 3 are for intermediate use to build up the addresses of
the nodes p*(U), p*(V), when U, V A* occur in SMM instructions of type (2.5)-(2.8).

The RAM1 begins the simulation by setting up its initial configuration

(0) 4, (1) 4+d, (4+8) 4 for 0-<_ <d.

Then all SMM instructions of type (2.1)-(2.4) can be replaced by the same RAM1
instructions, and it should be obvious now how to simulate each new, set, or i[
instruction of the given SMM program by a finite sequence of RAM1 instructions. In
this way real time simulatibn is achieved.

Since the loop of reductions (4.1) can also be started with an arbitrary SMM, we
obtain its real time reducibility to an SMM with alphabet {A, B}. This observation
completes the proof of Theorem 4.1 by justifying that we need not specify the size of the
alphabet when talking about the SMM model(s).

5. Real time simulation of Turing machines. It is a fairly simple task to design a
RAM1 real time simulation for multitape Turing machines. Things are quite different,
however, if TMs with storage devices of higher dimension are admitted. The main
difficulty is encountered with a two-dimensional storage plane already; its typical
nature is well illustrated by the self-crossing problem:

Over the alphabet of directions N(orth), W, S, E every infinite sequence of symbols
describes a path in the plane. How can a machine, when scanning symbol after symbol,
decide in real time whether the present position has already been visited before? There
is an obvious solution, if we use a TM with a two-dimensional storage which is empty at
the outset of the computation, but what about the other machine models? How can we
program an everyday computer to solve this problem efficiently for long input
sequences?--From our main result, TM SMM, as given below we conclude that the

self-crossing problem has also an SMM real time solution. In the same way our
simulation technique can facilitate the construction of efficient algorithms for other
problems that are adaptable to higher dimensional storage configurations.

At first we have to specify the class of TMs to be simulated. The storage of such a

machine may consist of one or several components of finite dimension, each of which is

isomorphic to ;yk with some individual k => 1 and can be accessed by one or several work
heads. Moves of each head position are restricted to an increase or decrease of one of its
integer coordinates by one. Initially all the storage locations are blank, and all heads are
positioned at the origin of their own storage component (some standardizing of this kind
seems to be necessary in order to avoid "preinformation" that otherwise could be
hidden in positional relations of several heads on one component). Without restriction
we can further assume that for input, output, and internal work the alphabet {0, 1} is
used.

Again the finite control is given as a finite sequence of instructions and labels. In
addition to input, output, goto, halt (see (2.1)-(2.4)) there are the following internal

instructions"

498 A. SCHINHAGE

head u; here u => 1 denotes an integer (written in decimal notation); the effect of
this instruction is that subsequent instructions refer to the work head with number u
(the active head), until the next head instruction is performed. At the beginning the
head with number 1 is active.

write a; {0, 1, b}, where b denotes "blank"; the inscription of the square under
the active head is changed into c.

read A0, A1; if the square under the active head contains 0 or 1, then control is
transferred to label A0 or A 1, respectively. In case of a blank the next instruction is
performed.

move 8; the active head position is shifted in direction 8, where 6 has to belong to
the set of directions associated with the storage component of the active head.

Now we are ready to state the main result of this paragraph.
THEOREM 5.1. Every Turing machine as specified above can be simulated by a

suitable SMM in real time.

Proof. We begin our proof with the observation that a TM with r heads on
several storage comgonents of dimensions kl, k2," ", k respectively can apparently
be simulated in real time by a suitable TM with r heads on just one storage component
isomorphic to Zd, where d 1 + max {k1,’’’, k}. Furthermore we will restrict the
presentation of our simulation technique to the case d 2, in spite of the fact that
the first reduction usually leads to some d > 2; in the end it will become obvious to the
reader how the method can be adapted to other values of d.

In addition to the four directions of the plane we need pointers for up and down.
Therefore the SMM for simulating a given TM uses the alphabet A {N, W, S, E, U, D}.
During the simulation the current configuration of the TM and further data needed to
achieve the real time simulation are encoded in a rather complicated A-structure, which
is composed of the following parts"

(a) The contents of the storage plane together with the geometric information
which areas of the plane have already been visited by one of the work heads are
encoded in the pyramidal structure P.

(b) For each of the work heads (with numbers/" 1, 2,..., r) there is a sub-
structure Cj, called a counter, from which, corresponding to the current head
position, the pyramidal structure is accessed properly.

(c) The counters C1, , Cr are accessed from the headquarter H; it contains the
center A of the whole structure and serves to select the counter of the active
head according to the state of the TM each time when an internal TM
instruction is simulated.

In order to describe the simulation process we now have to explain these parts in detail.

5.1. The pyramidal structure. At any stage of the simulation the pyramidal
structure P is a finite portion of the following infinite structure with nodes Mk (x, y)
for all k s N, (x, y) 7/2. We consider k as the vertical coordinate. Each level Lk
{Mk(X, Y)I(X, Y)S 7/2} is structured as a rectangular grid by the horizontal pointers
labeled with N, W, S, E leading from each Mk(X, y) to Mk(X, y + 1), Mk(X- 1, y),
Mk(X, y-l), Mk(x + 1, y) respectively. The subset {Mk(, [r/-y[----<l}
together with the 24 horizontal pointers connecting any two of these nodes is called the
vicinity of Mk (x, y) (see Fig. 5.1; in this definition nothing is assumed about the other
pointers).

The ground level 0 is intended to represent the storage plane of the TM, but we
have to keep in mind that this infinite set of nodes does not preexist. It has to be
constructed in finite parts during the simulation. Thus the pyramidal structure P

STORAGE MODIFICATION MACHINES 499

W "N IV IN
"--0 ..’- ---0 0-- -,,

N S N N

--oil,SN SN SN

W W W

s’, sl
FIG. 5.1. The vicinity of node 0.

contains some finite subset L0 of 0, which, roughly speaking, represents just those
areas of the TM storage which have been visited by one of the work heads so far. The
main problem arises when Lo has to be extended: how to decide in case of a pointer not
yet properly installed whether the node to which it should point has already been
constructed.

In order to overcome this difficulty we use the higher levels 1, 2, to represent
the storage plane on successively reduced scales in linear ratio 1:3:9:. . Mk/l(x, y)
represents the vicinity of Mk(3X, 3y); correspondingly connections between k and
k/l are provided by D-pointers (downward) from Mk/(x, y) to Mk(3X, 3y) and by
U-pointers (upward) from Mk(x, y) to Mk/l([(x + 1)/3], [(y + 1)/31), SO for all k, x, y.
On level 0 the D-pointers will be used to encode the information stored in the TM
storage.

Nowwe are ready to state some basic facts about the pyramidal structure P; further
explanations will be given in the next subsection. There are finite subsets Lk k,
0--< k =< m, with a unique m such that

(5.1) P =LoUL1 U" UL,,,
and L,, contains exactly one node, namely M,(0, 0), called the top node of P. Our
simulation will step by step preserve the following conditions for P.

(i) Any pointer originating from a node K E P is directed either to the same node
as in the infinite structure), or to the center A in the headquarter. In the
former case the pointer is said to be properly installed and then its destination
must also belong to P (except for the D-pointers from K E L0). Otherwise the
destination A indicates that the pointer is not yet properly installed (this may
happen even when its true. destination already belongs to P).

(ii) For each K e P different from the top node the U-pointer is properly installed,
and for its destination, denoted by KU, the D-pointer is properly installed, and
so is the whole vicinity of KUD.

According to the latter condition P can be viewed as an agglomeration of elementary
pyramids each of which consists of ten nodes with all their internal connections.

5.2. The counters. During the Simulation for each work head of the given TM we
have to keep track of its position on the storage plane. Its coordinates being (x, y), this
can be achieved by providing a pointer to the node H0 Mo(x, y) on the ground level of
the pyramidal structure. In order to meet the requirements of real time simulation,
however, we will sometimes need immediate access also to the higher level represen-
tations of Ho, namely (following the U-pointers) to Ho U, HoUU, which, of course,

500 A. SCH(NHAGE

must belong to P already. For this purpose we provide additional pointers to certain
nodes HI, H2, Hi belonging to the levels L1, L2, ", Ll of the pyramidal struc-
ture, which at any time represent the actual position of this particular head approxi-
mately:

(iii) If K belongs to the vicinity of /-/, then KU belongs to the vicinity of
H,.+(0_-< < Z).

In addition we will always have Hi -Ml(O, 0), still beneath the top node of P.
For each head these pointers are updated dynamically according to its movements

by means of a special device C, called a counter. It controls a sequence of stages with
numbers 1, 2, 3,.... Stages 1 and 2 are performed at the outset of the simulation;
stages 2r+l and 2r+2 occur, when the rth move of the corresponding head is
simulated. More precisely the stages with odd numbers are used for updating Ho, while
the stages with even numbers refer to the updating on higher levels. They are scheduled
according to the same principle: only every other stage is used for updating H1; again
the remaining half is saved for the updating on higher levels, etc. This results in the
following schedule"

At stage level k is serviced, where (uniquely)

(5.2) t (2j- 1). 2.
The corresponding function t-k(t) can be computed recursively in real time by use of

(5.3) k(2t- 1) 0, k(2t) k(t) + 1 for >_- 1.

Therefore we design the counter C such that, after completion of stage 2t, it embodies
the graph of this function for all arguments r with 1-< r---2t. It contains the nodes
FI, F.,. F2, and Go, G,. G l, where

(5.4) max (k(r)]r _-< 2t} [log2 (2t)J.

The connections among these nodes are as shown in Fig. 5.2 (where all the
meaningless pointers have been omitted). In particular, the S-pointer from F leads to
Gk(, and the E-pointer from Gk leads to the approximate head position Hk on level k
of the pyramidal structure. At stage 2t the counter itself is accessed from its base By
(belonging to the headquarter) via the N-pointer to F2t, the E-pointer to Ft, and the
S-pointer to Go. While the uth head of the TM is active, the S-pointer from the center A
leads to By, thus selecting this particular counter C C.

5.3. Updating. Now we describe our SMM simulation of the TM instruction move
3, where 6 {N, W, S, E}. Let us assume that this is the tth move of the Vth work head. As
can be seen from Fig. 5.2, the proper shift of H0 is simply achieved by just one SMM
instruction, namely set SSE to SSES, provided the 6-pointer from H0 is properly
installed already. That will be true by proper initialization for the first step, and also
later on, since in addition to rule (iii) our simulation will preserve the condition

(iv) After each simulation step the pyramidal structure contains the vicinities of all
the nodes/4/for all work heads.

The simulation of the move instruction consists of the stages 2t + 1 and 2t + 2 of counter
C including the updating on level 0 and on level k(2t+2) k(t+ 1)+ 1. In general,
updating on level j consists of preparation and adjustment.

Preparation means making sure that the vicinity of/-/, belongs to the pyramidal
structure P. In view of condition (i) it can easily be checked whether parts of the vicinity
of/-//are missing. If this is the case, the missing elements can be constructed in bounded
time such that (i) and (ii) are maintained. The corresponding algorithm is based upon

STORAGE MODIFICATION MACHINES 501

(headquarter) the counter (pyramidal structure)

FIG. 5.2. The counter Cv after completion of stage 2t and its connections with the headquarter and the
pyramidal structure.

the following argument" If j l, then H M(0, 0), and this node has its vicinity in P
because of (ii), except for the case that H is the top node of P. This is only possible, if
has just been increased by one, and is recognizable by checking whether the U-pointer
fromH leads to A. Then M/I(0, 0) is created as the new top node ofP together with the
vicinity of H.

Otherwise we are left with the case/" < l. Here condition (iii) guarantees that all
nine nodes under preparation must be located directly beneath the vicinity of I-/./1
which already exists (cond. (iv)). From there full information is obtainable on how to fill
in the missing elements. If, for instance, the W-pointer from/-/, is not yet properly
installed, then/-/, must belong to the western part of the vicinity of tt.UD, i.e. /-/.
coincides with one of the three nodes H.UDWN, ttiUDW, HUDWS, e.g. /-/.
ttiUDWS. There are two possibilities: If ItiUWD A, then the W-pointer can be
immediately directed to its proper destination It.UWDES which, by reason of (i), (ii),
must exist in P already. Otherwise at first the nine nodes at the base of the elementary
pyramid under its top node It.UW have to be constructed with all their internal

502 A. SCH6NHAGE

connections. From this example it should be obvious now that preparation is possible in
a bounded number of SMM steps.

Adjustment on level means to shift/-/, appropriately. For 0 this means to
replace H0 by H0& and for/’ > 0, to replace by/-/-1U.

Within each stage adjustment precedes preparation, but this has to be understood
in the following way. When level/" is serviced for the first time, which happens at step 2j,
then has just been increased, and j I. In this case adjustment means that Hi
M.(0, 0) is introduced. Otherwise preparation at stage (2i- 1)2 prepares the adjust-
ment at stage (2i + 1)2, which is the next time level/" is serviced. In the meantime exactly
two adjustments on level/’- 1 occur, namely at the stages (4i + 1)2i-1. So we obtain by
induction on/" that adjustment on level j can shift by not more than a king’s move in
chess, and that even after two such ,shifts condition (iii) is still satisfied.

With reference to Fig. 5.2 we finally present a sequence of SMM instructions for
the simulation of move . The "macro" prepare followed by the address of a node/-/, is a
pseudo instruction which has to be replaced by a piece of program which peforms the
preparation around as described above.

SMMsimulation of the TM instruction move
set SSE to SSEI prepare SSE (updating on level 0)
new SNU set SNUS to SS (k (2t + 1) 0)
new SNUU (creates FEt+2)
set SE to SEU set SN to SNUU
if SESU ?q then new SESU; (increases
set SNS to SESU; (k(2t + 2) k(t + 1)+ 1)
set SNSE to SESEU; (updating on level k (2t + 2))
prepare SNSE

5.4. Conclusion. In order to explairt the simulation of the other internal TM
instructions we first have to describe the headquarter. In addition to the center A and
the base nodes B1, B2, , Br for the counters it contains two other nodes A0, A (Cfo
Fig. 5.3) which are used to encode the stored information: if the square of the storage
plane with coordinates x, y contains the inscription a {0, 1, b} and if Mo(x, y) exists in
P already then the D-pointer from Mo(x, y) leads to As in the headquarter (in case of a
blank Ab means A). Consequently in creating new nodes on the ground level of P their
D-pointers have to be directed to the center A, since the TM storage is assumed to be
empty initially.

FG. 5.3. The headquarter with center A, when the ,th head is active.

Our simulations of the other internal TM instructions are (cf. Fig. 5.2 and Fig. 5.3):

set S to D v; for head v;
set SSED to [3; for write a;

(where/3 N, W, IS] for a 0, 1, b)
if SSED N then goto h0;

if SSED W then goto h 1; for read ho, h 1.

STORAGE MODIFICATION MACHINES 503

The whole simulation process is initialized by creating all nodes of the head-
quarter, the nodes F1, F2, Go, G1 for each of the counters, and the initial pyramidal
structure consisting of the vicinities of M0(0, 0), MI(0, 0), and its top node ME(0, 0),
together with all their connections properly installed. For all counters the U-pointers
from Go, G1 are directed to H0 M0(0, 0), H1 M(0, 0) respectively.

All this also requires only bounded time. Therefore we have constructed an SMM
which simulates the given TM in real time. So far we have restricted our considerations
to the two-dimensional case; it should be obvious now how to generalize our method to
higher dimensions: With dimension d we will have 2d different directions plus the extra
pointers U and D, the vicinity of a node will consist of 3a many nodes, and the
pyramidal structure will be embedded in N x 7do

6. Integer-multiplication in linear time. Still the best upper bound we know for
multiplying two N-bit numbers on a multitape Turing machine is
O(N log N log log N). The slightly improved bound O(N log N) can be obtained for
certain other machine models (including all kinds of RAMs) with facilities for rapid
table look-up by use of a multiplication table (cf. [5, Chap. 4.3.3, p. 275]).

For RAMs with addition at unit cost the even better bound O(N log log N) is
possible by simply applying the general speed-up theorem given in [14, p. 63], or [9, p.
104], which allows to save a factor of order log when simulating a TM with time bound
t. We do not know, however, whether our restricted RAM1 model (cf. 3) does imply
any such speed-up at all. On the other hand the SMMs are sufficiently flexible that we
can gain something when a multitape Turing machine has to be simulated simul-
taneously for a large number of inputs of the same length. Then we can exploit the fact
that, within sufficiently small time-intervals, the same performance of the Turing
machine will occur in many of the computations running in parallel. A general
theorem of this type will be given at the end of our paper without proof. Here we prefer
to explicate this idea in detail by establishing a definite result for a prominent problem.

THEOREM 6.1. There exists an SMMwhich performs integer-multiplication in linear
time, i.e. there is a constant c such that any 2N-bit input is read as the concatenation oftwo
N-bit integers x, y, and after at most cNmany steps theirproduct z xy is output in binary
representation.

Theproof is based upon the application of theFFTover the field ofcomplexnumbers.
The computations are carried out in numerical approximation by using fix-point

numbers of sufficient length which, however, will not be handled in their binary
representation. It is the economical use of other number systems which makes the SMM
so fast.

6.1. SMM implementation of digital operations. Binary strings will be split into
blocks of equal length b => 1. Correspondingly, arithmetic computations will be realized
by performing sequences of basicdigital operations in the B-ary number system, where
B 2. Our SMM will use the alphabet A {P, Q, S, W}. Its A-structure will contain a
substructure called B-scale. It consists of nodes Do, D, , Dn_ cyclically linked by
their S-pointers, i.e.

(6.1) DiS Dj+I, DB-1S =Do.

We will always keep to the convention that a .B-ary digit p is represented by a pointer to

Do. For doubling and halving, the B-scale contains pointers properly installed according
to the identities

(6.2) DiP D2i, D2iQ = D2i+O Di

504 A. SCH6NHAGE

for 0_-</" < B/2 (see Fig. 6.1). The W-pointers will later be used to transfer digital
information from the B-scale to other places.

There is a simple SMM program which, for a given b, constructs the B-scale in time
O(B). Furthermore there are obvious algorithms for translating a B-ary digit into its
binary representation (a chain of length b with some convenient bit encoding), and vice
versa, both in time O(b), since residues mod 2 are easily obtained by checking whether
DiQP D holds.

O

0
’ P p p

FIG. 6.1. B-scale]:or b 3, hooked to the center A via the W-pointer.

Our SMM performs B-ary arithmetic by means of the following basic digital
operations:

(6.3) p+q=r+sB (0_-<s_-< 1),

(6.4) p-q=r.(-1) (O<-s<=l,s=Oforp=q),

(6.5) p q r + sB.

The transition from a given pair (p, q) of digits to the digits r, s which constitute the
result is achieved by suitable subroutines in time O(b) for addition/subtraction, and
O(b2) for multiplication, if intermediate translation to the binary system is used, where
simple algorithms exist. Comparisons between B-ary digits are possible by subtraction.

For the division of B-ary numbers a further basic operation would be needed, for
instance

(6.6) (P’ q)
q + i for 1 -<_ p _-< q.

6.2. Mass production. At times our SMM will operate in an interpreting mode.
Then it processes programs for numerical computations in B-ary arithmetic which are
built up from basic digital operations. They have to be encoded as parts of the
A-structure in some feasible manner. For each of these programs, which are processed
simultaneously, an instruction pointer must be maintained. We may assume that
everything is organized such that within one sweep at a time each of the programs is
promoted by one basic step. Now the decisive point is that these digital operations are
not performed immediately. Instead, they are collected in three lines, additions,
subtractions, multiplications separately. To be specific, let us for example consider the
collector line for the multiplications. For the ith multiplication of digits p, q it contains a
node C. Its pointers are directed acording to

(6.7) CiP=Dp,, CiO=Dq,, CiW=Ri, C/S C/+1,

where Ri denotes the destination where to deliver the result of this multiplication, i.e. Ri
is some node in one of the programs. In general, this collecting is restricted to a single
sweep, since the programs usually must be furnished with the results, before the next
sweep can be organized.

STORAGE MODIFICATION MACHINES 505

LEMMA 6.2. For m simultaneous programs each sweep can be performed in time
O(m+bBZ).

This is our crucial result. The idea is first to sort the collector lines and then to
execute each of the 3Bz different digital operations once at most. To distribute the
results will require not more than O(m) steps.

It remains to show that sorting (with respect to equality only, which is sufficient
here) is possible in linear time. Therefore let us assume that the collector line to be
sorted (cf. (6.7)) is accessed from the center A by its S-pointer, the endpoint C, has its
S-pointer back to A, andAW Do (see Fig. 6.1), while all other parts of the A-structure
are reached via AQ. Then sorting with respect to equal operands qi is achieved by the
following SMM program in linear time.

new P; set PS to 7-]; set WW to W;
empty: set WW to WWS; set WWW to P;

if WW P then goto empty;
goto test;

insert: set PW to S; set S to SS
set PWS to PWOWS
set PWOWS to PW;
set PWOW to PW

test: if S V then goto insert;
sets to PS

(during insertion, for any] the W-pointer of node Di is always directed to the last node
C of the new line with CO Di or to the auxiliary node P if such a C has not been
inserted so far).

Nearly the same program can be applied for sorting with respect to equal operands
p (all O’s have to be replaced by P). After this second path repeated occurrences of the
same pair of operands will always appear in succession (actually, we have implemented
a variant of radix sorting, see [6, Chap. 5.2.5]).

6.3. Integer-multiplication. In order to find out the actual value of N (on which a
suitable choice of b will depend) our SMM reads the input and stores it in binary
representation. Then it chooses n minimal as a multiple of 3 such that n 2" => 2N. Both
factors are filled up to length n 2" by preceding zeros. Then they are split into pieces of
length n according to

2n--1 2n--1

(6.8) x 22" Y x.2"i, Y 22n 2 Y2’,
/=o =o

where O_-<xi<2-, 0_-<yi<2-", and these numbers are integer multiples of 2-2n

(observe that certainly xi y 0 for/" -> 2"-a).
Our goal is to compute the numbers

(6.9) z. xy < 2-", (0 -< j < 2)

(later needed in (6.12)) which must be integer multiples of 2-4. Therefore it suffices to
compute approximate values which differ from the z’s by less than 2-4’-. This is
achieved by means of the FFT essentially as described in 3 of [13]. In our present
notation formula (3.4) of [13] becomes

506 A. SCH(NHAGE

where wn exp (27ri/2n). A careful analysis (similar to [13, p. 286]) of the round-off
errors in the FFTs and other steps involved shows that sufficient precision is obtained if
the numerical calculations are carried out, for instance, by using fix-point numbers of
binary length 6n and modulus -<_1 throughout (provided n _-> 6).

With regard to these theoretical considerations our SMM chooses b- n/3, con-
structs the B-scale and translates the x., y. into B-ary fix-point numbers with 18
fractional digits and one additional leading digit (in order to avoid overflow). All this is
done in time O(N), since we have

(6.10)
n O(log N),

b O(log N),

2 O(N/log N),

B =O(N1/3).
For the FFTs the roots of unity w exp (2zri/2 ") and their powers w, are needed.

In an initial phase Wa -1, w2 i, and w3, ’, w, are prepared in full precision by
means of the formula W+l (1 + w)/ll / w[. This computation can be carried out in
any crude manner, since it requires only O(log N) many divisions and square-roots
involving numbers of binary length O(log N). Then, after translation into B-ary form,
the powers are obtained in n- 2 stages by use of

2 2K+l(6.11) w+l --wv, Wv+l -wv Wv+l. (2<-u<n)

Each stage requires at most O(2n) many multiplications of complex numbers,
which can be done simultaneously. Here the technique of 6.2 will be applied. At first,
for each multiplication the SMM constructs a program, which consists of a bounded
number of basic digital operations, since the real and the imaginary part of each of the
factors have 19 digits only. Then each stage requires only a bounded number of sweeps
in the interpreting mode. By Lemma 6.2. each sweep is performed in time O(2+
B2bE)=O(N/logN), hence (cf. (6.10)) ali the n-2 stages cost at most O(N) many
steps.

The same analysis applies to the FFTs. The transformations (xj)- (.f.),
(Yi) (3) consist of n stages, in each of which O(2) many operations of the form
h =f+ g. w are to be performed simultaneously. Again the corresponding digital
programs have bounded length. Therefore we obtain the time bound n O(1) O(2 +
BEbE)=O(N). The simultaneous multiplications f=:.)3, together with the back
transformation (i) - (z.) require O(N) once more.

Finally the zi’s are translated into binary form and added up to yield the product

2n-1
(6.12) xy z 24 Y z2,

i=0

which then is output. Again only O(N) many steps are needed. This completes our
proof of Theorem 6.1.

7. Final discussion. The existence of an SMM for integer-multiplication in linear
time shows that any nonlinear lower bound for integer-multiplication on Turing
machines will require some special argument referring to the specific nature of Turing
machines and cannot be obtained by merely analyzing properties of multiplication.

Readers who have got the feeling that the result in Theorem 6.1 is inconsistent with
their intuition will perhaps be pleased with a corollary easily obtainable by combining
Theorems 6.1 and 4.1. In O(N) many steps a RAM0 can internally produce numbers
of binary length O(log N) at most. Therefore we get (cf. [1, p. 12] for the definition of
logarithmic cost)

STORAGE MODIFICATION MACHINES 507

THEOREM 7.1. There exists a successorRAMwhich performs integer-multiplication
o] N-bit numbers at logarithmic cost O(N log N).

Such a smooth bound of course invites us to conjecture its optimality.
As announced the techniques of 6.2 for economic parallel execution of programs

allow us to derive a more general result which we state here without further proof.
THEOREM 7.2. If a multitape Turing machine has time complexity <=t(n) and

outputs of length <-L(n) for all inputs of length n, then its application to m many inputs of
length n simultaneously can be simulated by a suitable SMM in time

(t(n)

Finally we have to compare our SMM model with the Kolmogorov-Uspenskii
machines (KUM) [7] for which we may assume similar input/output instructions. At
first glance it may seem that both models are essentially the same, and it is indeed fairly
obvious how to construct a real time simulation that shows KUM - SMM, but we are
not sure about the reverse. The difficulty arises from the fact that KUMs use undirected
graphs of bounded degree as storage elements. Therefore the nodes have bounded
fan-out and bounded fan-in, whereas during an SMM computation the fan-in of some
nodes will possibly increase with the size of the A-structure. If SMM - KUM is true,
then this will lend further support to our main thesis; it its not true, we will nevertheless
prefer the much more feasible A-structures.

In [3] an example is constructed which shows that there are KUMs which cannot be
simulated in real time by any multidimensional Turing machine. By combining this
with KUM - SMMwe immediately get that SMM TM is not true. Our Theorems 6.1
and 7.2 suggest the slightly stronger hypothesis that even SMM TM must be wrong,
where - denotes reducibility by simulation in linear time.

Acknowledgment. We are indebted to D. E. Knuth for reading the first draft of
this paper and for contributing many improvements. In particular he has brought to the
author’s attention that the SMM model coincides with a special type of "linking
automata" briefly explained in volume one of his book (cf. [4, pp. 462-463]) in 1968
already. Niw he suggests calling them "pointer machines" which, in fact, seems to be
the adequate name for these automata.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. CHUrtCH, An unsolvable problem of elementary number theory, Amer. J. Math., 58 (1936), pp.

345-363.
[3] D. Yu. GRIGORYEV, Kolmogorov algorithms are stronger then Turing machines, Investigations in

Constructive Mathematics and Mathematical Logic VII, Matijasevi, Slisenko, eds., Izdat. Nauka,

Leningrad, 1976, pp. 29-37. (In Russian).
[4] D. E. KNUTH, The Art o" Computer Programming, vol. 1, Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1968.
[5], The Art of Computer Programming, vol. 2, Seminumericat Algorithms, Addison-Wesley,

Reading, MA, 2nd ed. 1971.
[6], The Art of Computer Programming, vol. 3, Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
[7] A.N. KOLMOGOROV AND V. A. USPENSKII, On the definition of an algorithm, Uspehi Mat. Nauk, 13

(1958), pp. 3-28; AMS Transl. 2nd ser. vol. 29 (1963), pp. 217-245.

508 A. SCH6NHAGE

[8] M. V. KUBINEC, Recogniton of the self-intersection of a plane trajectory by Kolmogorov’s algorithm,
Investigations in Constructive Mathematics and Mathematical Logic V, Matijasevi(z, Slisenko, eds.,
Izdat. Nauka, Leningrad, 1972, pp. 35-44. (In Russian).

[9] W. J. PAUL, Komplexitiitstheorie, Teubner, Stuttgart, 1978.
[10] C. P. SCHNORR, Rekursive Funktionen und ihre Komplexitgit, Teubner, Stuttgart, 1974.
[11] m. SCHONHAGE, Universelle Turing Speicherung, Automatentheorie und Formale Sprachen, D6rr,

Hotz, eds., Bibliogr. Institut, Mannheim, 1970, pp. 369-383.
[12], Real-time simulation of multidimensional Turing machines by storage modification machines,

Technical Memorandum 37, M.I.T. Project MAC, Cambridge, MA, 1973.
[13] A. SCHONHAGE AND V. STRASSEN, Schnelle Multiplikation gro3er Zahlen, Computing, 7 (1971), pp.

281-292.
[14] J. E. HOPCROFT, W. J. PAUL AND L. G. VALIANT, On time versus space and related problems, Proc.

16th Ann. IEEE Symp. Foundations Comp. Sci. (Berkeley, CA), 1975, pp. 57-64.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0004 $01.00/0

A CORRECT PREPROCESSING ALGORITHM FOR
STRING-SEARCHING*

WOJCIECH RYTTER

BOYER-MOORE

Abstract. We present the correction to Knuth’s algorithm [2] for computing the table of pattern shifts
later used in the Boyer-Moore algorithm for pattern matching.

Key words, algorithm, pattern-matching, string, overlap

The key to the Boyer-Moore algorithm for the fast pattern matching is the
application of the table of pattern shifts which is denoted in [1] by Aa and in [2] by dd’.
Let us denote this table by D.

Assume that the pattern is given by the array pattern [l’n], so D is given as an
array D [1 n]. For every 1 <- j <-_ n, D[j] gives the minimum shift d > 0 such that the
pattern with the right erd placed at the position k + d of the processing string is
compatible with the part of string scanned before, where k is the last scanned position in
the string and/" is the last scanned position in the pattern.

The formal definition of D given in [2] is:

D[j] MIN {s + n -jls -> 1 and (s _>- j or pattern [j s] # pattern [j])
and ((s >_-i or pattern [i-s] pattern [i]) for j <i -<n)}.

Algorithm A given by Knuth is"

A1. for k := 1 step 1 until n do D[k := 2*n k;
A2./j := n; := n + 1;

/ while j > 0 do
begin
f[/] := t;
while <_-n and pattern []] # pattern It] do
begin

D[t] := MIN (D[t], n-/);

t:= f[t];
end
:= t-1;j:-j-1;

end;
A3. for k := 1 step 1 until do

D[k] := MIN (D[k], n + t- k);

Algorithm A computes also the auxiliary table f[0:n], for f<n defined as
follows: f[/’] min{i I/" < -<_ n and pattern [i + 1]. pattern In pattern [/" + 1].
pattern In +]-i]}; the final value of corresponds to f[0]. f[0] is the minimum non-
zero shift of pattern on itself; let us denote this value by SHIFT (pattern).

* Received by the editor January 18, 1979, and in revised form May 25, 1979.
t Instituto de Investigaciones en Matemiticas Aplicadas yen Sistemas, Universidad Nacional Aut6noma

de M6xico Apartado Postal 20-726, M6xico 20, D.F. On leave of absence from Institute of Informatics,
Department of Mathematics, Warsaw University, Warsaw, Poland.

509

510 WOJCIECH RYTTER

pattern

SHIFT(pattern)

Take as inputs to Algorithm A the following two strings" pattern 1 --aaaaaaaaaa and
pattern 2-abaabaabaa. Denoting by defD and D’ respectively the value of D
according to the definition and computed by Algorithm A we obtain the following
results"

j 1 2 3 4 5 6 7 8 9 10
pattern 1[/’] a a a a a a a a a a
DefD[]] 10 10 10 10 10 10 10 10 10 10
D’[j] 10 18 17 16 15 14 13 12 11 10
SHIFT(pattern 1)- 1.
pattern 2[/] a b a a b a a b a a
DefD[/’] 12 11 10 12 11 10 12 11 2 2
D’[/] 12 11 10 16 15 14 13 12 2 2
SHIFT(pattern 2)= 3.

The disagreement between DefD and D’ demonstrates explicitly that Knuth’s
algorithm is incorrect.

There are three cases which are considered in the design of Algorithm A for
computing the value of D[j]"

Case (1). D[j] 2*n -j. This is the most simple case computed in the part A1 of
Algorithm A.

Case (2). D[j]<n and pattern [I] Cpattern [], where n -D[]]. In this case
D[j] is computed in the part A2.

Case (3). n <=D[j]<2*n -j and/" _-<SHIFT(pattern)=f[0] t. In this case D[j] is
computed in the part A3 of Algorithm A.

However, another case occurs which is not covered by Cases (1), (2) and (3)"
Case (4). n <D[j]<2*n-] and/’>SHIFT(pattern). For example it occurs for

pattern pattern 2 and j 5. To correct Algorithm A, we have to consider not only the
minimal nonzero shift of the string on itself but all shifts, namely all such that 0 < _-< n
and pattern [i + 1] pattern [n] pattern [1]. pattern [n i]. Let us denote the set
of all such by ALLSHIFTS(pattern). Using the method of computing the failure
function in the pattern-matching algorithm of Knuth, Morris and Pratt [2], we give
below a correct version of the algorithm, where A1, A2 denote the corresponding
parts of Algorithm A.

ALGORITHM B.
A1; A2;
q := t; := n +l-q; ql := 1;

B1.]1 := 1; tl := 0;
while jl -<_ do
begin
fl[i] :=
while tl ->_ 1 and pattern [/1] pattern [tl] do tl := fll[tl];

tl := tl + 1;/’1 :=/’1 + 1;
end;

BOYER-MOORE STRING-SEARCHING 511

B2. while q < n do
begin
for k := ql step 1 until q do D[k] := Min (D[k], n + q- k);
ql := q + 1; q := q +t-flit];

t:= flit]; end;

The part B1 computes the auxiliary table fl[1 t’] where t’= n + 1- SHIFT(pattern),
and the part B2 computes the values of D[j] for both Cases (3) and (4).

and for 1 </" =< t’,

[/] max {i[1 =<i <j and pattern [j-i + 1]... pattern [/’- 1]

pattern 1]. pattern [i 1]}.

The correctness of the part B2 follows from the following: If ALLSHIFTS(pattern)=
{il, i2, , ik} and il SHIFT(pattern) and i < i2 <" < ik and t n + 1 i, tp+
fl[tp] for p 1, 2,. , (k 1) then i.+1 i. + t. t.+l for p 1, 2,. , (k 1).

tp+

FIG. 1. The graphical representation o[the computation of ip+a.

Remark 1. The same table space can be used for f and .
Remark 2. The tables f and fl are related in the following way: Let pattern’ be the

string resulting from reversing the string pattern and fl be computed for the string
pattern and f be computed for pattern’.

Then

fl[i]=n-f[n-i+l]+l fori=l,2,...,(n+l).

Remark 3. Denote OVR(pattern)= n- SHIFT(pattern). So OVR(pattern) gives
the maximum overlap of the pattern with itself. The difference in the time complexity of
Algorithms A and B is proportional to OVR(pattern) which can be linear with respect
to n. However, on the average it is very small for alphabets of the size greater than 1. Let
V(n, k) denotes the average value of OVR(pattern) taken over the set of all patterns of
the length n over the same alphabet of the size k.

The rounded values of V(n, 2) for n =< 14 computed on B6700 are shown in
Table 1.

TABLE

n 2 3 4 5 6 7

V(n, 2) 0 0.5 0.75 1.0 1.125 1.281 1.375

n 8 9 10 11 12 13 14

V(n, 2) 1.453 1.500 1.545 1.574 1.595 1.607 1.618

512 WOJCIECH RYTTER

LEMMA. 1. If k > 1 then V(n, k) < k/(k 1)2.
2. V(n, 2) < 2.
3. V(n,k)<l fork>2.

Proof. Fix n and k and assume that k > 1. Let a. be the number of patterns such that
OVR(pattern) =y for j= 1, 2,..., (n- 1). Every pattern with OVR(pattern) =/" is
determined by its prefix of the length n-j. So ai<-k n-i. Hence V(n,k)=

n--1 n--1)/"(Y.= 1" ai)/k Y"/’=I]" (1/k --<Yq=l/" (1/k)=k/(k-1)2. Parts 2 and 3 of the
lemma follow from 1. This ends the proof.

REFERENCES

[1] R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. ACM, 20 (1977), pp.
762-772.

[2] O. E. KNUTH, J. H. MORRIS, JR. AND g. R. PRATT, Fast pattern matching in strings, this Journal, 6
(1977), pp. 323-350.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0005 $01.00/0

THE PEBBLING PROBLEM IS COMPLETE IN POLYNOMIAL SPACE*

JOHN R. GILBERT,- THOMAS LENGAUERt AND ROBERT ENDRE TARJAN

Abstract. In this paper we study a pebbling problem that models the storage requirements of various
kinds of computation. Sethi has shown this problem to be NP-hard and Lingas has shown a generalization to
be P-space complete. We prove the original problem P-space complete by using a modification of Lingas’s
proof. The pebbling problem is an example of a P-space complete problem not exhibiting any obvious
quantifier alternation.

Key words, computational complexity, P-space completeness, pebbling, register allocation

1. Introduction. In this paper, we consider the following pebble game. Let G be a
directed acyclic graph, all of whose vertices have at most two predecessors. Given a
collection of pebbles, we wish to place a pebble on a distinguished vertex of G, called the
goa[, starting with no pebbles on the graph, by applying the following rules;

(i) A pebble may be removed from a vertex at any time.
(ii) If all predecessors of an unpebbled vertex v are pebbled, a pebble may be

placed on v.
(iii) If all predecessors of an unpebbled vertex v are pebbled, a pebble may be

moved from a predecessor of v to v.
We shall consider time to be divided into unit steps. At each time step, one of

rules (i)-(iii) is applied once. The space required by the pebbling is the maximum
number of pebbles ever on the graph at one time; the time required is the number of
applications of rules (i)-(iii).

Although it is convenient to allow use of the "sliding" rule (iii), the pebble game is
not affected substantially if we omit this rule. The following lemma formalizes this
observation. An independent proof of the lemma has been given by van Emde Boas and
van Leeuwen [2], who also investigate the effect of the sliding rule on the pebbling time.

LEMMA 1. For all s > O, a graph G can be pebbled with s pebbles using rules (i)-(iii) if
and only if it can be pebbled with s + 1 pebbles using only rules (i) and (ii).

Proof. Suppose G can be pebbled with s pebbles using rules (i)-(iii). We can replace
each use of rule (iii) to move a pebble from a vertex x to a vertex y with two steps, first
placing a pebble on y and then removing the pebble from x. This transformation allows
us to pebble G with s + 1 pebbles using only rules (i) and (ii).

Conversely, suppose a scheme exists for pebbling G with s + 1 pebbles using rules
(i) and (ii). We can pebble G with s pebbles as follows. Suppose there are s + 1 pebbles
at time to. Then the move at to must be to place a pebble on some vertex y. If this is not

* Received by the editors May 17, 1979. This research was supported in part by the National Science
Foundation under Grant MCS-75-22870-A02 and by the Office of Naval Research Contract N00014-76-C-
0688.

t Computer Science Department, Stanford University, Stanford, California 94305. The work of this
author was supported in part by a Hertz Fellowship.

Bell Telephone Laboratories, Murray Hill, New Jersey 07974. The work of this author was supported
in part by the German Academic Exchange Service.

Computer Science Department, Stanford University, Stanford, California 94305. The work of this
author was supported in part by a Guggenheim Fellowship.

We shall use the following graph-theoretic terminology. A directed graph G (V, E) is a collection of
vertices V and a collection of edges E. Each edge is an ordered pair (v, w) of distinct vertices. If (v, w) is an

edge, v is a predecessor of w and w is a successor of v. A source is a vertex with no predecessors; a sink is a

vertex with no successors. A path from v to w is a sequence of vertices v Vl,/92, Vk W such that/)i+1 is
a successor of vi for _<- < k. A cycle is a path of at least two vertice from v to v. A graph is acyclic if it has no
cycles.

513

514 J. R. GILBERT, T. LENGAUER AND R. E. TARJAN

the final move, the move at to + 1 must be to remove a pebble from some vertex x. If x is
a predecessor of y we replace these two moves with a single use of rule (iii), sliding a
pebble from x to y. If x is not a predecessor of y we reverse the order of the moves, first
removing the pebble from x and then placing it on y. If to is the final move we slide a
pebble from any predecessor of y to y. (If y has no predecessors we just pebble it, using
one pebble, since s > 0.) If we apply this transformation to all times at which s + 1
pebbles are on G, we get a scheme to pebble G with s pebbles using rules (i)-(iii).

The pebble game has been used to model register allocation [14], to study
flowcharts and recursive schemata [9], and to analyze the relative power of time and
space as Turing machine resources [1], [6]. Our interest lies in determining the
computational complexity of the following problem, which we call the pebbling prob-
lem" given a graph G, can a given vertex v in G be pebbled using no more than s
pebbles? This problem is not necessarily in NP,2 since the number of moves necessary to
pebble G with s pebbles may not be polynomially bounded 10]. However, the problem
is in polynomial space, since a sequence of moves can be guessed an.d checked by a
nondeterministic machine; only polynomial space is necessary to remember a single
arrangement of pebbles on the graph (or configuration). By Savitch’s theorem 12], such
a nondeterministic machine can be converted into a deterministic machine for which the
space bound is at most squared.

Many of the known P-space complete problems, such as the quantified Boolean
formula problem [15] and various game problems [3], [4], [7], [13] possess an obvious
quantifier alternation not present in the pebbling problem. Thus we might expect
difficulties in showing the pebbling problem P-space complete. Sethi [14] was able to
show the problem NP-hard, and NP-complete in the special case that each vertex can be
pebbled only once. Lingas [8] generalized the problem by allowing "or" vertices (an
"or" vertex can be pebbled if at least one of its predecessors is pebbled) and proved the
generalized version P-space complete. We shall prove the original pebbling problem
P-space complete by modifying Lingas’s construction. The next section of the paper
contains the proof. The concluding section mentions some additional consequences of
our construction.

2. The construction.
Quantified Boolean formulas. In order to prove the pebbling problem P-space

complete, we must reduce a known P-space complete problem to the pebbling problem.
For this purpose we choose the quantified formula problem (OBF) [15]: Determine
whether a quantified formula of the form 01x102x2 OnxnF is true, where each xi is a
Boolean variable, each Oi is either an existential or a universal quantifier, and F is an
unquantified Boolean formula involving only the variables xi, in conjunctive normal
form with exactly three literals per clause. From the quantified formula we construct a
graph G with a goal vertex ql and a number of pebbles s such that the quantified
formula is true if and only if ql can be pebbled with s pebbles. It will be evident that the
transformation from formula to graph can be accomplished in logarithmic space; it
follows that the pebbling problem is log-space complete in P-space.

We need a notation to denote substitution of truth values in F. For technical
reasons we substitute for the literals rather than for the variables. We use F(el, e2, .,
e2k-, ek) to denote the formula obtained from F by replacing each occurrence of x by
ei-1 and each occurrence of : by e, for 1 -< -< k, where each ei is either true or false.
ThusF (true, false) denotes making x true (and $ false), F (false, true) denotes making

We use standard concepts from complexity theory without defining them. For a thorough discussion of
NP, P-space, and completeness, see [5].

PEBBLING PROBLEM 515

X1 false (and $1 true), andF (false, false) denotes the "double false" substitution making
xl false and $ also false. (We shall have no need to consider the "double true"
substitution F (true, true).) Note that if F(el," ", e2k-2, false, false, e2k/, ., en) is
true, then both F(el, ", e-2, true, false, e2/, ", e.n) and F(e,. ., e2-e, false,
true, e2k+l. ", e2n) are true. Thus if Ok+lXk+l O,xF(el, ., e2g-2, false, false) is
true, so is VxQk+Xg+’’’ Q,xF(el," ", e2k-2).

Preliminary observations. An important building block in our construction is the
"pyramid" graph shown in Fig. 1, which we shall abbreviate with a triangle as indicated
in the figure. Cook 1 has proved that the sink (or apex) of a pyramid with k sources can
be pebbled if and only if at least k pebbles are used. We can use a pyramid to lock a
pebble on a given vertex for a given time interval. We do this by making the vertex the
apex of a pyramid which is so large that in order to repebble the vertex, so many pebbles
have to be taken off the graph for use on the pyramid that the results achieved after the
vertex was first pebbled are lost.

FIG. 1. A 5-pyramid.

Note also that if any source of a k-pyramid contains a pebble that cannot be moved,
then the apex can be pebbled with k- 1 additional pebbles.

We now make some general remarks about pebbling strategies that are
similar to those of Pippenger [11]. We partition the pebble placements into necessary
and unnecessary placements as follows. The first placement on the goal vertex is
necessary; all other placements on the goal vertex are unnecessary. A placement on any
other vertex v is necessary if and only if the pebble placed remains on v until a necessary
placement occurs on a successor of v. The necessary placements are well-defined since
the graph is acyclic. Deletion of all unnecessary placements from a pebbling strategy
results in another pebbling strategy. We call a pebbling strategy with no unnecessary
placements]rugal. The following statements are true of any frugal pebbling strategy.

(i) At all times after the first placement on a vertex v, some path from v to the goal
vertex contains a pebble.

(ii) At all times after the last placement on a vertex v, all paths from v to the goal
vertex contain a pebble. (This is true also of nonfrugal pebbling strategies.)

(iii) The number of placements on a nongoal vertex is bounded by the total
number of placements on its successors.

We call a pebbling strategy normal if it is frugal and if it pebbles each pyramid P in
G as follows: after the first pebble is placed on P, no placement or removal occurs
outside P until the apex of P is pebbled and all other pebbles are removed from P. No
new placement occurs on P until after the pebble on the apex of P is removed.

516 J. R. GILBERT, T. LENGAUER AND R. E. TARJAN

LEMMA 2. If the goal vertex is not inside a pyramid, any pebbling strategy can be
transformed into a normal pebbling strategy without increasing the number of pebbles
used.

Proof. Consider any pebbling strategy. First obtain a frugal strategy by deleting all
unnecessary placements; this does not increase the number of pebbles used. Then let tl
be a time at which a pebble is placed on a k-pyramid P. Let [to, t2] be the largest time
interval containing tl such that P is never pebble-free during [to, t2]. Since the pebbling
strategy is frugal and the goal vertex is not in P, the only pebble on P at time t. is on the
apex of P. Since at time to- 1 no pebbles are on P, there must be a time t3 during [to, t2]
at which k pebbles are on P. Modify the pebbling strategy as follows. Delete all
placements and removals from P during [to, t2]. Insert at t3 a continuous sequence of
moves that pebbles the apex of P using k pebbles and then removes all pebbles on P
except the one on the apex. This transformation results in a pebbling strategy since no
vertex in P has a predecessor outside P, and the only vertex in P that precedes vertices
outside P is the apex. If the inserted sequence contains no unnecessary placements, then
the transformed strategy is frugal. Furthermore it uses no more pebbles than the
original strategy. Repeating this transformation for each placement on a pyramid
results in a normal strategy. 71

Details of the construction. To describe the construction we need a little more
notation. Recall that n is the number of quantifiers. The number of pebbles we allow is
s 3n +3. For l<=i<=n + 1,1etsi=s-3i+3; thUSSl=S andsn+ 3. Roughly speak-
ing, we use three pebbles to keep track of each quantifier and its associated variable, and
three more to check the validity of the clauses of F under a given assignment to the
variables. Let F contain rn clauses (1il V li2 V 1i3 for 1 -< j <- m, where each lik is a literal.
For any variable x, we shall regard as synonymous with x.

The graph G to be constructed consists of n + m blocks of vertices, one for each
quantifier and its associated variable, and one for each clause in F. The quantifier block
for Qixi includes four vertices to represent the variable xi, as illustrated in Fig. 2. Two
pebbles placed on this subgraph encode the truth values of xi and -’i as illustrated in Fig.
2(b)-(d). The remainder of a quantifier block depends on the quantifier.

Figure 3 illustrates a universal quantifier block. The way this block works is as
follows. There are essentially two ways to pebble q with si pebbles: (i) pebble q+l twice
with si+a pebbles, each time with three pebbles fixed on the ith quantifier block, once
representing Yi true and once representing xi true (the third pebble is fixed on di or ag
respectively); or (ii) pebble q/l once with S/l pebbles, while three pebbles representing
xi false and i false are fixed on the ith quantifier block.

Figure 4 illustrates an existential quantifier block. The only way to pebble q with s
pebbles is to pebble qi+l with Si/l pebbles, while three pebbles representing one of the
three possible truth assignments to x and Yi are fixed on the ith quantifier block (the
third pebble is fixed on di).

Figure 5 illustrates the block of vertices representing a clause. After s 3 pebbles
are used on the quantifier blocks to fix an assignment to the literals, the remaining three
pebbles are available to pebble the clause blocks. For each literal lik, there is a fixed
pebble on vertex lik if the literal is true, or on vertex lk if the literal is false. Thus if F is
valid, the clause pyramids can be pebbled in the order po, p, , p,, qn+a with three
pebbles; however, if some clause (lil v li2 v/3) is false, p. is the apex of an empty
4-pyramid and cannot be pebbled with three pebbles.

Figure 6 illustrates the entire construction. Note that p0 is a single vertex, and that
P. q,+ 1"

PEBBLING PROBLEM 517

Xi Xi Xi Xi Xi

(a) (b) (c) (d)

FIG. 2. (a) Vertices representing a variable; (b) true configuration; (c) false configuration; (d) double false
configuration.

qi

FIG. 3. Universal quantifier block. Vertex qi+l is part of the + 1-st quantifier block.

qi

Xi

d

FIG. 4. Existential quantifier block. Vertex qi+ is part o]: the + 1-st quantifier block.

3

3
FIG. 5. Block o] vertices]’or clause lilv li2 v li3. Note that the vertices lik and Ik occur among the quantifier

blocks. Vertex Pi-1 is part of the j -st clause block; Po is a single vertex and p, qn+ 1.

518 J. R. GILBERT, T. LENGAUER AND R. E. TARJAN

q2

Po

Pl

P2

X5 q6 =P4

FIG. 6. Graph for E 3X1VX23X3VX43Xs(,l V)2 V X3) A (X V 3 V 94) A (X1V X4 V X5) A (X3 V 4 V 95)"
Number of pebbles 5 3 + 3 18.

Proof of the reduction. Our main result is as follows.
THEOREM 1. The quantified Boolean formula QlxlQ2x2" QnxnF is true if and

only if vertex q in the graph G constructed as above can be pebbled with s 3n + 3
pebbles.

We prove this theorem by means of two lemmas which state that if we use s- si
pebbles to fix truth values for the literals corresponding to the first i- 1 variables, then
we can pebble qi with the remaining si pebbles if and only if the quantified formula is
valid after making the appropriate substitution. The lemmas are proved by induction on
i. For 1 -<- -< n + 1, we define Ni to be the set of configurations fixing truth values for the
literals corresponding to the first i-1 variables. An arrangement of exactly s-si
pebbles on G is in Ni if and only if, for 1 <= j < i, two conditions hold:

(1) If Qj V there are exactly three pebbles on the/’th quantifier block, on one of
the following three sets of vertices:

(a) {aj, x., :}, indicating x. true;

PEBBLING PROBLEM 519

(b) {d., f., x; }, indicating x. false, or
--!(c) {dj, x., x. }, indicating double false.

(2) If Q. =!, there are exactly three pebbles on the/’th quantifier block, on one of
the following three sets of vertices:

(a) {d, x., f}, indicating xj true;
(b) {d., f., x}, indicating x. false, or
(c) {d., x j, x. }, indicating double false.
Note that N1 contains only the configuration with no pebbles on the graph, and

Nn/l contains all configurations in which a truth assignment has been made to each
literal and three pebbles remain to test whether the assignment makes F true.

LEMMA 3. Let 1 <--_ <= n + 1. Suppose the graph is initially in a configuration in Ni.
For 1 <- j < i, let e2i_l be the truth assignment definedfor xi by that configuration, and let ezi
be the truth assignment defined for Yj. If Oixi O,x,F(e, e2, e2i-3, e2i-2) is true,
then vertex qi can be pebbled with si additional pebbles without moving any of the s- si

pebbles initially on the graph.
Proof. Proof is by induction on from n + 1 to 1.
Basis. Let n + 1 and suppose that the assignment defined by the Ni configura-

tion makes F true. We must show that vertex q,+ p,, can be pebbled with S,+l 3
additional pebbles without moving any of the pebbles of the Ni configuration.

For each clause (1. v li2 V lj3) of F, there is a pebble of the configuration on li or li2
or 1.3, and if there is not a pebble on fig then there is a pebble on lk, for 1 <_- k -<_ 3. It
follows that with three additional pebbles we can pebble po, pl,’", p, in turn as
described earlier. Note that we need at least three additional pebbles, since each p. for
j _-> 1 is the apex of a three-source pyramid initially containing no pebbles.

Inductive step. Suppose that the lemma holds for + 1, and that the assignment
defined by the Ni configuration makes the substituted formula
Qixi Qx,F(el, e2, e2i-3, e2i-2) true.

Case 1 (universal quantifier). Suppose Qi =V.Then

Qi+xi/ Q,x,F(e, e2i-2, true, false) and

Qi+lXi+ Q,xnF(e,.. , e2i-2, false, true) are both true.

Vertex qi can be pebbled with s pebbles as follows. First use all si pebbles to pebble x
leaving a pebble there. Then use the remaining sg- 1 pebbles to pebble di, leaving a
pebble there, and the remaining si- 2 pebbles to pebble Yi, leaving a pebble there. The
current configuration is in Ni+l, representing xg false. Applying the induction hypo-
thesis, pebble q+a with the remaining si+a si- 3 pebbles. Move the pebble on qi+l to
ci, bi and ai. Move the pebble on x to xi. Leaving pebbles on ai and xi, pick up the rest of
the pebbles and use the si- 2 free pebbles to pebble Yl, leaving a pebble there. The
current configuration is in Ni+, representing xi true. Applying the induction hypo-
thesis, pebble qi/l again. Finish by moving the pebble on q/+l to g, fi, and

If Oi+lXi+l O,x,F(ea,. , e2i-2, false, false) is true, there is a way to pebble q
--!that only pebbles qi+l once. First pebble x, di, and xi, which gives a configuration in

Ni+ representing xi and Yg both false. Applying the induction hypothesis, pebble
There are now si 4 _-> 2 free pebbles. Place one on i and move it to ci, bi, and ai. Move
the pebble on I to gi, and finish by moving the pebble on x to xi, fi, and qi.

Case 2 (existential quantifier). Suppose Qi- ::l. Then either

Oi+lXi+l OnxnF(el, e2i-2, true, false) or

Qi+lXi+l Q,,x,,F(el, e2i-2, false, true) is true.

520 J. R. GILBERT, T. LENGAUER AND R. E. TARJAN

Suppose first that the former is the case. Vertex qi can be pebbled with si pebbles as
follows. First pebble x’i, leaving a pebble there. Then pebble di and f, leaving pebbles
there. Move the pebble on 1 to I and move the pebble on x to x. The current
configuration is in Ni+l, representing x true. Applying the induction hypothesis, pebble
q/ with the remaining si/ s 3 pebbles. There are now si 4 -> 2 free pebbles. Place
one on and finish by moving it to c, b, ai, and q.

Alternatively, suppose that Oi/ax/a"" OnxnF(ea,"’, e2-2, false, true) is true.
To pebble q with s pebbles, begin by pebbling x’, di, and ’i in turn, leaving pebbles
there. Move the pebble on]i to and , which gives a configuration in
representing x false. Applying the induction hypothesis, pebble q/a. Move the pebble
on qi+l to Ci and bi. Pick up all the pebbles except those on bi and xl, and use the Si--2
free pebbles to pebble . Move the pebble on f to ’ and ai, and finish by moving the
pebble on x to xi and q.

LEMMA 4. Let 1 <= <- n + 1. Suppose the graph is initially in a configuration in N.
For 1 <- f < i, let e2i-a be the truth assignment defined [or xi by that configuration, and let
e2i be the truth assignment defined]:or . If vertex q can be pebbled with s additional
pebbles without moving any of the s-s pebbles initially on the graph, then
Oixi OxnF(e, e2, e:zi-3, e2i-) is true.

Proof. Again, proof is by induction on from n / 1 to 1.
Basis. Let n + 1 and suppose qi Pm can be pebbled with si 3 pebbles without

moving any pebbles in the N configuration. Then each pyramid of size four represent-
ing a clause of F must contain at least one pebble of the Ni configuration, corresponding
to a true literal; that is, the assignment defined by the Ni configuration must make
F true.

Inductive step. Suppose that the lemma holds for / 1, and that there is a strategy
which pebbles q with si pebbles without moving any pebbles in the Ni configuration. By
Lemma 2 we can assume that the strategy is normal.

Case 1 (universal quantifier). Suppose Q V. By frugality, each of q, ai, hi, ci, di, fi,
and gg is only pebbled once.

Let to be the last time si pebbles appear on the si-pyramid. After to, x is only
pebbled once. At to no pebbles are on vertices outside the si-pyramid. Since the
pebbling is frugal, no placement before tb occurs outside the s-pyramid. Thus x’i is
only pebbled once, and this occurs before anything else happens. Let tl be the time
x is pebbled. From ta until qi is pebbled, a pebble is on x’i, xi, or fi. From tl until ag is
pebbled, a pebble is on xi.

To pebble ai requires pebbling di. This requires removing all pebbles from the
graph except the one on x I. By normality, therefore, d is pebbled before anything other
than x I, and a pebble remains on d until b is pebbled. To pebble bi requires pebbling ci
and hence :. This requires removing all pebbles except those on xl and d;. Therefore
is pebbled immediately after di and a pebble remains on :I or .i until ci is pebbled,
which happens before bi is pebbled. By normality, all pebbles except the one on $’i are
removed from the s-2-pyramid as soon as $’ is pebbled. Let t2 be the time these
pebbles are removed, and let t3 be the first time after t2 that qi/l is pebbled.

At t2 there are pebbles on x’, d, and xi. Pebbles must remain on x and di until/3,
and a pebble must be on either [or .l’i until t3. Suppose first that a pebble remains on
from t2 until t3. The configuration at t2 is in Ni/a with a double false assignment to xi, and
none of the pebbles on the graph at t2 can be removed until t3. Therefore the induction
hypothesis says that Qi/aXg+l’" QnxnF(el,’",e2i-2, false, false) is true, so
fxiQi+lXi+l OnxnF(el,"., e2i-2) is true and the lemma holds in this case.

PEBBLING PROBLEM 521

Alternatively, suppose that the pebble on I does not remain until t3. In this case
we will argue that qi/l must be pebbled twice, first with a false assignment to xi and then
with a true assignment to xi.

Either or)i must have a pebble from t2 to t3. The only successors of x are .i and
gi, and gi cannot be pebbled before t3. Therefore we can rearrange the strategy so that
at t2 + 1 the pebble on I is moved to Yi, where it must remain until t3. The configura-
tion at t2 + 1 is then in N+I with a false assignment to x, and none of the pebbles on the
graph at t2+l can be removed until t3. By the induction hypothesis,
Oi+lXi+l O,,x,,F(el," e2i-2, false, true) is true.

At t3, there are pebbles on di, .i, xl, and qg+l. Vertices qi, ai, bi, ci, fi, and gi are
vacant because they can’t be pebbled before qi/ is pebbled. Vertex $I couldn’t have
been repebbled between t + 1 and t3 because three pebbles were fixed on di, i, and
x[during that interval; thus $/’ and (by normality) the entire si-2-pyramid are also
vacant at t3. There may or may not be a pebble on xi at t3.

We will now show that immediately after t3, a configuration in Ni/l with a true
assignment to xi is created, and that qi/ must be repebbled while the pebbles in the
configuration are fixed.

By frugality, the pebble on q+l at t3 remains until either ci or gi is pebbled. Vertex
q/l cannot retain a pebble until g is pebbled, because to pebble g requires placing all
but two of the pebbles on the si- 2-pyramid, and in addition to the pebble on qi/l, two
pebbles are fixed, one on x’, x, or fi and the other on di, bi, or a, until qi is pebbled. Thus
the pebble on qi+l at t3 remains until c is pebbled and is removed before g is pebbled.
Since has a pebble at t3, we can rearrange the strategy so that the pebble on qi+a is
moved to c at t3 q- 1.

Now the only successors of ci and b are bi and ai respectively, and since di and x
both contain pebbles at t3 -b 1, we can rearrange the strategy so that the pebble on c is
moved to bi at t3 q-2 and to a at /’3 q-3. A pebble must then remain on a until q is
pebbled. Since a is only pebbled once and is the only successor of x except xi, we can
further rearrange the strategy so that the pebble on x is moved to xi at t3 q-4 (or is
picked up if there is already a pebble on xi).

At t3+4, a contains a pebble that will remain until qi is pebbled, and xi
contains a pebble that will remain until f is pebbled. Vertex /’ must be repebbled
before fi is pebbled, which must happen before qi is pebbled. To pebble I requires all
the pebbles except the ones on a and xi, so by normality I is pebbled immediately after
t3 + 4, and is only pebbled once before fi is pebbled. Let t4 be the time all the pebbles

is first pebbled afterexcept the one on I are removed from the si- 2-pyramid after Yi
t3 q-4. At t4 there are pebbles on a, x, and I, and nowhere else on the ith quantifier
block. This configuration is in N+ with a true assignment to xi, and none of the
pebbles on the graph at t4 can be removed until after qi+ isrepebbl6d. By the induction
hypothesis Oi+lXi+ O,xF(e,..., e2i-2, true, false) is true, Therefore

VxiOi+xi+"" O,x,F(ea,..., e2i-) is true. This finishes the inductive step for a
universal quantifier.

Case 2 (existential quantifier). Suppose O ::1. By frugality, each of q, a, b, c, di,
and qi+ is only pebbled once. Exactly as in Case 1, normality implies that xl is only
pebbled once, and is pebbled before anything else happens. A pebble remains on x or

x until q is pebbled, and a pebble remains on x’i or ’ until a is pebbled. To pebble a
requires pebbling d, which requires removing all pebbles from the graph except one on
x I. Thus d is pebbled before anything else except x I, and a pebble remains on di until b
is pebbled.

522 J. R. GILBERT, T. LENGAUER AND R. E. TARJAN

To pebble bi requires pebbling ci and hence [i. To pebble fi requires removing all
pebbles except those on x’ and d. Thus f is pebbled only once before b is pebbled, and
this happens immediately after d is pebbled. A pebble remains on f, I, or i until c is
pebbled.

The only successor of fi is x i, and a pebble remains on x until .i is pebbled, so we
can rearrange the strategy so that the first move after picking up the pebbles on the
s- 2-pyramid (except the one on f) is to move the pebble on f to I. Let tl be the time
of this move, and let t2 be the time q/l is pebbled. Note that since fi is not repebbled
between tl and t., neither is . At tl there are pebbles on x , x , and d, and until t2 there
must be pebbles on x’ -’or xi, x or x i,)i or)i, and di.

Case 2a. The pebble on x is removed before t2. Since the only successors of x are
x and , and is not repebbled before t2, we can rearrange the strategy so that the
pebble on x is moved to x at ta + 1. The configuration at tl + 1 is then in N/ with a true
assignment to x, and none of the pebbles can be removed until t2. By the induction
hypothesis,

Oi+lXi+l O,x,F(e, e2i-2, true, false) is true.

Case 2b. A pebble remains on x until rE, and the pebble on .i is removed before rE.
We can rearrange the strategy so that the pebble on f’i is moved to .’i at tl d-1. The
configuration at t / 1 is in Ni+ with a false assignment to x, and no pebble can be
removed until rE. By the induction hypothesis,

Qi+lXi+l Qx,F(el, e2i-2, false, true) is true.

Case 2c. Pebbles remain on x; and until t2. The configuration at tl is in N/+ with
a double false assignment to x, and no pebble is removed until tz. By the induction
hyothesis,

Qi+lXi+l Q,x,,F(el, e2i-2, false, false) is true.

In each of subcases 2(a)-(c), :lxiQ+x+x... QnxnF(e,"’, e2i-2) is true. This
completes the inductive step for an existential quantifier, and the proof of the
lemma.

Proof of Theorem 1. Theorem 1 is simply the case 1 of Lemmas 3 and 4. I-I

3. Remarks. Variants of our construction give a couple of additional interesting
results. Lingas [8] exhibited an infinite family of graphs with the following property:
pebbling an n-vertex graph in the family with the minimum number of pebbles requires
2nl/3) time, but allowing two additional pebbles reduces the time to O(n). P. van Emde
Boas and van Leeuwen [2] independently obtained a similar result; in their construction
only one additional pebble is necessary to reduce the pebbling time to O(n).

We can obtain such a result as follows: Select any value of k. Let s 3k +2.
Construct a graph Gk corresponding to the formula

VxVx2 Vx(x v) ^ (x2 v 2) ^ ^ (x v)

as described in 2, representing each clause by a three-source pyramid as in Fig. 7
instead of by a four-source pyramid as in Fig. 5. G has O(k3) vertices and requires at
least s pebbles, since it contains a pyramid of size s. Since the formula is true, G can be
pebbled with s pebbles, but only in f(2) time, since any double false substitution
makes the formula false. With s + 1 pebbles, Gk can be pebbled in O(k 3) time by
selecting the double false assignment for all variables and using the remaining three
pebbles to pebble the clause pyramids. This construction improves the result of Lingas

PEBBLING PROBLEM 523

Pi-1

FIG. 7. Block of vertices [or clause xi v .i.

because only one extra pebble is needed to reduce the pebbling time to linear, and it
improves the result of van Emde Boas and van Leeuwen because the graph size is O(s 3)
rather than O(s4), where s is the minimum number of pebbles necessary to pebble the
graph.

Another variant of our construction shows the following problem to be P-space
complete" given a graph G and a number of pebbles s sufficient to pebble a given vertex
v, can v be pebbled within a specified time bound t? We assume is expressed in binary
notation; if is expressed in unary, it is immediate from Sethi’s result [14] that the
problem is NP-complete. We shall reduce the quantified Boolean formula problem to
this problem of pebbling with a time bound.

Let E=Qlxl’" QnxnF be a quantified Boolean formula. Construct a new
formula E’=::lyl... :lynQxl... QnxF’, where F’ is formed from F by adding
clauses xi v $i v yi and xi v v]i to F for 1 -< <- n. The new formula E’ is true if and only
if E is true, but a double false substitution for any universally quantified variable in E’
makes F’ false. Let m be the number of clauses on F’ (note that m _-> 2n), and let nv be
the number of universally quantified variable$ in E’. Construct a formula E"=
[Zl[2;z’’" [Zk:::lyl :ty,Qaxl... Q,xnF" from E’, where F" is formed from F’ by
replacing every clause ljx v ljz v li3 by the set of clauses {l.a v lj2 v lj3 v zi v ell <-- -< k}.
Here k is a suitably large integer whose value we shall select later.

Let s 3k + 6n + 5. Construct a graph G corresponding to the new formula as in
2, using a pyramid of size six to represent each clause. Since E" is true, G can be

pebbled with s pebbles. If a double false substitution is made for some variable z in E",
the resulting formula is true if and only if the original formula E is true. Thus if E is
false, pebbling G requires 12(ink2k+"v) time. If E is true, G can be pebbled in
O((mk + (2n + k)3)2"v) time by selecting the double false assignment for every variable
z. Thus if k is sufficiently large (k rn suffices for large m), there is a time t(m) such that
G can be pebbled with s pebbles in time t(m) if and only if E is true.

Acknowledgment. We would like to thank Michael Loui for suggesting the
existential quantifier block in Fig. 4, which considerably simplified our original con-
struction. A preliminary version of this paper was presented at the Eleventh Annual
ACM Symposium on Theory of Computing, Atlanta, Georgia, 1979.

REFERENCES

[1] S. COOK, An observation on time-storage trade off, Proc. Fifth Annual ACM Symp. on Theory of
Computing, Austin, TX, 1973, pp. 29-33.

I-2] P. VAN EMDE BOAS AND J. VAN LEEUWEN, Move rules and trade-offs in the pebble game, Proc. Fourth
GI Conf. on Theoretical Computer Science, Springer Lecture Notes on Computer Science, 67,
1979, p.p. 101-112.

524 J. R. GILBERT, T. LENGAUER AND R. E. TARJAN

[3] S. EVEN AND R. E. TARJAN, A combinatorial problem which is complete in polynomial space, J. Assoc.
Comput. Mach., 23 (1976), pp. 710-719.

[4] A. S. FRAENKEL, M. R. GAREY, D. S. JOHNSON, T. SCHAEFER AND Y. YESHA, The complexity of
checkers on an NNboard--preliminary report, Proc. Nineteenth Annual Symp. on Foundations of
Computer Science, Ann Arbor, MI, 1978, pp. 55-64.

[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[6] J. E. HOPCROFT, W. PAUL AND L. VALIANT, On time versus space, J. Assoc. Comput. Mach., 24
(1977), pp. 332-337.

[7] D. LICHTENSTEIN AND M. SIPSER, GO is P-space hard, Proc. Nineteenth Annual Symp. on
Foundations of Computer Science, Ann Arbor, MI, 1978, pp. 48-54.

[8] A. LINGAS, A PSPACE complete problem related to a pebble game, Automata, Languages, and
Programming, Fifth Colloquium, Springer Lecture Notes on Computer Science 62, 1978, pp.
300-321.

[9] M. S. PATERSON AND C. E. HEWITT, Comparative schematology, Record of Project MAC Conference
on Concurrent Systems and Parallel Computation, Cambridge, MA, 1970, pp. 119-128.

[10] W. PAUL AND R. E. TARJAN, Time-space trade-offs in a pebble game, Acta Informat., 10 (1978), pp.
111-115.

[11] N. PIPPENGER, A time-space trade-off, J. Assoc. Comput. Mach., 25 (1978), pp. 509-515.
[12] W. J. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J. Comput.

System Sci., 4 (1970), pp. 177-192.
13] T. J. SCHAEFER, Complexity of decision problems based on finite two-person perfect-information games,

Proc. Eighth Annual ACM Symp. on Theory of Computing, Hershey, PA, 1976, pp. 41-49.
[14] R. SETHI, Complete register allocation problems, this Journal, 4 (1975), pp. 226-248.
[15] L. J. STOCKMEYER AND A. R. MEYER, Word problems requiring exponential time: preliminary report,

Proc. Fifth Annual ACM Symp. on Theory of Computing, Austin, TX, 1973, pp. 1-9.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0006 $01.00/0

VECTOR ITERATION IN POINTED ITERATIVE THEORIES*

STEPHEN L. BLOOMer, CALVIN C. ELGOTt AND JESSE B. WRIGHT

Abstract. This paper is a sequel to a previous paper (S. L. Bloom, C. C. Elgot and J. B. Wright, Solutions
of the iteration equation and extensions of the scalar iteration operations, SIAM J. Comput., 9 (1980), pp.
25-45. In that paper it was proved that for each morphism 2_ 0 in an iterative theory J there is exactly one
extension of the scalar iteration operation in J to all scalar morphisms such that 11’ 2_ and all scalar iterative
identities remain valid. In this paper the scalar iteration operation in the pointed iterative theory (J, 2_) is
extended to vector morphisms while preserving all the old identities.

The main result shows that the vector iterate g* in (J, 2_) satisfies the equation g*= (g+/-)*, where g+/- is a
nonsingular morphism simply related to g (so that (g+/-)* is the unique solution of the iteration equation for g+/-).

In the case that J FTr, the iterative theory of F-trees, it is shown that the vector iterate g* in (J, 2_ is a
metric limit of "modified powers" of g.

Key words. Algebraic iterative theory, computation semantics iteration, flowcharts

Introduction. This laper is a sequel to [3]. In that paper it was shown that each
morphism _t_" 1 0 in an iterative theory J determines uniquely an extension of the
scalar iterative operation in J to all scalar morphisms in such a way that I _t_ and all
scalar iterative identities remain valid. In the current paper the scalar iteration
operation is extended to all vector morphisms while preserving all old identities.

In 2, this extension is defined in an inductive way. It is shown (Theorem 2.4) that
four identities characterize this extension. Our main result (Theorem 2.7) provides an
explicit description of extended iteration in any pointed iterative theory (J, _1_). The
special case of the iterative theory of labeled trees (FTr, _t_) [6], [1] is considered in

5. The F-trees n p form a complete metric space in a natural way and we show
that the vector iterate g* of the F-tree g:n p + n is a metric limit of the sequence
g (Ip +/-,), gao (Ip +/-,), g3o (Ip 2.,)....’

Section 3 is devoted to showing that extended iteration satisfies all iterative theory
identities. To this end the category of "iteration theories" is introduced and these
theories are characterized in five ways (Theorem 3.3).

In section 4, some examples are given relating extended iteration to ordered
algebraic theories [1]. Two examples are given of a choice for _1_ 1 - 0 in the theory of
F-trees so that in the resulting iteration theory (FTr, +/- there is some partial ordering of
the trees such that the value of extended iteration g* is the least solution of the iteration
equation for g. For other choices of 2_ :1 - 0 in FTr, no such ordering need exist (see
Theorem 4.4).

1. Preliminaries. While familiarity with [3] would be very helpful, we will not need
to depend on it heavily except in the appendix. However the reader should have some
knowledge of algebraic and iterative theories as defined in [5]; the elementary proper-
ties of these theories are summarized in 1.6 of [3].

For the reader’s convenience we will recall here some facts, definitions and
notation from [3]. An algebraic theory J is a category whose objects are the nonnegative
integers, having for each n _-> 0, n "distinguished morphisms" i: 1 - n, e [n] (where
[n]={1, 2,. ., n}; [0]= b) such that:

* Received by the editors November 28, 1978, and in final revised form June 30, 1979.
t Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, New Jersey

07030. During the preparation of this paper this author was partially supported by the National Science

Foundation under Grant MGS-78-00882.
Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New

York 10598.

525

526 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

for each family [i: 1 + p, [n n => 0, of morphisms in J there is a unique morphism
f: n + p such that for each In], fi is the composition of i: 1 n and f: n p.

In the case n 0, this condition amounts to the requirement that there is a unique
morphism Or: 0p, for each p =>0. The morphism f is the source tupling of the
morphisms fi and is denoted (fl,""", f,). All morphisms n p, n, p _-> 0 formed by
source tupling the distinguished morphisms are base. When the distinguished
morphisms are distinct (which is the case in every algebraic theory but the two "trivial
theories") the base morphisms are in bijective correspondence with the functions
[n]+[p]: the function f: [n][p] corresponds to the source tupling (f(1),..., f(n)),
where f(i): 1 p is distinguished. The base morphism corresponding to the identity
function on [n] is denoted I,.

g

The composition of f: n p and g: p q is denoted either f g: n + q or n -p q
(with an arrowhead missing). Source tupling permits defining source pairing of two
morphisms with a common target. If fi: np, 1, 2, then the source pairing
(fl, f2): n + rt2- p satisfies (fl, f2) fl, if e [n]; (fx, I2)]o f2 if n +],
]e[n2]. The "circle-sum" fx 03f2:nx+n2+p+p2 of fg: ni-*pi, ie[2], is the source
pairing (f K, f2 h), where K: PI Pl + P2 and h p2 pl + p2 are base morphisms
corresponding to the inclusion and translated inclusion functions. (See [3, 1.6] for a
list of some elementary properties of these operations.)

A morphism g: 1 p in an algebraic theory J is ideal if for any h: p - q, g h: 1 + q
is not distinguished; J itself is ideal if every nondistinguished morphism 1 - p in J is
ideal.

An iterative theory is an ideal theory J such that for any ideal morphism g: 1
p + 1, the iteration equation for g (in the variable s: 1 - p)

(1.1) so= g (/o, so)

has a unique solution. In [2] it was shown th/tt in an iterative theory, when n > 1 and the
morphism g: n + p + n has the property that g is ideal for each e In] (we say "g is
ideal") then the iteration equation (1.1) for g (now in the variable so: n-+p) also
has a unique solution, denoted g*. Thus

g g (/, g*).

The powers gk Of a morphism g’n- p + n in an algebraic theory J are defined
inductively:

g= Ov O) I." n p+ n,
k+l kg =g O(IvO) O.,g).

Two useful facts about gk are"

(Iv (0., g)k (iv O) 0, gk), all k _-> O;

if s" n p satisfies

then s: gt, (iv,), all k _-> 0.

Let g" n p + n be a morphism in an algebraic theory. The morphism g is power
ideal if for some k _-> 1, gk is ideal; g is powersuccessful if g is base and for some k _-> 1, gk

z,o.
may be written as n p.__p + n, for some base morphism a’n +p. A number

In is a singular position of g if for each k => 1 there is some number Uk/ in In such
that g Ov Uk/1. The set of all singular positions of g is denoted Kg. If Kg is empty,

VECTOR ITERATION 527

g is a nonsingular morphism. In [3, 2.17] it was shown that in an iterative theory, the
iteration equation for a nonsingular morphism g has a unique solution.

A morphism g: n + p + n in an algebraic theory J is a "mkl-morphism" [3, 2.7] if
m + k + n and there are base morphisms a m + p + m, b: k k and a power ideal
morphism h" p + n such that

g (a (b (Ol, h), and a" a* @ O,,, where a*: m p

and in fact a* is the unique solution of the iteration equation for a. The properties of
nonsingular, ideal, power ideal and power successful morphisms are discussed in detail
in [3].

In 3-5, F denotes a ranked alphabet; i.e. F is the union U n=o Fn of the pairwise
disjoint sets F,. The iterative theory of all F-trees, mentioned in the introduction, was
studied in [6]. (Algebraic theories of trees were studied also in 1].) The subtheory Ftr of
FTr consists of those F-trees having (up to isomorphism) a finite number of descendancy
trees. In [6] it was shown that Ftr is the iterative theory freely generated by F: i.e. for any
iterative theory J and any function F" F J taking 3’ F, to an ideal morphism
3"F" 1 + n in J there is a unique "theory morphism" F" Ftr J such that the diagram

F Ftr

J

commutes, where if 3" F, 3" is the tree having a root labeled 3" and n leaves; the ith

leaf of 3" is labeled i, as indicated by this figure.

If J and J’ are algebraic theories, a theory morphism F: J J’ is a family of
functions taking each morphism f: n p in J to a morphism fF: n + p in J’ such that
(f g)F fF gF and iF for all composible f, g in J and distinguished morphisms
i’ln.

2. The uniqueness and explicit description of extended iteration. The first task of
this section is to define an extension of the iteration operation in an iterative theory J in
such a way that the "identities" or "equations" which hold for the restricted operation
(defined only on those morphisms whose iteration equation has a unique solution) will
continue to hold. The definition of this operation is inductive. In Def. 2.7 an explicit
description of this operation is given.

Two equations valid in all iterative theories are given by (2.1) and (2.2).

(2.1) [O,, g]* O, @ g*

where g: n - p + n is ideal. This identity may be verified by showing that the righthand
side is a solution of the iteration equation for O, @ g.

The following equation, established in [2], will be referred to as the "pairing
identity".

(2.2) (fl, f)*= (g*, f*2 (Ip, g*))

where fl" n -+ p + n + 1 and f2" 1 + p + n + 1 are ideal, and where g is defined to be the

528 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

composition

&(2.3) g" np+n+l p+n.

We will repeat the argument of [2] below (in 2.5) which shows that the pairing identity
holds in all iterative theories.

A special case of the equation (2.1) occurs when n 1; i.e. g" 1 -+ p + 1. In this case,
if g is base and g =/’: 1 p + 1, where/" < p + 1, then g* is meaningful since the unique
solution of the iteration equation for g is/’: 1 -+p (note the change of target). Of course if
g is ideal, g* is meaningful. But if g O19 @ I1" 1-+ p + 1, every morphism 1-+ p is a
solution of the iteration equation for g. The requirement that (2.1) remain valid for the
extended operation (also denoted *) means that extended should satisfy

(2.1’)

These considerations yield the uniqueness part of the following theorem.
THEOREM 2.4. Let _L 1 -+ 0 be a morphism in the iterative theory J. There is one and

only one operation g g*, defined for all g" n -+ p + n (all n, p > O, yielding a morphism
g n -+ p) which satisfies (2.1’), (2.2) as well as

(2.4.1) I* _L,

(2.4.2) g*= g o(/, g*),

for all scalar g: 1 + p + 1, all p >- O.
Proof. For scalar g which is ideal or of the form j @ O1, where j: 1 -+ p is base, we

define g* by the requirement that (2.4.2) be satisfied. (Thus, on scalar ideal g the
extended and unextended iteration operations agree.) For scalar g of the form O19 @ I1,
we define g* by (2.1’) and (2.4.1).

Vector iteration in (J, I +/-) is defined inductively. Assume that for all p and all
h: k -+ p + k, k -<_ n, h* is defined. If (as in (2.2)) f (fl, f2): n + 1 -+ p + n + 1, we define f*
by (2.2).

It is then obvious that (2.2) holds for all n, p>-O. Note that when n 0, (2.2)
becomes:

(Op+l, &)1" (019 fo (/19, 019))

which is trivially true.
From the above theorem, we obtain
COROLLARY 2.5. In (J, I +/-), extended vector iteration satisfies (and is deter-

mined by) the identities (2.1’), (2.2), (2.4.1) and (2.4.2).
We now repeat the argument of [2] to show that the following holds.
THZORZM. In (J, I* _L the condition (2.4.2) is valid for all vectors g.
Proof. The proof is by induction. Assume that (2.4.2) holds for all h: k p + k, all

k<=n. Letf=(fl, f2): n+l-+p+n+l, where fl: n-+p+n+l,f2: 1-+p+n + 1. Define
g: n --> p + n by (2.3). We then substitute

sc (g*, f*o (/, g*))

VECTOR ITERATION 529

in the right-hand side of the iteration equation for f yielding:

f (Ip, g*, f*2 (It,, g*))= (fl, fs) (It,+’,, f*2) (It,, g*)

(fl (It,+’,, f*2) (It,, g*), fo (It, g*))
by (1.6.4)[3],

by [3, (1.6.4)]

(g*, f*2 (It,, g*))
and f f2 (It,+,,, f*),

by (2.3) and g*= g (I,,, g*).
We record here without proof the following miscellaneous fact.
PROPOSITION 2.6. With f (fl, f2), g as in (2.2) and (2.3): f is nonsingular iffboth g

and f2 are nonsingular.
We turn now to the second task of this section and one of the main points of the

paper--the explicit description of the extended iteration operation. Recall from the
introduction the definition of the set Kg of the singular positions of the morphism
g: n p+n.

DEFINITION 2.7. Let g’n p + n be a morphism in (J, I _t_). The morphism
g+/-: n p + n is defined b3 the following requirements:

(2.7.1) gz +/- Ot,+’,, if Kg;

(2.7.2) g+/- g, if i Kg.

LEMMA. If is a power ideal (respectively, power successful) position of g, then is a
power ideal (respectively, power successful) position of g+/-.

Proof. Suppose that is a power ideal position of g, so that for some k, gk is
ideal. Let r be the least integer such that gr+l is ideal. If r 0, then g+/- g is
ideal. If r > 0, then gr p + i’, for some i’ 6 In], and i’ g g+l is ideal. Then for
all k <- r, (g+/-)k gk. In particular, (g+/-) p + i’ so that (g+/-)+l i’ g+/- i’ g
is ideal. Thus is a power ideal position of g+/-.

The proof in the case that is a power successful position of g is similar.
We may now give an explicit description of g* in (J, I _1_).
THEOREM. In (J, I’ +/-), for any g" n - p + n, g+/- is nonsingular and

(2.7.3) g* (g+/-)*.

Proof. By (2.7.1) and the Lemma, g+/- is nonsingular. Thus, by [3, 2.1.7] the
iteration equation for g+/- has a unique solution, and we need verify only that g* is one
such solution.

By the Theorem in 2.5,

(2.7.5) g*= go (It,, g*).
Thus from (2.7.2) if i Kg,

(2.7.6) g*= g+/- (It,, g*),
while if Kg, by (2.7.1) we have

(2.7.7) g+/-o (It,, g*)= +/-o Ot,.
We now need the following fact, proved in the Appendix.

LEMMA. If K, g*= +/- Ot,.
Applying the Lemma, we have

g* g+/- (It,, g*), for all In].

Thus g*= g+/- (It,, g*), and, since g+/- is nonsingular, g*= (g+/-)*, by [3, 2.19].

530 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

COrOLLArt 2.8. /’ is a "mkl morphism", (a (b(Ol, h), (defined in 1)
then

(2.8.1) (a* +/- k, h (Ip, a*(+/- k))
k

where +/- =(+/-,..., +/-)" k-+0.
Proof. The proof follows easily from the following fact, used in [3, 2.12]. If

g" n -+ p + n is writable in the form

(2.8.2) (a (c (O, h)

where m+k+l=n, a" mp+m, c" k-+k and h" l-+p+n and $ (:1, :2, :3) is any
solution of the iteration equation for g, where :1" m -+ p, :2: k -+ p, :3" -+ p, then

(2.8.3) :1 a (Ip, 1)

(2.8.4) :2 c

(2.8.5) :3 h (/, q, :2, s3)= h [(/, :1, 2) (I/] (g, 3).

Now in the case g is a mkl-morphism, g. is writable in the form (2.8.2) where
Ok

c" k ba. 1
+/-

0-----+ k, and a and h are as in g. Then, by (2.8.3) and the hypothesis on a,
1 a 5"., by (2.8.4), 2 +/- O. Lastly, (2.8.5) forces :3 to be the unique solution to the
iteration equation of h (/, a*@ +/-)I, which is h* (I, a*@ +/-). The corollary now
follows from Theorem 2.7.

3. Iteration theories. By a "preiteration theory" we mean an algebraic theory P
(not necessarily an ideal theory) equipped with an operation ("iteration") which for
each n, p _-> 0 takes a morphism g: n -+ p + n in P to a morphism g*" n + p in P (subject to
no conditions at all). Of course, strictly speaking is a family of operations indexed by
pairs n, p of nonnegative integers. In this section we will provide five equivalent
conditions on a preiteration theory P which ensure that P will satisfy all identities of
iterative theories. In this section the "pairing identity" (2.2) plays a major role.

PROPOSITION 3.1. Let P and O be preiteration theories which satisfy the pairing
identity (i.e. for allf, (2.2) holds). If G: P -+ O is a theory morphism which preserves scalar
iteration (i.e. f*G (fG)*, all f: 1 + p + 1 in P) then G preserves vector iteration.

The easy proof is by induction.
Remark 3.2. If J is an iterative theory and +/-’ 1 + 0 is in J, then the preiteration

theory (J, I +/-) satisfies the pairing identity for all f: n + 1 -+ p + n + 1, (all n, p -> 0) in
J (see the proof of Theorem 2.4).

Before stating the main theorem of this section we introduce some notation. F will
always denote a ranked set, and F is the ranked set obtained from F by adjoining a
"new" element F1 to Fo. Thus

(F)0 F0 tO {[-1}; (F), F,, n > 0.

Recall that Ftr is the iterative theory (of trees) freely generated by F (see [6]).
THEOREM 3.3. The followingfive properties ofa preiteration theory Pare equivalent.

(3.3.1) Psatisfies the pairing identity and]’or any F, and anyfunction F" F-+P there is
an extension of F to a theory morphism

F" Ftr+ P

function from F to P will be assumed to be "rank preserving"; i.e. y F. yF: n in P.

VECTOR ITERATION 531

which preserves scalar iteration applied to ideal morphisms (i.e. if g" 1 p + 1 is ideal,
g*F’ (gF’)*).

(3.3.2) For any F and any function F: F-> P there is an extension of F to a theory
morphism

F’: (Ftr, I F1) --> p

which preserves extended vector iteration (i.e. for all g" n --> p + n, g*F’ (gF’)*).
(3.3.3) For any F and any function F: F--> P there is an extension of F to a theory

morphism

F’" Ftr-> P

which preserves vector iteration applied to ideal morphisms.
(3.3.4) There is an iterative theory Jand a theory morphism H" J --> P such that every

morphism in P is the image of an ideal morphism in J and such that g*H (gIt)* for all
ideal morphisms g" n --> p + n.

(3.3.4’) The same as ,(3.3.4) except that each morphism in P is the image of some
(not necessarily ideal) morphism in J.

Proof. (3.3.1). = (3.3.2). Let P satisfy (3.3.1). We first show that P will satisfy
some identities in addition to the pairing identity. Let F be a ranked set so large that
there is a surjective function F: F--> P. For any morphisms h" 1 --> q + 1, B" q --> s in P, let
h and/ be ideal morphisms in Ftr such that h F’= h,/3 F’ =/3, where F" Ftr--> P is the
extension of F guaranteed by (3.3.1). Since it is easy to show that

in Ftr, and since F’ is a theory morphism preserving scalar iteration of ideal morphisms,

(3.3.5) [h (/3 I1)]*= h*o/3
in P.

Note that in the case q 0 and h I1, (3.3.5) specializes to

(3.3.6) [0 0)11]*= I Os Os 9I
In the same way one may verify that for/" [p] the identity

(3.3.7) [j01]+=]

is valid in P, where j" 1 p is base.
We may now prove (3.3.2). Let F and F: F p be fixed. We must show there is an

extension of F to a theory morphism

F’: (Ftr, I*x) - P
which preserves extended vector iteration.

First we extend F to F by defining i-qF I in P. Then by assumption, F: F- P
extends to a theory morphism F’: Fotr- P which preserves scalar iteration applied to
ideal morphisms. We now show that F’ also preserves scalar iteration on base
morphisms. If]’: 1 p+ 1 is base, either/=/’0)O1, some/’: 1 -p or f Op0)I1. In the
first case ft=/. in Futr and thus f*F’= jF’=/" (fF’)*, by (3.3.7) since F’ is a theory
morphism. Similarly, if f Op 0)11, f*= Oo [-] in (Ftr, 1’1 1), so f*F’ Oo [-IF’
O 03 1’1 (/F)*, by (3.3.6). Thus F’ preserves scalar iteration. Thus by Proposition 3.1
F’ preserves extended vector iteration, completing the proof.

532 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

Proof (3.3.2) (3.3.3). The proof is obvious.

Proof (3.3.3) =) (3.3.1). The fact that the pairing identity is valid in P is
proved in the same way it was shown that (3.3.1) implies that the identity (3.3.5) holds in
P. The rest of the statement follows trivially.

Proof (3.3.3) :ff (3.3.4). The proof is obvious.
Proof (3.3.4) :ff (3.3.3). Let I-I: J- P be as in the statement of (3.3.4) and let

F: FP be an arbitrary function. There is a function G" FJ such that for each
3’ F, yG: 1- n is an ideal morphism in J and yGI-I= yF. By [6, 4.1.2] G has an
extension G’: Ftr- J to an ideal theory morphism, which necessarily preserves vector
iteration applied to ideal morphisms. We may define F’ to be the composition

13’ I-I
F’: FtrJ -P."

Since both G’ and It preserve vector iteration applied to ideal morphisms, so does F’.
Proof (3.3.4) => (3.3.4’). The proof is obvious.

Proof (3.3.4’) =), (3.3.4). Assume that H:JP is a surjective theory
morphism which preserves vector iteration applied to ideal morphisms. Without loss of
generality we may assume that J is Ftr, for some ranked set F. Let Fa be the ranked set
obtained from F by adding a new element A to F1, so that (Fa)l FI U{A}; (Fa)n
Fn, n 1. Let 2-" 1 0 be a morphism such that 2-H I in P. We now apply the

A-LEMMA [3, 3.6]. There is a unique theory morphism : Fatr Ftr such that (a)
A=I1; (b) A*= 2-; (c) y= y, all yF; (d) // is base, say f: lp+ 1, then
f A],]:or some r >- O.

It is easy to show, using Prop. 3.1 and parts (b) and (d) of the A-Lemma that
g* (g)* for all ideal g’n- p + n in Fatr (where I _1_ in Ftr). Let Ha be the
composition

H
Ha: Fatr Ftr P.

Then Ha is a theory morphism which preserves vector iteration on ideal morphisms.
Lastly, every morphism in P is the Ha-image of an ideal morphism in Fatr. Indeed, if
: 1 p in P is not base, f gH for some ideal g: 1 p in Ftr; hence [gila (by part (c)
of the h-Lemma). However if f: 1 - p is base, then f 11 f (A f)Ha. This completes
the proof of the theorem.

Remark. In (3.3.1), (3.3.2) and (3.3.3) the extension F’ of F is necessarily unique,
by [6, 2.5.1].

DEFINITION 3.4. An iteration theory is a preiteration theory which satisfies any
(and hence all) of the properties of Theorem 3.3.

PROPOSITION 3.5. Let 1:1 0 be a morphism in the iterative theory J. Then the
preiteration theory (J, I* 2.) defined in 2.5 is an iteration theory.

Proof. The Universality Theorem (3.7 in [3]) implies that for any function F: F J
there is an extension of F to a theory morphism

F’. (rtr, If)--, (J, If +/-)

such that ?IF’= 2. and such that F’ preserves (extended) scalar iteration. Both pre-
iteration theories (F[]tr, I 71) and (J, 1’1 2.) satisfy the pairing identity, so that by
3.1, F’ preserves extended vector iteration. This shows that (J, I* 2.) has property
(3.3.2), and is thus an iteration theory.

COROLLARY. The iteration theory (F[]tr, I 71) is freely generated by F in the class
of iteration theories.

VECTOR ITERATION 533

Proof. This is a restatement of property (3.3.2). (Recall the Remark preceding Def.
3.4.)

3.6. As has already been indicated, the intuitive meaning of "iteration theory" is a
preiteration theory P which satisfies (according to (3.3.2)) all identities, e.g.

g*= go (Io, g*)
which are (meaningful and) valid in (Ftr, I). By Theorem 3.3 (3.3.3), a similar
statement may be made with "Ftr" in place of "(Ftr, I])", but the class of
meaningful identities is reduced and "valid" must be properly understood. According
to Theorem 3.3 (3.3.1), it is enough to know P satisfies the pairing identity and all scalar
iteration identities of Ftr to conclude that P is an iteration theory.

We state, for emphasis, an immediate corollary of this discussion, Theorem 3.3 and
Proposition 3.5"

COROLLARY 3.6.1. If +/- 1 -- 0 is any morphism in the iterative theory J, every valid
iterative theory identity is true in (J, I +/-).

3.7. Although the class of iterative theories is not closed under products (since the
product of two ideal theories is not ideal), the class of iteration theories is, i.e.

if P and Q are iteration theories, so is P x Q.
For example, the pairing identity is valid in P x Q, since otherwise it would fail to hold in
either P or Q.

Example 3.8. An important example of an iteration theory which is not even ideal
is the theory IX] where X is a nonempty set. (This theory is denoted IX, Q] in
[5, p. 189], where Q is a singleton set.) A morphism f: n p in IX] is a partial function
f: X x [n]-X x[p]. In [X], if f: n - p + n, the partial function f* defined below is the
least (in the sense of set inclusion of their graphs) solution of the iteration equation for

f (viz. sc f (Io, so))
3.8.1. f*: X x [n]-X x[p] is the partial function defined by: xif= x’i’ if there is a

sequence xoioxlil x,,im, m 0 such that Xo x, io i, and for each j < m,

xjiif X]+l(p 4- i+1); also x,imf x’i’.

The preiteration theory IX] is an iteration theory since the "forgetful functor"
[[X oN, I-I]][X] is a theory morphism with property (3.3.4). The proof of this
statement is in [5]. (The iterative theory [IX N, [3]] of "timed terminal functions" is
defined in [5, p. 200].) Hence any equation valid in [IX N, 1-]]] will hold in IX].

Problem 3.9. Is there any other way of defining f* on IX] so that the resultant
preiteration theory is an iteration theory?

Example 3.10. One of the referees asked whether any ideal iteration theory is
necessarily an iterative theory. We answer the question negatively with the following
example. Let S be the set consisting of the nonnegative integers N and two "new"
points a b. Let g" S S be the function such that ng n + 1, for n N and ag a,
bg b. Let P be the least subtheory of S" containing g" 1 1, a" 1 0 and b" 1 0. (A
morphism n p in S" is a function S Sn; composition is function composition and the
distinguished morphism i" 1 n is the ith projection function S S.) P is easily seen to
be an ideal theory which is not iterative, since the iteration equation for g has the two
solutions a and b. Now define g* a I in P, and extend to all other morphisms using
the equations (2.1), (2.4.1), (2.4.2) and the pairing identity. We will use (3.3.4’) to show
that P is an iteration theory.

Let Fo {d, b}, F1 {}, Fn b, n -> 1. Note that there is only one infinite tree 1 0
in Ftr, namely *. We define H: Ftr P on the finite trees by the requirements that

534 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

dH a, b-H b, gH g and thatH be a theory morphism. Ifwe now define *H a,H
preserves scalar iteration on ideal morphisms and remains a theory morphism. Thus by
3.1, H preserves vector iteration on ideal morphisms. ClearlyH is surjective, so that by
(3.3.4’), P is an iteration theory.

4. Examples involving partial ordering. Let T be an algebraic theory. A compat-
ible partial ordering on T is a family of partial orderings

_
on the sets Tn,p of morphisms

n -> p in T which are "compatible" with the theory operations in that

(4.1)
if fl- f. in Tn,p and gl-- g2 in Tp,,

then fl gl ---f2 g2 in Tn,q;

also

(4.2)
if fi gi in Tl.p, each [n],

then (fl,"’,f)---(gl,’",g,)in T,.t,.

In 2 it was shown how to extend the iteration operation to all morphisms in an
iterative theory J, depending on an arbitrary morphism 2. 1 0 in J, in such a way that
all iterative theory identities are preserved. In particular the value g* of the extended
iteration operation on g is always a solution of the iteration equation for g; i.e.

g*= go (Ip, g*).

In many treatments of the semantics of programming languages solutions of the
iterative equation for g are found as "least" fixed points of the operation

(see [1] for one example). We give without proof two examples where the extended
iteration operation yields the least fixed point of the iteration equation with respect to
some compatible partial ordering.

Example 1. Let J be the iterative theory FTr of all F-trees, and suppose 2. Fo;
i.e. is an "atomic" tree 1 0. For any f: n p, let Br be the set of vertices (leaves in this
case) of f labeled 2.. Define f =_ +/- g if g an be obtained from f by attaching a F-tree
hv: 1 - p to each v in B. We claim the following

4.3. +/- is a compatible partial ordering on FTr and that in (FTr, I 2.), g* is the
r-_+/--least solution of the iteration equation for g.

(The fact that =__+/- is compatible, for this choice of 2., is proved in [1].)
Example 2. Let J FTr again and this time let "2_" denote the infinite tree A*,

where A F1. For f: n - p in J, let B be the set of all vertices v of f such that
(a) the tree of descendants of v in f is isomorphic to 2.; and
(b) no predecessor of v has property (a).

If we define f =__+/- g as in Example 1 (with this new definition of B), _=+/- is also a
compatible partial ordering on FTr and 4.3 holds on this case also.

Example 3. By way of contrast, if J FTr and 2_ is either the finite tree A 3’0,

where A F1 and 3"0 Fo, or the infinite tree 7r*o 3"0, (see Fig. 1) where zr F2 and
3"0 Fo, there is no partial ordering _=+/- on FTr such that 4.3 holds.

VECTOR ITERATION 53 5

A ’0:10

t o

Fig. 1.

The following theorem, which explains these examples, was obtained in collabora-
tion with Professor Ralph Tindell.

THEOREM 4.4. Let +/-" 1 --> 0 be a tree in FTr. There is a compatible partial ordering
=_ on FTr such that in (FTr, 1’1 ,1,) g* is the -.--least solution of the iteration equation for
g iff ,1, is homogeneous; i.e. for each vertex v of ,1,, the tree of descendants of v in ,1, is
isomorphic to ,1,.

We prove the necessity of the condition. Thus suppose =- is a compatible partial
ordering on FTr such that for each g" n --> p + n in (FTr, I ,1,) g* is the -.--least
solution of the iteration equation for g. In the case g I1, it follows that ,1, is the -.--least
morphism 1--> 0 in FTr. Let v0 be any vertex of ,1, and let r" 1--> 0 be the tree of
descendants of v0. Let o-" 1--> 1 be the tree obtained from ,1, by deleting all the
successors of Vo (if any) and relabeling v0 by "1". Then o" has precisely one leaf labeled
"1", and clearly

(4.4.1) ,1, o- -.
Since _1_ is the -.--least morphism 1 --> 0,

(4.4.2) +/-

__
7"

and

(4.4.3) ,1,

_
o- ,1,.

By (4.4.2), since =- is compatible,

(4.4.4) o- ,1, =- o" r +/-.

Thus
0 "1" O" o’r

which shows that ,1, is isomorphic to z (since both are the tree of descendants of Vo in
ro +/- =roz=,+/-).

The proof of the sufficiency of the condition will appear in [4].. I’Tr as a metric space. The free iterative theory Ftr is a subtheory of the
iterative theory FTr of all labeled F-trees (studied in [6]). In this section it is observed
that FTr is a complete metric space and that for any F-tree ,1," 1 --> 0 and any morphism
f: n->p +n in the corresponding iteration theory (FTr, I* +/-), the value of the
extended iteration operation f* is a metric limit of the trees fk (Ip @ +/-n).

In [6] the profile of an unlabeled tree was defined. The definition is extended to all
labeled F-trees in the expected way.

536 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

DEFINITION 5.1. Let g: n p be a tree in FTr. For any natural number d _-> 0, the
profile of g at length (or "depth") d, in symbols Pd(g), is the sequence of elements in
FU[p].

l(w1),l(w2)," ,l(Wk)

where Wl, wz," , wk, k >-0, is the sequence (from left to right) of the vertices of g of
distance d from a root and where l(wi)FU[p] is the label of wi, [k].

Two trees have the same profile at every depth iff they are isomorphic. Hereafter
we identify isomorphic trees, so that

g=g’ if[Pa(g)=Pd(g’)foralld-->O.

More generally, g and g’ are identical up to vertices of length _-<l if[Pd(g)= Pd(g’)
for d <_- I.

Using the concept of the profile of a tree, we will make the F-trees into a metric
space.

5.2. Let (r,’n =0, 1,2,...) be a sequence of positive real numbers. Let
g, g’: 1 - p be two scalar F-trees.

DEFINITION (the function d). If g g’, we define

d (g, g’)= r,

where n0 is the least integer k such that Pk(g) Pk(g’); if g g’, we let d(g, g’) 0. For
vector trees g, g’: n p, n > 1, we define

d(g, g’) max {d(io g, g’):i 6 [n]}.

We note immediately that

(5.2.1) d(g, g’)=O : g= g’ (since rk > 0, all k)

(5.2.2) d(g, g’)= d(g’, g).

PROPOSITION 5.2.3. For each n, p >- 0 the function d is a metric on the set of F-trees
n - p in FTr.

Proof. It follows from well-known facts that we need prove the assertion only for
the case n 1. (See e.g. Munkres, Theorem 1.3, p. 266, Topology, Prentice-Hall,
Englewood Cliffs, NJ 1975.) In view of (5.2.1) and (5.2.2), we need verify only the
triangle inequality (5.2.4) to show d is a metric. If any two of the three trees g, g’ and
g"" 1 - p are equal, it is clear that

(5.2.4) d (g, g") <- d (g, g’) + d (g’, g").

Now suppose that all three trees are pairwise distinct. Let d(g, g’)= r, and d(g’, g")=
r,,. In the case m <- m’ we have by Def 5.1, d (g, g") r,. From this fact (5.2.4) follows.

PROPOSITION 5.2.5. I the sequence (r, n >= O) converges monotonically down to
zero, the metric d is complete; i.e. every Cauchy sequence converges.

Proof. Let (g: k => 0) be a Cauchy sequence of trees 1 p in FTr. Thus for every
real number e >0 there is a natural number n(e) such that d(g, g)< e whenever
k, k’> n (e). If re(e) is the least integer such that r < e for all k > m (e), then we have

Pd (gk Pd (gk’) all d <- m (e)

for all k, k’> n(e). Thus we may define a tree g: 1p by requiring that for all i_-> 1:

Pd(g) Pd(g,,{a), d <= m (el)

VECTOR ITERATION 537

where ei 1/ i. Then clearly

lim gk g.

Thus any Cauchy sequence converges.
From now on we will assume the sequence (r,: n >= O) converges monotonically to

zero. It is easily shown that any two such sequences yield equivalent metrics, in the sense
that the two induced topologies are the same. In the paper [7] the F-trees 1 0 were
observed to be a complete metric space with the metric of 5.2 corresponding to the
sequence rn 1/n + 1, n >-_ O.

5.3. The metric behaves nicely with respect to the theory operations.
LEMMA 5.3.1. Let gi: n p, hi: p - q be F-trees, 1, 2. Then

(5.3.2)

and

d(gl hl, g2 h)<-_ d(gx, g2),

(5.3.3)

(5.3.4)

d(g h, gx h2) <- d(h, h2).

d(g,h)<=d(g,h), anys>-O,g,h "n-->p+n.

Proof. We prove only (5.3.2) since the proofs of (5.3.3) and (5.3.4) are similar. If

gl g2 there is nothing to prove. Otherwise, let d(gl, g2) rk. Since the trees gl h and

g2 h are obtained by "attaching" h to the termini of g and g2, Pa(gl hi)=
Pa(g2 h) all d _<-k. Thus d(g h, g2 hi)-<-d(gl, g2).

Note that it is possible to have gl g2 but gl hi g2 hi; thus in (5.3.2) we cannot

in general assert equality. Indeed if g" 1- 1 is any finite ideal F-tree, we can let

gl= g, g2= g g and hi= g*.
COROLLARY 5.3.5. The theory operations of composition and source-pairing are

continuous.

Proof. Suppose (gk) is a sequence of F-trees n-p with limit g, and (hk) is a

sequence of F-trees p- q with limit h. We show that limk_, gk hk =g h. Indeed,

from the triangle inequality,

d(gk hk, g h)<_ d (gg h:, g h + d (gk. h, g h).

But by Lemma 5.3.1, the righthand side is less than d(hk, h)+ d(ga, g), which goes to

zero as k .
The proof that source pairing is continuous is simpler and is omitted.
It will be shown later that iteration and extended iteration are continuous as well.

5.4. The main result of this section is an explicit description of extended iteration
in the iteration theory (FTr, 1’1 2_), for any F-tree 2-" 1 0. We will show that g* is a

metric limit of the trees gk (I O) 2-), for any F-tree g" n p + n. (2-, was defined
in Cor. 2.8.)

Call a morphism g’n p + n in any iterative theory "quasi-ideal" if for each
i[n], iog is either ideal or/’030, for some base][p]. In other words, every
component position of a quasi-ideal morphism is successful or ideal.

LEMMA. Suppose f: n p + n is a quasi-ideal morphism in FTr. Then for any
a" n p in FTr,

lim fk (I, a) f*.

538 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

Proof. It is easily seen that for any k >= 0 and d =< k,

pe(fk+X) pe(f+X (It,, a)).

But since f* f+ (I, f*), we have for d <- k

Re(f) Pd(fk+x (Iv, a)),

from which the result follows.
PROPOSITION. If h’n-->p + n is a nonsingular morphism in FTr, then for any

a" n -> p, the sequence

(5.4.1) h (Ip, a), h2o (It,, a),

is Cauchy and converges to h *.
Proof. Let h g+/- (defined in 2.7), so that h*= g*, by Theorem 2.7. By the

proposition of 5.4 and the fact that (I,, _1_, Ot,) It, _1_,, we have

P(h (It,, a)) Pk (h) Pk (h ’) P (ht (It,, a)).

Thus the sequence (5.4.1) is Cauchy and therefore converges. Let f h". Then f*= h*,
and limk-,oo fk (Ip, a) f*, by the Lemma. But since f (It,, a), f2 (It,, a), is a
subsequence of (5.4.1), it follows that the limit of (5.4.1) is h*= f*.

We may now prove the following:
THEOREM 5.5. Let g" n p + n be an arbitrary F-tree in (FTr, I _1_). Then

lim gk (It, q) _1_,) g*.

Proof. Let h- g+/- (defined in 2.7), so that h*= g*, by Theorem 2.7. By the
proposition of 5.4 and the fact that (It,, +/-, Ot,) It, O) _1. we have

lim h
g It, O) +/-,) h g*.

k-*oo

In order to prove the theorem, we prove that

(5.5.1) h It, +/- g k It, q) +/- all k->l.

We prove (5.5.1) by induction on k.
When k 1, we have to show

(5.5.2) g+/-o (It, +/-,) go (It, .1_,).

If g Kg, g+/- g, so og+/-o(It,)_L,)=iogo(It,O)+/-). If e Kg, og+/-= +/-

so that g+/- (It, 0) +/-,) +/-, Ot,. Also g Ot, q) i’, some i’ e In], since e Kg, and
thus g (It, O) +/-,) +/-, Op. This completes the proof of (5.5.2).

Now assume (5.5.1) holds for k. Then

h+o (It,0)&,)= h (It,O,, hk) (It,O)&,)

=h

h (Io, gko (It, 0)-1-,,)),

by the induction hypothesis. We now show

(5.5.3) g+/- (It,, g go (It, +/-,)) go (Ip, ggo (It, O) +/-,)).

Let L and R be the morphisms on the left and right sides of the equation (5.5.3). We
show L R for all e [n]. We clearly need only consider the case Kg. In this

VECTOR ITERATION 539

case g+/- 2_ On+p, so that L 2_ Op. But since Kg, gk+i Op) for
some i’ e In]. Hence R gk/l (Ip 03 2_ n) 2_ Op completing the proof.

5.6. The continuity of extended iteration will be shown to follow from Theorem
5.5 and the Lemma 5.3.1.

PROPOSITION. Let gk" n p + n, k >- O, be a sequence of F-trees converging to the
tree g" n p + n in (FTr, I 2_). Then the sequence

go, gl, ",

converges to g.
Proof. By the triangle inequality, for any k, s > 0

d(g*, g*) <= d(g*, (gk) (Ip 2_)) + d((g) (Ip 2_), g (Ip +/-))
(5.6.1)

+d(g (Ip 2-), g*).

By (5.3.2) and (5.3.4), the middle term is not greater than d(gk, g), for any s. Thus, given
any real e > 0, first choose k such that d(gk, g)< e/3 and for that k, choose s so large
that both the first and third summand in (5.6.1) are less than e/3, using Theorem 5.5.
This completes the proof.

fact"

Appendix. In this section we will prove the fact stated in the proof of Theorem 2.7.
LEMMA. Iff: n p + n is a morphism in (J, 1’1 2-) and Kr, then f* 2- Op.
We will use the functionf (defined in [3, 2.3.10]) and we prove first the following

PROPOSITION A. In (J, I 2_) if Kr, and if ulu2u3 then f* Ur f*, for
any r>--_l.

Proof. When r 1, Ur and there is nothing to prove. Assume f* Ur f*. From
[3, (2.3.11)] and the fact]’*=fro (lp, f*), we obtain

f* fro (Ip, f*) [0 O) Ur+l] (Ip, re)
Ur+l of*, by [3, (1.6.2) and (1.6.3)],

completing the induction.
We now prove the Lemma by induction on n-> 1. If n 1 and 1 e Kr, then

f Op @I1, so that f* 2_ Op by (2.1’) and (2.4.1). Now assume f: n + 1 p + n + 1.
Write f (fl, f2) where fl has source n and f2 has source 1, and define g by (2.3). Then
(2.2) holds. Assume now e Kr and assume inductively: Kgi g*= 2_ Op. We
distinguish three cases.

Case 1. if UlU2 ur(n + 1)(n + 1). ., r >= O, where ui e In for each e Jr].
Case 2. if ulu: Ur(rt + 1)u,+2 r >-_ O, where Ui [r] and Ur+2 [rt].
Case 3. if ulu2 ui , where ui In for all i.
On Case 1. (n+l)of=p+n+l=Op+,@I=f:. Hence by (2.1’) and (2.4.1):

f* Op+, @ 2- 2- Op+, so that by (2.2) we infer (n + 1) f* 2_ Op. Since Ur+
(n + 1), it follows (cf. (2.3.11) of [3]) that

(A.1)

From Proposition A we iner

(A.2)

iof’+=(n+l)of.

of*= (n +l) of*= 2_

Thus in this case (without the aid of the inductive assumption) we’ve shown
f*= 2_ O.

540 STEPHEN L. BLOOM, CALVIN C. ELGOT AND JESSE B. WRIGHT

In preparation for the remaining cases we make the following
Observation where i, i’ In],

(A.3) iof=p+i’iog=p+i’;inthenotationof[3,2.3.3],if[n]igV=iff

(A.4) [iof=p+n+l & (n+l)of=p+i’]iog=p+i’;
[if n + 1 & (n + 1)f 6 [n]] => ig (n + 1)f.

Assertion (A.3) follows from (2.3); (A .4) follows from (2.3) together with the obser-
vation that since f2 p + i’ and i’ 6 In], we have f*2 p / i’. It follows that in Case 2 we
have

ig =/’/1/,/2 blrUr+2

while in Case 3, we have ig= if. Thus in Cases 2 and 3

(A.5) iKr iKg.

With the aid of the inductive assumption we conclude g*= 2_o Op, and thus from
(2.2), f*= 2_ Op. This shows that for Cases 2 and 3:

(A.6) if Kr[n], then of*= 2_ Op.

It remains to show for Case 2 where n + 1 that f*= 2_ O. But

(n + 1) f*= (n + 1) f (I, f*)= (0 (Ur+2) (It,, f*)= Ur+2 fT.
By (A.6), //r+2 ofS"__ 2_ Op.

The proof is complete since the three cases considered exhaust all possibilities.
Thus if if= ulu2"" and there is a such that U,+l n + 1, we choose r to be the
smallest such t. Case 1 obtains if (n + 1)ff n + 1 while Case 2 occurs if (n + 1)f # n + 1.
If there is no such t, then Case 3 obtains..

REFERENCES

[1] J. B. WRIGHT, J. W. THATCHER, E. G. WAGNER AND J. A. GOGUEN, Rational algebraic theories and
fixed point solutions, Proc. IEEE Symp. Foundations of Comp. Sci. (Houston, Texas), Oct. 1976.

[2] S. L. BLOOM, S. GINALI AND J. RUTLEDGE, Scalar and vector iteration, J. Comput. System Sci., 14
(1977), pp. 251-256.

[3] S. L. BLOOM, C. C. ELGOT AND J. I. WRIGHT, Solutions of the iteration equation and extensions of the
scalar iteration operations, this Journal, 9 (1980), pp. 25-45.

[4] S.L. BLOOM AND R. TINDELL, Compatible orderings on the metric theory of trees, this Journal, to appear.
[5] C. C. ELGOT, Monadic computation and iterative algebraic theories, Logic Colloq. ’73, 80, Studies in

Logic, North Holland, 1975.
[6] C. C. ELGOT, S. L. BLOOM AND R. TINDELL, The algebraic structure of rooted trees, J. Comput. System

Sci., 16 (1978), no. 3, pp. 362-399; extended abstract in Proc. Johns Hopkins 1977 Conf. Inf. Sci.
and Systems.

[7] J. MYCIELSKI AND W. TAYLOR, A compactification of the algebra of terms, Algebra Universalis, 6
(1976), pp. 159-163.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0903-0007 $01.00/0

BOUNDS ON THE SCHEDULING OF TYPED TASK SYSTEMS*

JEFFREY M. JAFFEt

Abstract. We study the scheduling of different types of tasks on different types of processors. If there are
k types of tasks and mi identical processors for tasks of type i, the finishing time of any list schedule is at most
k + 1- (1/max (m1,’’’, ink)) times worse than the optimal schedule. This bound is best possible. If the
processors execute at different speeds then the performance of any list schedule (relative to the optimal
schedule) is bounded by k plus the maximum ratio between the speeds of any two processors of the same type.

Key words, scheduling, list scheduling, typed task systems, data flow computation, worst case per-
formance bounds

1. Introduction. The problem of job scheduling on multiprocessor systems has
been extensively studied (for a current survey see [1], [8]). The conventional approach
has been to consider a system where each processor may handle any job or task. These
systems are referred to as "ordinary" task systems. In some systems certain tasks may
be processed only by designated processors for those tasks. Examples of these include
data flow models of computation [3], [10] where primitive operations are computed by
different processors. Similarly, in machines such as the CDC6600 [17], there are several
specialized functional modules. Also, in a system where I/O tasks and arithmetic tasks
are handled by different processor units, such an assumption may be relevant. In this
paper we analyze some of the properties of schedules for systems with different types of
tasks. Many of the results for ordinary task systems generalize trivially to the typed case.
The NP completeness results of [18] clearly carry over directly, as do approximate
solutions for certain special cases (for example when the tasks are independent [4]).

The complexity of determining the optimal schedule is NP-complete even in very
simple cases. It is shown in [6], that the decision problem of determining whether a
given typed task system can be scheduled with a finishing time smaller than a given
bound is NP-complete even if there are only two processors, one of each of two types.
Also, if the number of types of processors varies, the decision problem is NP-complete
even if the precedence constraint is restricted to being a forest. The techniques used in
[6] are adaptations of those found in [1], [5-1.

The focus of this paper is to extend the results of Graham [7], which provide
bounds for non-preemptive list schedules. List schedules are a class of schedules that
satisfy fundamental "no-waste" requirements. The performance criterion is that we
attempt to minimize the finishing time of the system. In ordinary task systems, any list
schedule is at most 2-(l/m) times worse than optimal where m is the number of
processors. For typed task systems as defined in 2 an analogous bound is obtained.
With a similar definition of "unwasteful schedules", it is shown in 3 that any such
schedule is at most k + 1-(I/max (ml," , ink)) times worse than optimal, where k is
the number of types of tasks and mi is the number of processors of type i. This bound is
best possible for all values of k, ml,. ", rnk as shown in 4.

The results of [12-1, [13] which provide bounds for list schedules for task systems
that are scheduled on processors of different speeds are also extended. In ordinary task
systems with processors of different speeds, any list schedule is at most (approximately)
(f/s) + 1 times worse than optimal where f is the speed of the fastest processor and s the

* Received by the editors August 15, 1978. This report was prepared with the support of a National
Science Foundation graduate fellowship, and National Science Foundation Grant MCS77-19754.

t Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139. Now at IBM T. J. Watson Research Center, Yorktown Heights, New York 10598.

541

542 JEFFREY M. JAFFE

speed of the slowest processor. It is shown (in 6 and 7) that the bound for typed task
systems is (approximately) k + max (fl/Sl, , fk/Sk) where fi is the speed of the fastest
processor of type and si is the speed of the slowest processor of type i. In Section 8,
generalizations of [9], [11] are briefly discussed.

2. Typed task systems. An ordinary task system (3, <, Ix) consists of:
(1) A set 3- of n tasks.
(2) A partial ordering < on 3-.
(3) A time function Ix" 3- R.
The set 3- represents the set of tasks or jobs that need to be executed. The partial

ordering specifies which tasks must be executed before other tasks. The value Ix (T) is
the time requirement of the task T.

A k type task system (3, <, Ix, u) is a task system (3, <, Ix) together with a type

function ,’3-(1,..., k). Intuitively, if ,(T)=i then T must be executed by a

processor of type i.
A schedule for (3, <, Ix, u) is a total function $" 3- R. We refer to $(T) as the

starting time of the task T and S (T) + Ix (T) as the finishing time of the task T. We also
say that T 6 3- is being executed at time for times such that S (T) <- < S(T) + Ix (T).

A valid schedule for (3, <, Ix, ,) on a set of equally fast processors
{Pij" 1 -< =< k and 1 <= j -< mi} is a schedule for (3, <, Ix, ,) with the properties"

(1) For all 1, , k and all N the number of tasks of type being executed at

time does not exceed mg.

(2) For T, T’ 3-, if T < T’, the starting time of T’ is at least as large as the finishing
time of T.

Condition one asserts that processor capabilities may not be exceeded. Condition
two forces the obedience of precedence constraints.

The finishing time of a valid schedule’ is the maximum finishing time of the set of
tasks. An optimal schedule is any valid schedule that minimizes the finishing time. For
two valid schedules $ and $’, with finishing times w and w’ the performance ratio of S to
$’ is w/w’.

There are schedules that may be arbitrarily worse than the optimal schedule. For
example, there may be a time before the finishing time at which no task is being
executed, but such trivially improvable schedules are not interesting. We restrict
attention to list schedules which have attracted considerable attention for ordinary task
systems [7], [12], [13].

List schedules are designed to avoid the apparently wasteful behavior of letting a
processor be idle while there are executable tasks. A list schedule uses a (priority) list L
which is a permutation of the set 3-, i.e., L (T1," , Tn)(Ti 3- and for j, T T/).
The list schedule for (3, <, Ix, u) with the list L is constructed as follows. At each point
in time that at least one processor completes a task, the processors that are not still
executing are assigned unexecuted executable tasks of their respective types if such
tasks are available. The tasks are chosen by giving higher priority to those tasks with the
lower indices in L. Any schedule that is unwasteful in the sense that processors are never
permitted to be idle unless no free tasks of the same type are available can be
formulated as a list schedule.

The motivation for this heuristic comes from several sources. The primary motiva-
tion emanates from the optimality of some list schedule in the unit execution time case.
When each task requires an equal amount of time at least one list schedule is an optimal
schedule. Other sources of interest include the fact that it is simple to implement, and
due to its simplicity, it is a good starting place for building other heuristics.

SCHEDULING OF TYPED TASK SYSTEMS 543

To analyze list schedules the following definitions are useful. A chain C is a
sequence of tasks C (T1,. , TI) with Ti 3 such that for all/’, 1 -</’ < l, T. < T./I. C
starts with task T1. The length of C is i=1/x (T). The height of a task T 3 equals the
length of the longest chain starting at T. The height of (3, <,/x, ,) equals the length of
the longest chain starting at any task T 3.

While the notion of the height of a task is a static notion which is a property of
(3, <,/x, ,) we also associate a dynamic notion of the height of a task with any schedule
for (3, <,/x, v). Specifically, let S be a schedule for (3, <,/x, v), and let be less than
the finishing time of S. Then the height of the task Tat time is equal to the length of the
longest chain starting at T, where the length of the chain considers only the unexecuted
time requirements. Similarly, the height of (3, <, Ix, v) at time is the length of the
longest chain starting at any task not yet completed T 3. Note that if a portion of a
task has been finished at time t, then it contributes to the height only that proportion of
the time requirement which has not yet been completed.

It is convenient to analyze schedules based on whether or not the height is
decreasing during a given interval of time. One may plot the height of (3, <, z, v) as a
function of time for a given schedule S and make the following observation. The height
is a nonincreasing function which starts at the original height of (3, <,/z, v) for O,
and ends at height 0 at the finishing time of $. If during an interval of time, the height
was a monotonically decreasing function of time then that interval is called a height
reducing interval. If during an interval of time the height is constant, the interval is called
a constant height interval.

Notation. The total time requirement of all the type tasks will be denoted by/xi
and the (original, static) height of (3, <, Ix, v) will be denoted h.

3. Performance bounds for list scheduling. In this section a bound is obtained on
the performance ratio of any list schedule to an optimal schedule. It is shown that in a k
type task system, the ratio is at most k+l-(1/max (ml,"’, mk)).1A naive per-
formance bound is given by ml +"" + ink. This follows from the fact that an optimal
schedule may use at most ml +" +m processors at each point in time, and the fact
that any list schedule uses at least one processor at every point in time. The result of this
section is that all list schedules are far better than the naive bound. The comparison of
list schedules to optimal schedules is applicable even to the situations that no optimal
schedule is a list schedule.

THEOREM 1. Let (3, <, Ix, v) be a k type task system to be scheduled on a set of
equally fast processors. The performance ratio of any list schedule]:or (3, <, Ix, v) to an
optimal schedule for (3, <, Ix,) is at most k + 1- (1/max (ml, ", m)).

The analysis approach that we use is to obtain a number of lower bounds,
LB1, , LB,+l, on the finishing time of an optimal schedule for a given task system.
An upper bound, UB, is obtained on the finishing time of any list schedule. The ratio
(UB/max(LB1,... ,LB,+I)) is an upper bound on the performance ratio)f the
schedule to optimal.

LEMMA 1. Let (3, <, tz, ,) as above. Let Wopt be the finishing time, of an optimal
schedule for (3, <, 1, v). Then Wopt_-->max (h, Ixx/ml, txk/mk).

Proof. Clearly at most mi units of time requirement of type tasks may be executed
during each time unit (for every i). Thus at least [txi/m] units of time must be spent
on the execution of 3- for every i. A conservative lower bound is thus
max (/xl/ml,... ,Ix/m).

Subsequent to the submission of this manuscript this result was published independently by C. L. Liu
and J. W. S. Liu, Acta Informatica, 10 (1978) pp. 95-104, using slightly different techniques.

544 JEFFREY M. JAFFE

Also, by the way height is defined, the height of (-, <) may decrease at a rate of at
most one per unit time. Thus h is a lower bound on the finishing time and Wopt=>
max (h, tzl/ml, tZk/mk). [-]

LEMMA 2. Let (-, <,/x, ,) as above. Let w be the finishing time ofa list schedule for
(-, <, ia,, 9). Then

w <-_ (la.1/ml)/ (./m2) +" + (ia,k/mk) + h (1 -(1/max (ml,..., mk))).

Proof: Given a list schedule S with finishing time w, divide the interval [0, w into
constant height intervals and height reducing intervals. Note that during height
reducing intervals, the height is decreasing by a rate of exactly one per unit time since
the height of the greatest height task is being reduced at that rate. Thus the total
length of height reducing intervals is equal to h. The goal is now to show that the total
length of the constant height intervals is at most (/.1/ml)/’’ "/(Id,k/mk)--
(h/max (ml, ,rag)).

At each point in a constant height interval, all mi processors of type are in use for
some value of i. We, will prove this by contradiction. Let time be a time within a
constant height interval when for all fewer than mi processors are in use. Since there is
an idle processor of each type and the schedule is a list schedule, it must be that all
executable tasks are being executed. In particular, all of the maximum height tasks are
being executed. But then, it follows that the height is being reduced, contradicting the
assumption that is in a constant height interval.

Let hi denote the total time requirement of type tasks executed during height
reducing intervals. Clearly i= hi _-> h since during a height reducing interval of length
l, the height of (-, <) is reduced by l, and at least units of time requirement of tasks are
completed. Now an upper bound on the length of constant height intervals is obtained.
Note that the total length of constant height intervals during which mi tasks of type are
executed is at most [(tzi-hi)/miJ. Thus in S, mi tasks of type for some may be
executed for a total duration of at most [(/xl-hl)/mlJ +’" + [(k- hk)/mkJ units of
time. That is, the total length of all constant height intervals is at most

(1/m 1) +"" + (lk/ ink ((h 1/ rn 1) +" + (h/ ink))
----< (/- 1/m 1) +" + (/xg/ink) (h/max (m 1,’" ", ink)).

A bound on w is thus given by: w<--(lzl/ml)+ "+(#k/mk)+
h(1-(1/max(ml,..., rag))).

We may now put together the upper bound on list schedules and the lower bound
on optimal schedules. The two results combine to show that the worst possible
performance ratio is k + 1- (1/max (m,..., mk)).

Proof of Theorem. Fix a k type task system (-, <,/x,,), and let p=
max (ul/mx,’", la,k/mk, h). Then a lower bound on any optimal schedule is p. A
conservative upper bound on any list schedule is (k / 1 (1/max (m 1, , mk)))p. Thus
the performance ratio of the list schedule to an optimal schedule is bounded by
k+l-(1/max (ml, rag)). [

4. Achievability results for list scheduling strategies. In this section it is shown that
the bound of Theorem 1 is achievable. Specifically, for any k and any values of
m,..., mk there are k type task systems and list schedules for the systems with
the property that the performance of the schedules approaches k+l-
(1/max (rex,..., ink)) times worse than optimal.

The set of task systems used for this proof are sketched below (Fig. 1). Each node in
the graph represents one task. Arrows specify the partial ordering and the labels of the

SCHEDULING OF TYPED TASK SYSTEMS 545

n+k-I

(

(

(

m m2 mk-
FIG. 1.

nodes represent the type of the tasks. Each task has unit execution time. Assume
without loss of generality that mk max (ml,. , ink).

In the task systems, there are mi columns of tasks that consist primarily of type
tasks and are informally referred to as "corresponding to type i" (1 -< -< k 1). Each of
these mi columns contains a chain of n + k 1 tasks (n arbitrary). The/th task in each of
these columns has (T) (for / -< 1) and ,(T) (for -</).

There are m + 1 columns that "correspond’ to type k". In each of these columns
the]th task (for / <= k 1) has u(T) f. For the first m of these m + 1 columns there is a
chain of n -(n/m) additional tasks, with ,(T)= k for each task in the chain. For the
(ink + 1)st column there is a chain of n additional tasks, with u(T) k for each task in the
chain.

The following is an asymptotically optimal strategy. The first k- 1 tasks of each
column are executed using an arbitrary list schedule. For fixed values of k and the mi’s
this may be done in constant time. Now, only n units of time are required to complete
the entire system. It is clear that only n units of time are required to finish the columns
corresponding to each of the first k 1 types of processors. During these same n units of
time the columns corresponding to the kth type of processor may be completed as
follows: One of the m processors of type k is used continuously on the (m + 1)st of
these columns finishing this column in n units of time. The other m- 1 processors are
used on the other m columns in rotation. Thus during the first unit of time, no task is
executed from the first column, during the second unit of time, no task is executed from
the second column, etc. Thus, the total amount of time for this procedure is n + O (1) for
fixed values of k, ml,."", ink.

An inefficient list schedule is now presented. The schedule first handles all type 1
tasks, then all type 2 tasks, etc. For the first n + k- 1 units of time only tasks from
columns that correspond to type 1 are executed. At the next n + k- 1 units of time all
tasks from columns that correspond to type 2 are executed, stripping off type 1 tasks
from the tops of the rest of the columns in the process. In this manner, (k 1)n + O(1)
units of time are required to finish all of the columns that correspond to the first k- 1
types of processors.

546 JEFFREY M. JAFFE

Now the last mk+ 1 columns of the system are executed. Using a list schedule,
only the first mk Of them are processed for the next n (n/rag) units of time, completing
these columns in their entirety. Another n units of time are required just to process the
last of these mk + 1 columns. The total amount of time used by this schedule is thus
n(k+l-(1/mk))+O(1) and the performance ratio between this and the optimal
schedule is (n(k+l--(1/mk))+O(1))/(n/O(1)). As n goes to infinity, the ratio
approaches k / 1 (1/mk).

A few remarks may be made about the nature of the construction. First, all tasks
take unit time in the example. Thus, although Theorem 1 applies to any typed task
system, it is achievable even in the special case where each task requires only unit time.
This is particularly significant in light of the fact that for this special case some list
schedule is guaranteed to be optimal. Another feature of interest is that the system used
is a disjoint union of chains. Each chain may be viewed as one large task, and each task
within the chain may be viewed as a subtask of the larger task. We thus overcome the
objection that the example is a contrived, complicated system which is unlikely to occur
in practice. Finally, the "bad" schedule was an uncontrived type of schedule. The
schedule executes those tasks which most recently became executable.

5. Uniform nonidentical processors. We now analyze the situation that each
processor runs at a different rate. In the models of high speed computation that partially
motivate this research [3], [10], the idea is to use many processors of potentially
different speeds. This generalization is also the natural extension of the work of [12],
[13] which considered processors of different speeds for ordinary task systems.

The processors of each type are assumed to be uniform. That is, the relative speeds
of the processors are the same for every task. The more complicated situation in which
certain processors handle some tasks relatively quickly, but others relatively slowly is
not even very well understood for ordinary task systems. Also, this situation is less likely
to occur in a system where the tasks have already been subdivided into different types.
In this regard typed task systems may be viewed as a special case of nonuniform
ordinary task systems. If a processor is of a different type than a task, then the speed for
the processor on the task is infinity.

When the processors {Pii 1 <= <= k and 1 <= j <= mi} are not equally fast, there is
an associated rate function r: --> . Informally, the rate function specifies the speed of
a processor. If a task T is assigned to a processor P then ix(T)/r(P) time units are
required for the processing of T on P. Thus the actual time that a task T requires on P
equals the time requirement of T (i.e./x (T)) only if r(P)= 1.

Since the speeds of the processors are not the same, a schedule must specify which
task is assigned to which processor. A valid schedule for (-, <,/z, u) on a set of uniform
nonidentical processors with rate function r is a total function S :---> x satisfying
conditions (a), (b) and (c) below. If S(T)= (t, P) then the starting time of T is t, the
finishing time of T is +(tz(T)/r(P)) and T is being executed on P for times x such that
<-x < +(tx(T)/r(P)). The function S satisfies:

(a) If S(T)= (t, Pii) then u(T)= i.
(b) For all T, T’s -, and all s , T and T’ are not both being executed on the

same processor at time t.
(c) For T, T’ s -, if T < T’ the starting time of T’ is no less than the finishing time

of T.
The definitions of finishing time of a schedule, optimal schedule, and performance

ratio generalize in a straightforward manner and are omitted.
A list schedule may be generalized in two ways. One way is to only insist that at no

point in time may a task of a certain type be executable while a processor of the same

SCHEDULING OF TYPED TASK SYSTEMS 547

type is idle. A second potential generalization is to further insist that when tasks are
assigned, the highest priority executable tasks are assigned to the fastest available
processors. The bounds obtained are applicable to either generalization.

The total processing power of processors of type i, denoted ri is defined by:

ri E r(Pii).
/’=1

This represents the total amount of the time requirement of type tasks that may be
processed in unit time. Note that if the processors are equally fast, then

Let fi denote the rate of the fastest processor of type i. That is, fi=
max {r(P0. 1 <=] =< mi}. Similarly, si denotes the rate of the slowest processor of type i.

In order to analyze list schedules on processors of different speeds the concept of
height of a task must be modified to take into account the speeds of the processors. In a
manner analogous to 3, we would like to be able to say that the total amount of time
spent on height reducing intervals is at most the height of the graph. Thus it is
convenient to have the height reduced at least one unit of height per unit time during
height reducing intervals.

The height length of a task T (of type i) is lz(T)/si. Thus even if Pi,,, (the slowest
processor of type i) processes T, it executes one unit of the height length of T per unit
time. The length of a chain C, the height of a task T, and the height of (3, <,/x, v) are
defined as usual, except that summations are taken of height lengths of the tasks instead
of the time requirements of tasks.

As above,/zi denotes the time requirement of all type tasks, and h denotes the
height of (3-, <,/z, v). There is some chain of tasks whose length equals h. Let ci denote
the sum of the time requirements of type tasks along this chain. Then h
(c/sl) +... + (c/s).

6. Performance bounds for list schedules on uniform nonidentical processors.
Following the general outline of 3, we obtain lower bounds on the performance of an
optimal schedule and an upper bound on the performance of any list schedule. The main
result of this section is that the worst case performance of list schedules is approximately
k + max/(fi/si).

THEOREM 2. Let (-, <, , v) be a k type task system to be scheduled on a set of
uniform nonidentical processors. Then the performance ratio of any list schedule for
(’, <, lz, v) to an optimal schedule for (3, <, tx, v) is at most k+
(max/(fi/si))(1-mini (si/ri)).

Proof. To obtain a lower bound on the finishing time of any optimal schedule, note
that at most ri units of the time requirement of type tasks may be completed in one time
unit. Thus a lower bound is given by max (/El/r1, , lzk/rk). Also, consider a chain of
tasks of length h. Let ci be the sum of the time requirements of type tasks along this
chain as above. At any point in time at most one task on this chain is being executed
(possibly by a fast processor). Thus, a lower bound on Wopt is given by (Cl/fl)+’" +
(c/f).

To obtain an upper bound on list schedules, fix a list schedule $, and let p denote
the total duration of height reducing intervals. Note p _-< h since the height is reduced at
least at a rate of one unit of height per unit time (during height reducing intervals).

As in 3, to determine the total duration of constant height intervals, we first count
the amount of time requirement finished during height reducing intervals. Specifically,
let hi denote the total time requirement of type tasks that is completed during height
reducing intervals. Note that (hl/sl)+" + (hk/s)>= h. For consider a height reducing
interval during which one task (of type i) was at the greatest height throughout the

548 JEFFREY M. JAFFE

interval (all height reducing intervals may be partitioned into such intervals). Assume
that the height is reduced by a total of in that interval. Then, ls, units of the time
requirement of that task are completed during that interval. Using this argument for all
intervals, the above inequality follows.

At a constant height interval, ri units of the time requirement of type tasks are
completed, for some i. The reasoning is similar to that of 3, if there are free processors
of every type then the height is being reduced. Using arguments similar to those of 3,
the total time spent on constant height intervals is bounded by Y’.i=l (t*,- hi)/ri.

Let w be the finishing time of an arbitrary list schedule and let Wopt be the finishing
time of an optimal schedule. A bound on the performance ratio of any list schedule to an
optimal schedule is given by:

k
w h + (2,=1 (xi- hi)/ri)

(1)
Wopt max ((bc1/rl),..., (t.Lk/rk), ((Cl/fl)+" "+(Ck/h)))"

Separating out the hi terms from the summation, and using the first k lower bounds
on Wopt yields:

(2)
w h-((hl/rl)+" .+(h/r))
<=k+
Wopt ((Cl/fl) +’’"

Now let d mini Si/ri. Then for every value of i, ri <= (si/d). By increasing the value
of the numerator of the right hand side of (2), one thus obtains"

(3) w <=k +
h -(d((hl/sl)+" .+(h/&))).

Wopt ((Cl/fl) +’’"-+- (ck/fk))

Now use h <= ((hi +" + (h,/sk)) together with h ((el + (c,/&)) to
obtain"

(4) w__<_k + (1--d)((Cl/Sl)+" "+(Ck/Sk)).
Wopt ((Cl/fl) +"""-k-

Let q=max (fl/Sl,’’" ,fk/Sk), be the greatest quotient between fastest and
slowest rates for processors of the same type. Using si >= (fi/q) for every (in the
numerator of the right hand side of (4)) yields"

(5)
w q(1-d)((Cl/fl)+" "+(C/fk))
<=k+
Wopt ((l/fl) +’’" + (Ck/fk))

From equation (5), it follows immediately that w/Wopt =< k + q(1 d), i.e., w Wopt --<
k +(max/(fi/si))(1-mini (Si/ri)).

Note that when the processors of each type are equally fast then q 1 and
d 1/max (m 1, , m) and the bound matches that of Theorem 1. Also, if k 1, then
the bound of l+(fl/sl)(1-(sl/rl))=l+(fl/sl)-(fl/rl) matches the bound of
[12],[13].

7. Achievability results for list scheduling on uniform nonidentical processors. To
show that Theorem 2 is almost achievable we combine the construction of 4 with a
construction used in [12], [13]. The result used from [12], [13] is as follows. Fix a set of
uniform nonidentical processors , of one type. Then there are ordinary task systems
for (with empty precedence relation) that achieve the list schedule upper bound.
Specifically, the performance ratio of list schedules to optimal schedules over this set of
task systems is arbitrarily close to 1 + (f/s)-(fir) where [is the speed of the fastest

SCHEDULING OF TYPED TASK SYSTEMS 549

processor, s the speed of the slowest and r the total processing power of all of the
processors.

Consider the task system of Fig. 2. Diagramming conventions are as in Fig. 1. The
notation -r(Pij) means that the time required for the task equals the rate of the

>n+k-I I =1

(Pk-l,mk_l)
n
n

riPk-I,m"k-I

FIG. 2.

processor P0. A node labeled with B denotes a copy of one of the task systems used to
obtain the lower bound in [12], [13] with the type of each task in this system being type
k. We do not elaborate on the time requirements of tasks in B, but remind the reader
that in B there are no precedence constraints. The interpretation of an arrow between
two nodes labeled with B indicates, a precedence dependence of each task at the
destination of the arrow on each task at the source of the arrow. The class of task
systems described in the figure is parameterized by the variable n and the class of task
systems described in [12], [13]. Let n’ denote the time required to execute B using an
optimal schedule. Assume without loss of generality that max ({(fi/si)-(fi/ri):i
1,..., k}) is achieved by processors of type k.

An asymptotically optimal schedule first executes the first k-1 tasks of each
column using an arbitrary list schedule. Then only n more units of time are required. It
is clear how to finish the columns that correspond to the first k- 1 types of tasks in n
units of time. By using the optimal schedule for each occurrence of B each occurrence of
B requires only n’ units of time. Since there are n! n’ copies of B only n units of time are
required.

A bad list schedule spends (k-1)n units of time completing the tasks that
correspond to the first k-1 types of processors. It then spends arbitrarily close to
(n/n ’)(n ’)(1 + (fk/Sk)--(fk/l’k)) units of time to complete the column that corresponds to
the kth type of processor using the bad list schedule from [12], [13]. The exact number
of steps depends on which task system is used for the nodes labeled with B. The ratio
thus approaches k +(fk/Sl)--(fk/rk) for large n and B’s for which the performance of
list schedules approaches a ratio of 1 / (fk/Sk)--(’k/rk). [3

550 JEFFREY M. JAFFE

The gap between our upper and lower bounds on performance ratios is not very
large. The gap is between k +(max ({fi/si:i 1,..., k}))(1-min ({si/ri:i 1,..., k}))
and k + max ({(fi/si)- (fi/ri): 1,. ., k}). Since both are between k + (max/({fi/si}))
and k + (max/({f/si}))- 1, for all practical purposes the result is tight. Also, if k 1 or if
processors of each type run at the same rate then the bound of Theorem 2 is achievable.

Also note that the notion of list schedule considered in [12], [13] is the version
where whenever tasks become executable, they are assigned to the fastest available
processors. Thus, our results are applicable even to the more restrictive notion of list
schedule.

8. Summary and other results. We have presented a generalization of the ordinary
task systems that are used to model scheduling problems. This generalization is a more
effective model of the scheduling problem found on certain types of machines. We have
presented tight bounds for list schedules on equally fast processors. Almost tight results
have been obtained for typed task systems executed on a set of processors of different
speeds.

There are a number of other results for schedules on equally fast typed processors
which drectly generalize existing results for identical processors. In [2], Coffman and
Graham define a label algorithm which always produces an optimal schedule for
scheduling a partially ordered set of unit execution time jobs on two identical proces-
sors. This algorithm is generalized in [11] for m identical processors, and the general-
ized algorithm is at most 2- (2/m) times worse than optimal. If max (ml," , mk) -> 2,
then the natural generalization of this algorithm to typed task systems is at most
k+l-(2/max(ml,...,mk)) times worse than optimal. The proof of this result
generalizes the proof of [11], paying special care to types with only one processor. This
bound is achievable [14].

The second generalization is related to the level algorithm of Muntz and Coffman
[15], [16] for preemptive scheduling of partially ordered tasks. In [11], Lam and Sethi
analyze this algorithm for m identical processors, and obtain a performance bound
of 2-(2/m). Using similar techniques one may generalize this to typed task systems.
If max(m1,. ", m)->_2, then the level algorithm is at most k+l-
(2/max (rnl,’.., mk)) times worse than the optimal preemptive schedule.

in [9], a nonlist scheduling algorithm is given to schedule partially ordered tasks on
processors of uniformly different speeds. The algorithm is asymptotic to 4m times
worse than optimal, independent of the speeds of the processors. Similar speed
independent bounds are obtained for typed task systems on processors of uniformly
different speeds. In the common case that the processors of a machine are roughly of the
same speed, the almost tight bound of this paper is the important bound. However, if
there are extremely slow processors, the results of [9] prevent behavior which is as bad
as the ratio between the speeds of two different processors of the same type.

Acknowledgment. The author would like to express his thanks to Alan Baratz,
Errol Lloyd, Michael Loui, and Albert Meyer for helpful readings of this paper.

REFERENCES

[1] E. G. COFFMAN, Computer and Job Shop Scheduling Theory, John Wiley, New York, 1976.
[2] E. G. COFFMAN AND R. L. GRAHAM, Optimal schedulingfor two-processor systems, Acta Informatica,

(1972), pp. 200-213.
[3] J. B. DENNIS, First Version ofa Data Flow Procedure Language, Lecture Notes in Computer Science 19,

G. Goos and J. Hartmanis eds., pp. 362-376; Symposium on Programming, Institut de Program-
mation, Univ. of Paris, Paris, France, April 1974, pp. 241-271; Also MIT LCS TM61, May 1975.

SCHEDULING OF TYPED TASK SYSTEMS 551

[4] M. R. GAREY AND R. L. GRAHAM, Bounds]’or Multiprocessing Scheduling with Resource Constraints,
this Journal, 4, 2 (1975), pp. 187-200.

[5] M. R. GAREY AND D. S. JOHNSON, Complexity results lor multiprocessor scheduling under resource
constraints, Proceedings of the Eighth Annual Princeton Conference on Information Sciences and
Systems, 1974.

[6] D. K. GOYAL, Scheduling processor bound systems, Proceedings of the Sixth Texas Conference on
Computing Systems, 1977.

[7] R. L. GRAHAM, Bounds on Multiprocessing Timing Anomalies, SIAM J. Appl. Math. 17 (1969), pp.
263-269.

[8] R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA, AND A. H. G. RINNOOY KAN, Optimization and
approximation in deterministic sequencing and scheduling: A survey, Discrete Optimization (1977).

[9] J. M. JAFFE, Efficient Scheduling of Tasks WithoutFull Use ofProcessor Resources, MIT Laboratory for
Computer Science Technical Memo 122, January 1979; Theor. Comput. Sci., to appear.

[10] R. M. KARP AND R. E. MILLER, Properties of a model]:or parallel computations: determinacy,
termination, queueing, SIAM J. Appl. Math., 14 (1966), pp. 1390-1411.

[11] S. LAM AND R. SETHI, Worst case analysis of two scheduling algorithms, this Journal, 6 (1977), pp.
518-536.

[12] J. W. S. LIU AND C. L, LIU, Bounds on Scheduling Algorithms for Heterogeneous Computing Systems,
TR No. UIUCDCS-R-74-632 Dept. of Comp. Sci., Univ. of Illinois, June 1974.

[13] Bounds on Scheduling Algorithms for Heterogeneous Computing Systems, IFIP74, North
Holland, Amsterdam, pp. 349-353.

[14] E. L. LLOYD, private communication.
[15] R. R. MUNTZ AND E. G. COFFMAN JR., Optimal preemptive scheduling on two-processor systems,

IEEE Trans. Comptrs., C-18, 11 (1969), pp. 1014-1020.
[16] R. R. MUNTZ AND E. G. COFFMAN JR., Preemptive scheduling of real time tasks on multiprocessor

systems. J. Assoc. Comput. Mach., 17 (1970) 324-338.
17] J. E. THORNTON, Design of a Computer--The Control Data 6600, Scott, Foresman College Division,

1971.
[18] J. D. ULLMAN, NP-complete scheduling problems, J. Comput. Systems. Sci., 3 (1975), pp. 384-393.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0008 $01.00/0

RANDOM GRAPHS AND GRAPH OPTIMIZATION PROBLEMS*

BRUCE W. WEIDE

Abstract. One major difficulty in analyzing algorithms for graph optimization problems is that the
probabilistic behavior of the optimum solutions to most of the important problems is generally unknown. We
present a general method for relating some well-known results regarding the probability of existence of
certain subgraphs in random graphs to the probabilistic behavior of solutions to graph optimization problems,
where the problem graphs have edge weights independently chosen from an arbitrary distribution. Appli-
cation of the technique to well-studied problems such as the traveling salesman problem shows that stronger
statements can be made about the optimum solutions than have previously been proved, and that the analysis
is straightforward.

Key words, graph theory, random graphs, algorithms, optimizatiori’, traveling salesman problem,
NP-complete problems

1. Introduction. All known deterministic algorithms for solving NP-hard prob-
lems require computing times not bounded by any polynomial in the size of the problem
description, and it seems fairly safe to say that the prospects for showing the existence of
polynomial-time algorithms for such problems are dim. Primarily for this reason, recent
efforts have been directed toward polynomial-time approximation algorithms for
problems which seem computationally intractable with the requirement of exact
solution.

Unfortunately, it has recently been shown that even producing a good approximate
answer to certain problems is NP-hard. For instance, approximating the chromatic
number of a graph to within a factor of two’ is essentially as difficult as finding the exact
chromatic number [6]. This fact, combined with the apparently high success rate of
heuristic approaches to solving certain difficult problems in practice, led Karp [9] to
undertake a more serious investigation of probabilistic approximation algorithms. We
will call a probabilistic approximation algorithm a procedure that with high probability,
but not necessarily always, produces a solution which is very close to the exact answer.

Karp [9] has suggested measuring the success of such an algorithm by the
stochastic convergence (to zero) of the sequence of errors produced by the algorithm
under some probabilistic model. In our case, the problems (rather than the steps taken
by the algorithm) will be randomly chosen.

Specifically, we say that a predicate Q is true almost surely if, for a sequence of
problems P1, P2, one of each size (i.e., problem Pn is of size n) chosen indepen-
dently and at random according to some distribution, the predicate is false only for
finitely many with probability one. We say that Q is true in probability if the probability
that Q is true tends to one as n

A particularly important case is where the predicate depends on the definition of a
random variable Xn f(Pn) (here f is some real-valued function of a problem instance)
in the following way: Q(P,) is "lg < If Q is true almost surely for every fixed e > 0
then we say that the sequence of random variables {X,} converges almost surely to 0,
written Xn - 0 (a.s.). Similarly, if Q is true in probability for every fixed e > 0, then we
say {X,} converges in probability to 0, and write X, - 0 (pr.). An algorithm is said to
succeed strongly (respectively, weakly) if the sequence of random variables given by the
relative errors of the answers produced by the algorithm converges almost surely
(respectively, in probability) to zero. Stochastic convergence of a sequence of random

Received by the editors March 19, 1979.
t Department of Computer and Information Science, Ohio State University, Columbus, Ohio 43210.

This work was supported in part by the National Science Foundation under Grant MCS-79-12688.

552

RANDOM GRAPHS AND GRAPH OPTIMIZATION PROBLEMS 553

variables to a constant other than zero is defined analogously. It is easy to show that
almost sure convergence implies convergence in probability, but not vice-versa; see
Chung [3], Weide [14].

Proving strong or weak success of a probabilistic approximation, algorithm is no
trivial task, but it is considerably facilitated by making use of the following lemma,
which we will call the relative error lemma.

LEMMA (Weide [14]). Let Xn be a random variable equal to the value of the exact
solution to problem Pn, and let Yn be a random variable equal to the value o] the solution
produced by some probabilistic approximation algorithm]orproblem P. Suppose there is a

function g(n and a constant c > 0 such that the [ollowing two conditions are satisfied:
(1) Xg(n) c(a.s.) (respectively, pr.);
(2) Y,g(n - c (a.s.) (respectively, pr.).

Then the probabilistic approximation algorithm succeeds strongly (respectively, weakly);
that is, (X,- Yn)/X 0 (a.s.) (respectively, pr.).

Using the relative error lemma, the problem of determining the distribution of the
relative error of the approximation is overcome, since proving stochastic convergence
of suitably normalized forms of the actual answer and the approximation to the same
nonzero constant leads immediately to a proof that the algorithm succeeds strongly or
weakly. We still face three difficulties: finding a realistic probabilistic model, determin-
ing the stochastic behavior of the approximate answers Yn, and that of the true answers
X,. In practice, the probabilistic model is dictated not so much by what is realistic but by
what assumptions result in tractable mathematics in the analysis. Determining the
stochastic behavior of the approximate answers produced by an algorithm depends
heavily on how complicated the algorithm is. It is the problem of establishing the
stochastic behavior of the true solution values that is addressed here.

2. Graph optimization problems and rand6m weighted graphs. Given a graph on n
nodes (vertices) with weighted edges, we can characterize a graph optimization problem
by two features. The first is a set of feasible solutions, which consists of all subgraphs of
the problem graph that satisfy a set of structural constraints. The second is an ob/ective
function defined by the weights of edges in each feasible solution, and which is to be
minimized over all feasible solutions.

Many classical problems from graph theory and operations research are graph
optimization problems. The traveling salesman problem (TSP), for instance, has for
feasible solutions the set of Hamiltonian circuits of the problem graph, and an objective
function which is given by the sum of the edge weights of a feasible solution. The
minimum spanning tree problem has the set of spanning trees of the problem graph as its
feasible solutions, and the same objective function. The minimum weighted k-clique
problem has a set of feasible solutions consisting of all k-cliques of the problem graph,
and again the same objective function. For the bottleneck traveling salesman problem,
the feasible solutions are once again the Hamiltonian circuits, but the objective function
is the maximum edge weight contained in a circuit.

A large number of graph optimization problems are known to be NP-complete,
including the traveling salesman problem and the bottleneck TSP described above. The
maximum weighted k-clique problem, when k is not fixed but is part of the problem
description, is also NP-complete, as are a whole .host of other interesting and useful
problems from operations research. For this reason, they are often solved (approxi-
mately) by what we have termed probabilistic approximation algorithms, since guaran-
teed optimum solutions apparently cannot be produced for these problems in a
reasonable length of time.

554 BRUCE W. WEIDE

In order to analyze the effectiveness of such algorithms, we must first develop a
probabilistic model to describe the origins of problem instances. Since each instance is a
graph with weighted edges, a likely candidate for this model is a complete labeled graph
with edge weights chosen from some distribution F. It is even possible to account for the
absence of a number of edges by allowing F to vary with the number of nodes of the
graph, so that a problem instance of size n is the complete graph on n nodes with edge
weights chosen independently from the distribution Fn. (For instance, Fn may assign
nonzero probability to the weight +oo, which for purposes of minimization problems
makes an edge essentially nonexistent.) We call such a graph a random weighted graph.
While this model might not seem very general, it includes as special cases the models
employed by Borovkov [2], Lueker [10], Garfinkel and Gilbert [7], and others who
have addressed the problem. They allow only one edge-weight distribution (such as
uniform or normal) and/or do not permit it to change as a function of the number of
nodes. The model is inadequate for description of Euclidean versions of the problems,
since the edge weights must be independent, but the stochastic behavior of many similar
problems in that class is essentially already known (see Beardwood, Halton, and
Hammersley [1], Papadimitriou [12]).

As mentioned previously, we leave it to the algorithm designer to analyze the
stochastic behavior of the solution values produced by his algorithm on such random
weighted graphs. Techniques suggested by Borovkov [2], Lueker [10], Garfinkel and
Gilbert [7], and Weide 14] could be useful in this regard. Here, we address the problem
of determining the stochastic behavior of the true optimum solution values for graph
optimization problems when problem instances are the random weighted graphs
described above.

3. Relating graph optimization problems to random graphs. Random weighted
graphs are basically an unexplored area: However, random graphs (where each
potential edge of the complete graph on n nodes is present with probability pn) have
been a topic of considerable interest ever since their introduction by Erd6s and Rnyi
[4]. Investigations of random graphs have centered on the probability of the existence of
subgraphs satisfying certain properties as a function of pn. One of the earliest results,
due to Erd6s and Rnyi [4], is that the probability that a random graph with edge
probability pn (c +ln n)/n is connected is asymptotic to e -e-c. One can easily prove
that if pn _-< a (ln nn) for some a < 1 and for all sufficiently large n, then a random graph
with edge probability pn is not connected with probability tending to one. On the other
hand, if pn-> a(ln n/n) for some a > 1 and for all sufficiently large n, then a random
graph with edge probability pn is connected with probability tending to one. (That is, in
probability, it has a spanning tree.) Other results include a theorem of Pdsa [13]
showing that there is a constant C such that if pn exceeds COn n/n) for all sufficiently
large n, then the random graph almost surely has a Hamiltonian circuit. Grimmett and
McDiarmid [8] give similar results for independent vertex sets and cliques.

The challenge is to relate these known results about the existence of subgraphs
satisfying certain structural conditions to the values of optimum solutions to graph
optimization problems. For most cases where the objective function is the sum of the
edge weights of a feasible solution or the maximum edge weight, the answer is given by
Theorem 1, which has been on the verge of discovery for a couple of years (see 4
below).

THEOREM 1. Let Sn be the set of]easible solutions to a graph optimization problem
]:or a complete graph with n nodes. Suppose that there existq andpn such that thefollowing
conditions are true:

RANDOM GRAPHS AND GRAPH OPTIMIZATION PROBLEMS 555

(1) A random labeled graph with edge probability at most qn almost surely (respec-
tively, in probability) does not contain any member of Sn as a subgraph.

(2) A random labeled graph with edge probability at least p, almost surely (respec-
tively, in probability) contains a member of $ as a subgraph.

Let instances of the graph optimization problem be random weighted graphs with edge
weights from the distribution F. Then:

(1) ff X, is the value of the optimum solution when the objective function "is the
maximum edge weight in a feasible solution, then

F-l (qn)- <_ X, <_ F-l (p,)

almost surely (respectively, in probability).
(2) If all feasible solutions have k edges andX is the value of the optimum solution

when the objective function is the sum of the edge weights in a feasible solution,
then

X, <= kF2 (p,)

almost surely (respectively, in probability).
Pro@ For part (1) with "almost surely", consider the subgraph of the problem

instance (a complete weighted graph with edge weights chosen from the distribution F)
consisting of the n nodes along with those edges of weight at mostF (qn)-. This is just
a random labeled graph with edge probability F(F2 (qn)-)-< q, and therefore almost
surely does not contain a member of Sn as a subgraph. Hence, there is almost surely no
feasible solution to the graph optimization problem having all edges with weight less
than F21 (q)-, which proves that F- (q)-<-_Xn almost surely. Similarly, the subgraph
of the problem instance consisting of the n nodes and those edges with weight at most
F-(p,) is a random labeled graph with edge probability F,(F-l(p,))>-p,, and
therefore almost surely has a member of Sn as a subgraph. This shows that there is
almost surely a feasible solution with maximum edge weight at most F (p,), so that
Xn <=F- (Pn) almost surely. The same argument holds with "in probability" substi-
tuted for "almost surely".

Part (2) is proved in analogous fashion, the only differences being that there is no
similar lower bound for X,, and that the upper bound is knF- (pn). [3

A remark about the simplicity of the proof is in order. The difficulty in characteriz-
ing the stochastic behavior of optimum solution values has been dramatically eased by
making use of the assumed availability of qn and p,. Actual determination of these
parameters is, in general, quite difficult. Only the fact that others have already found q,
and p, for a wide variety of important problems saves us the trouble of having to try to
bound X, by a more direct method. Examples in the next section illustrate the value of
this approach.

4. Examples. Our first application of Theorem 1 is to the bottleneck TSP, where
the objective is to minimize the maximum edge weight in a Hamiltonian circuit.

THEOREM 2. LetX, be the value of the optimum solution to the bottleneck TSPfor a
random weighted graph with edge weights chosen from the distribution F,. Then there is a
constant C >- 1 such that

F (In n/n)- <=Xn <=F- (C In n/n)

in probability. The upper bound holds almost surely.
Proof. The theorem follows immediately from P6sa’s characterization of when a

random undirected graph has a Hamiltonian circuit, from the fact that a graph must be

556 BRUCE W. WEIDE

connected in order to have a Hamiltonian circuit, and from Theorem 1. The only
difference for the case of directed graphs is a different value of C. 71

Garfinkel and Gilbert [7] have recently reported a lower bound on the expected
value of the optimum solution to a bottleneck TSP for a complete directed graph of
1-(n + 1, 1/(n 1))/(n 1), which is asymptotic to In n/n. Furthermore, they show
that, with probability tending to one, the optimum value lies between c/n and
((1 + e)(2/n)1/2 In n) /2. Their argument for the upper bound is actually quite similar to
that used in Theorem 1 above, although it uses a weaker result concerning the threshold
for existence of a Hamiltonian circuit and therefore fails to provide as good a bound as
Theorem 2, which makes use of P6sa’s result. The lower bound in Theorem 2 is also
much stronger than that presented by Garfinkel and Gilbert, who obtained theirs by a
direct probabilistic argument and not by a similar technique.

Applying Theorem 2 to the specific case investigated by Garfinkel and Gilbert
where edge weights are uniformly distributed, we find that the ratio of the optimum
solution value to (ln n/n) is between one and some constant C _-> 1 with probability
.tending to one. For normally distributed edge weights, the ratio of the optimal solution
value to (-/2 In n) converges in probability to one.

The case of the usual TSP is equally interesting. Here, since the objective function
is the sum of the edge weights, Theorem i does not permit proof of a lower bound on the
optimal solution value. However, an upper bound is easily demonstrated.

THEOREM 3. Let Xn be the value of the optimum solution to the TSP for a random
weighted graph with edge weights chosen from the distribution Fn. Then there is a constant
C >= 1 such that

X <= nF- (C In n/n)
almost surely.

Proof. Using P6sa’s result and Theorem 1, the conclusion follows immediately. Fl
Again, we have immediately improved upon Lueker’s [10] results which showed

that for normally distributed edge weights, the ratio of the expected value of the optimal
solution value to (-n/2 In n) converges to one. It is also true that the ratio of the
optimal solution value to (-n/2 In n) is almost surely at most one. Furthermore,
Theorem 3 allows similar conclusions to be proved for other distributions. In a
subsequent version of his 1978 paper (submitted for publication to this journal), Lueker
has extended his results from the normal distribution and expected values to arbitrary
distributions and stochastic convergence, using a relationship between subgraph exis-
tence and optimization problems very much like Theorem 1. This new paper includes an
almost sure lower bound .on X, that matches the upper bound of Theorem 3 for
normally distributed edge weights.

How can these theorems be related to probabilistic approximation algorithms?
Consider random weighted graphs with edge weights drawn from a special type of
distribution called a fixed-cost distribution having the following properties:

(1) There exists some A sup {x F(x) 0} > 0.
(2) F can be expanded as F(x)=F(A)+(x-A)(I+o(1)), for some 6>0, as

x -> A +.
(3) F is a distribution with finite mean and variance.
Intuitively, every edge in such a graph has a weight consisting of two components.

One component is a positive fixed cost A for traversing that edge in a traveling salesman
tour, and the other is a random non-negative variable cost. Weide [14] has shown that
for such graphs, the standard greedy algorithm for the TSP produces a tour of length T,
for which T,/n converges almost surely to A. It is easy to show from Theorem 3 that the

RANDOM GRAPHS AND GRAPH OPTIMIZATION PROBLEMS 557

lemma, then, we can prove that the greedy algorithm succeeds strongly for graphs with
edge weights chosen from a fixed-cost distribution.

5. Conclusions. Many other similar results can be proved for graph optimization
problems having feasible solutions which can be characterized by the parameters qn and
pn of Theorem 1. These include the minimum spanning tree problem, for which the
feasible solutions are all spanning trees and the appropriate graph property is connec-
tedness; the minimum weighted k-clique problem, for which the corresponding graph
property is the existence of a k-clique; minimum weighted matching, for which the
property is the existence of a matching; and so forth. Relatively simple probabilistic
approximation algorithms for such problems come to mind immediately, and some can
be analyzed using methods similar to those employed by Borovkov [2], Kar.p [9],
Lueker [10], Garfinkel and Gilbert [7], and Weide [14]. Theorem 1 here may facilitate
proofs that such simple algorithms succeed stochastically under certain not-too-
restrictive conditions.

It is, of course, possible to prove theorems similar to Theorem 1 for random
weighted graphs having weights associated with their vertices rather than, or in addition
to, their edges. An interesting problem is to extend part (2) of Theorem 1 to include an
almost sure lower bound on the optimal solution value when the objective function is
the sum of the edge weights. As mentioned before, Lueker has already made consider-
able progress in this direction.

Acknowledgments. T. Nishizeki first made a crucial observation leading to
Theorem 1. Many discussions with Michael Shamos, Jon Bentley and particularly Bill
Eddy are also gratefully acknowledged. One of the anonymous referees made several
very insightful suggestions which significantly improved my own understanding of some
earlier work and, I hope, the presentation of this work.

REFERENCES

[1] J. BEARDWOOD, J. H. HALTON AND J. M. HAMMERSLEY, The shortest path through many points,
Proc. Camb. Philos. Soc., 55 (1959), 4 pp. 299-327.

[2] A.A. BOROVKOV, A probabilistic formulation oftwo economic problems, Dokl. Akad. Nauk SSSR, 146
(1962), 5 pp. 983-986 =Sov. Math. Do,kl., 3 (1962), 5 pp. 1403-1406.

[3] K. L. CHUNG, A Course in Probability Theory, 2nd Ed., Academic Press, New York, 1974.
[4] P. ERD)S AND A. RINYI, On random graphs I. Publ. Math., 6 (1959), pp. 290-297.
[5] P. ERDS AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.
[6] M. R. GAREY AND D. S. JOHNSON, The complexity of near-optimal graph coloring, J. Assoc. Comput.

Mach., 23 (1976), pp. 43-49.
[7] R. S. GARFINKEL AND K. C. GILBERT, The bottleneck traveling salesman problem: algorithms and

probabilitistic analysis, Ibid., 25 (1978), pp. 435-448.
[8] G. R. GRIMMETT AND C. J. H. MCDIARMID, On colouring random graphs, Math. Proc. Cambridge

Philos. Soc., 77 (1975), pp. 313-324.
[9] R. M. KARP, The probabilistic analysis of some combinatorial search algorithms, Algorithms and

Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York,
1976, pp. 1-19.

10] G. S. LUEKER, Maximization problems on graphs with edge weights chosen from a normal distribution,
Proc. 10th Annual Symp. on Theory of Comp., ACM, New York, 1978, pp. 13-18.

[11] J. W. MOON, Almost all graphs have a spanning cycle, Canad. Math. Bull., 15 (1972), pp. 39-41.
[12] C. PAPADIMITRIOU, The probabilistic analysis of matching heuristics, Proc. 15th Annual Allerton

Conf. on Comm., Control, and Comp., Univ. of Ill., Urbana-Champaign, Sept. 28-30, 1977, pp.
368-378.

[13] L. Pt3SA, Hamiltonian circuits in random graphs, Discrete Math., 14 (1976), pp. 359-364.
[14] B. W. WEIDE, Statistical Methods in Algorithm Design and Analysis, Ph.D. thesis, Department of

Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA, 1978, CMU-CS-78-142.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0903-0009 $01.00/0

GENERATING ALL MAXIMAL INDEPENDENT SETS:
NP-HARDNESS AND POLYNOMIAL-TIME ALGORITHMS*

E. L. LAWLERS", J. K. LENSTRA$ AND A. H. G. RINNOOY KAN

Abstract. Suppose that an independence system (E,) is characterized by a subroutine which indicates
in unit time whether or not a given subset of E is independent. It is shown that there is no algorithm for
generating all the K maximal independent sets of such an independence system in time polynomial in IEI and
K, unless V. However, it is possible to apply ideas of Paull and Unger and of Tsukiyama et al. to obtain
polynomial-time algorithms for a number of special cases, e.g. the efficient generation of all maximal feasible
solutions to a knapsack problem. The algorithmic techniques bear an interesting relationship with those of
Read for the enumeration of graphs and other combinatorial configurations.

Key words, independence system, satisfiability, maximality test, lexicography test, set packing, clique,
complete k-partite subgraph, knapsack problem, on-time set of jobs, inequality system, facet generation,
matroid intersection

1. Introduction. Let E be a finite set of elements and let 5 be a nonempty family
of subsets of E satisfying a single axiom" if 16 5 and I’

I, then I’ 5. Under these

conditions, (E, 5) is said to be an independence system and 5 is its family of independent
sets. An independent set I is said to be maximal if there is no I’ 5 such that I’ = I. The
subsets of E that are not contained in 5 are dependent sets. A dependent set J is called
minimal if J’ for each J’ c J.

Suppose that IEI- n and that (E, 5) is characterized by a computer subroutine
which indicates in unit time whether or not a given subset of E is an independent set. All
independent sets can be generated in O(nll) time: given an independent set, O(n)
applications of the subroutine suffice to determine the next independent set in a
lexicographic listing. But suppose that one is interested only in all the maximal
independent sets, of which there are K, K =< I 1, These can be found in time polynomial
in n and K only in the unlikely event that , as we show in 2.

There are, however, a number of special types of independence systems for which it
is possible to generate all the maximal independent sets efficiently. In 3, an analysis of
a procedure due to Paull and Unger [5] reveals that there is a polynomial-time
algorithm for this purpose, provided that a certain subproblem can be solved in
polynomial time. Improvements in running time and storage requirements suggested by
Tsukiyama et al. [8] are discussed as well. In 4, we investigate some of these
independence systems. Typical of these special cases is the problem of generating all the
maximal feasible solutions to a knapsack problem. In 5, we examine the relationship
between our approach and a technique for the enumeration of graphs and other
combinatorial configurations, recently proposed by Read [6].

2. Complexity. We shall show that the problem of generating all the K maximal
independent sets of an arbitrary independence system is NP-hard, i.e., if there is an
algorithm for the problem which runs in time polynomial in n and K, then there is a
polynomial-time algorithm for solving the satisfiability problem [2].

* Received by the editors May 16, 1978. This research was partially supported by the National Science
Foundation under Grant MC.S 76-17605, and by NATO under Special Research Grant 9.2.02 (SRG. 7).

"t Computer Science Division, University of California, Berkeley, California 94720.
Mathematisch Centrum, Amsterdam, The Netherlands.
Erasmus University, Rotterdam, The Netherlands.

558

GENERATING ALL MAXIMAL INDEPENDENT SETS 559

Let F(X1,... ,XN) be a Boolean expression in conjunctive normal form. Let
E { T1, F,. , TN, F}, and for any/" { 1, , N} and any J

E, define

true if T/e J, F.J,

xj(J) false if F. e J, T/ J,

undefined otherwise.

Let I if either
(i) there exists a j {1,. , N} such that both Tjg I, F. I, or
(ii) each clause of F contains a letter X. or X. whose defined value is true, i.e.,

F(x(i), Xl(I))= true.
It is easily seen that (E,) is an independence system. Moreover, F is not satisfiable if
and only if the only maximal independent sets are E- {T., F.} for j 1,..., N.

Assume there exists a general procedure for generating all the maximal indepen-
dent sets of an arbitrary independence system with running time b (n, K), where b is a
polynomial function of n and K. Apply this procedure to the independence system
defined above and allow it to run for time b (2N, N). Then F is satisfiable if and only if
either

(i) F(Xl(I),"’, Xlv(I))= true for some generated I, or
(ii) the procedure fails to halt within the allotted time, establishing that there are

more than N maximal independent sets.
For any given J

_
E, the conjunctive normal form Can be evaluated in time proportional

to its length. Appropriate modification of the unit-time assumption for independence
testing thus establishes that the procedure solves the satisfiability problem in poly-
nomial time. Since the latter problem is NP-complete, it can be solved in polynomial
time if and only if [2]. Hence, we have the following theorem.

THEOREM 1. If there exists an algorithm for generating all the maximal independent
sets of an arbitrary independence system in time polynomial in n and K, then Aft.

To obtain a reduction to, rather than from, the satisfiability problem, we now
consider the problem of generating all maximal independent sets and all minimal
dependent sets of an independence system. Letthere be L such sets. We shall show that
if there is a polynomial-time algorithm for the satisfiability problem, then there is an
algorithm for generating all these sets in time polynomial in n and L. Each step of the
latter algorithm yields a new set on the list.

Suppose then, that at a certain point sets Ia,..., i have been generated. Let

{1,..., l} indicate the generated sets which are maximal independent and
{1,. , l}- those which are minimal dependent. Any new set I must satisfy I: Ii for
all and Ii ! for all . Form the Boolean expression

(Ai.zV.,,rxl) ^ (Ai.V.,x.).

The length of this expression is O(nl) and by our assumption one can determine if it is
satisfiable in 6(nl) time, for some polynomial function 6. If the expression is not
satisfiable, then =L and the algorithm terminates. Otherwise, construct a truth
assignment in polynomial time, by successively fixing the value of each variable and
determining if the reduced expression is satisfiable. Next define ! {/’IX. true} and
test 1 for independence in unit time. If ! is independent, augment it until a maximal
independent set results; if I is dependent, remove elements until a minimal dependent
set is found. Either procedure requires O(n) time. Since clearly I # Ii for 1, , l, I
is the new set on the list. We thus have the following theorem.

560 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

THEOREM 2. /f N, then there exists an algorithm]:or generating all the maximal
independent sets and all the minimal dependent sets of an arbitrary independence system
in time polynomial in n and L.

3. An algorithm.
3.1. A generalized Pauil-Unger procedure. We now assume that E {1, , n}

and that independence testing requires time c. Let j be the family of all independent
sets that are maximal within {1, ,/’}. By definition, o {}. We seek to construct
from -1 in order to obtain n, the family of all K independent sets that are maximal
within E.

Suppose that I i-1. If I U {/} , then clearly I U {/} i. If I U {j}g , then
I i. It follows that

Observing that the elements of E can be numbered arbitrarily, we obtain the following
result.

THEOREM 3. For any J
_
E, the number of independent sets maximal within J does

not exceed K.
.Suppose that I’. and /’el’. Since I’-{j} is independent and included in

{1,...,j-l}, there must be some IN._I such that I’-{j}c_L Moreover, I’ is an
independent set that is maximal within I LI {/’}. This observation suggests the following
procedure to obtain . from i_1, which is a generalization of an algorithm due to Paull
and Unger [5].

Step 1. For each I ._a, find all independent sets I’ that are maximal within
{/}.

Step 2. For each such I’, test I’ for maximality within {1, , j}. Each set I’ that is
maximal within {1, , f} is a member of ., and we have seen that each member of .
can be found in this way. However, a given I’ may be obtained from more than one
I -1. In order to eliminate duplications, we need one further step.

Step 3. Reject each I’ that passes the maximality test if it appears among the sets
already found to be in . Suppose that in Step 1, for each I -1, at most K’ sets I’ are
found in time c’; by Theorem 3, we have K’ =< K. For each I’, the maximality test in Step
2 requires O(nc) time, and the duplication test in Step 3 can be accomplished with
O(K) pairwise set comparisons, each of which requires O(n) time. It follows that, for
fixed j, O(c’K) time suffices for the first step, O(ncKK’) time for the second step, and
O(nK2K’) time for the third step. Thus, the overall running time to obtain n is
O(nc’K + n2cKK’+ n:KK’). This yields the following theorem.

THEOREM 4. All the maximal independent sets of an independence system can be
generated in time polynomial in n, c and K, if it is possible to list in polynomial time all
independent sets that are maximal within I (_J {/’}, for arbitrary I _, j 1,. , n.

In 4, we investigate several cases in which the subproblem referred to in Theorem
4 (the "I U {j} problem") can be solved in polynomial time.

3.2. Improvements of Tsukiyama et al. A technique suggested by Tsukiyama et
al. [8] enables one to eliminate duplications more efficiently. It yields significant
improvements in both running time and storage requirements of the Paull-Unger
procedure.

Instead of comparing a set I’ with all members of 5. found previously, one retains I’
only if it is obtained from the lexicographically smallest I

_
from which it can be

produced. Hence Step 3 is modified in the following way.

GENERATING ALL MAXIMAL INDEPENDENT SETS 561

Step 3’. For each I’ obtained from I o,_1 that is maximal within {1, ,/’}, test
for each </’, i’ I, the set (I’- {/’}) (I f3 {1,. , 1}) t.J {i} for independence. Reject
I’ if any of these tests yields an affirmative answer.

If, indeed, any affirmative answer is obtained, then I’-{} is included in an
independent set that is lexicographically smaller than I, and hence in a lexicographically
smaller maximal independent set from 5.-1.

For each I’, the lexicography test in Step 3’ requires O(nc) time, which is the same
as required by the maximality test in Step 2. Hence, the overall running time of the
revised procedure is O(nc’K + n2cKK’).

Possibly of even greater interest for some applications is the fact that storage
requirements can be greatly reduced by organizing the computation as a depth-first
search of a tree. Nodes at level/" correspond to members of 5i, with the tree rooted at ,
the unique member of 5o. Since for each 16 5._, either I {/’} 5. or I 5i, each node
has at least one and at most K’ children. Whenever in the depth-first search a member of
5, is encountered, it is outputted. The maximum number of subproblems that must be
maintained in stack to allow backtracking is O(nK’). A further decrease in storage
requirements can be obtained at the expense of an increase in running time.

4. Applications. In this section we investigate various independence systems for
which all maximal independent sets can be generated in polynomial time.

4.1. Set packing. Let S be a finite set with [Sl m and let 5 {SI," Sn} be a
family of (not necessarily distinct) subsets of S. A subfamily I

_
5g is a packing in S if the

sets in I are pairwise disjoint. The packings correspond to the independent sets of an
independence system with E 5. All maximal packings can be generated in polynomial
time, as shown below.

First consider the "I kJ {j} problem". Let A.
__
6 consists of the sets S for which

Sg fq S. # 5. Given I -1, the only sets which can possibly be maximal within I tA {S;}
are I itself and (I A.) LI {Si}. Thus K’ _-< 2. It follows that, given Ai, the ILI {]} problem
can be solved in O(n) time.

Assuming the sets S are specified by ordered lists of indices, one can find the sets
A1, ’, A, in O(mn 2) time. It follows that Step 1 requires O(mn 2 + n2K) time.

The maximality test for I’ is equivalent to verifying that I’fqAi # for all
<j, Sd.gL Since each such test can be carried out in O(n 2) time, Step 2 requires
O(n3K) time.

The lexicography test is easily seen to be equivalent to verifying that [I-
(Aj f3 {Si+I, Sj-1})] [" Ai # for all </’, SiL Thus, Step 3’ requires O(n3K) time
as well.

It follows that the overall running time of the procedure is O(mn 2 + n3K). Since it
is possible to implement the search tree in O(n) space, O(mn) space is sufficient overall.

Suppose Y’ is induced by an undirected m-edge n-vertex graph G with edge set $.

Si denotes the set of edges incident to vertex/" and A. denotes the set of vertices
adjacent to vertex]. Then each packing I

_
is an independent or stable set of vertices

of G, or, equivalently, a clique of the complementary graph G. It was in this context that
the Paull-Unger procedure and the improvements of Tsukiyama et al. were originally
proposed.

For the graph problem, it is natural for the sets Ai to be given as input in the form of
ordered lists. Under this assumption, and noting that i=1 IA I- 2m, one can reduce the
time bound to O(mnK) and the space bound to O(m + n), as shown in [8].

4.2. Complete k-partite subgraphs. Let G be an undirected graph with vertex set
V {vl,..., vn} and edge set S with IS[m. A complete k-partite subgraph of G is

562 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

defined by a collection {V1,’’’, Vk} of pairwise disjoint subsets of V such that
{vi, v.}e $ for vi e Vg, vie Vh, if and only if g h. Note that an independent set of
vertices defines a complete 1-partite subgraph and that a complete k’-partite subgraph
is also a complete k-partite subgraph for k k’+ 1,. , n.

The complete k-partite subgraphs of G correspond to the independent sets of the
following independence system. Let E V and let I e if there exists a partition
P(I) {V1," , Vk} of I (i.e., U=I Vh I and Vg f’l Vh for 1 <-- g < h _-< k) that
defines a complete k-partite graph on L We will show how to generate all maximal
complete k-partite subgraphs of G in polynomial time.

Again consider the "/t.J{/’} problem". Let P(I)={VI,..., Vk,} with Vh #
(h 1,..., k’) and k ’<-k.,

First, suppose that {vi, vi} e S for all v e L If k’ < k, then the single independent set
I’ that is maximal within I U {vi} is ! LI {vj} itself, with P(! t_J {vi}) P(I) t_J {vi}. If k’ k,
then there are k + 1 sets I’, for which P(I’) is obtained by deleting any one of the
members of P(I) t_J {vj}.

Suppose now that {v, v}e S only for all v e V’h
_

Vh (h 1,’", k’), where
V= for h=l,’’’,a,CV’hCVh for h=a+l,...,b and V=Vh for h=
b +1, , k’, with 0=<a =<b <-k’ and b >0. In this case, b+l independent sets I’
that are maximal within I t_J{vi} are defined by P(I’)=P(I) and P(I’)=
{ V’I,"’, V’h-I,(Vh--V’h) U {Vi}, V’h/,’’’, V’b, Vb/l,’’’, Vk,} for h=l,...,b. In
the special case that a =0, even more sets I’ may exist. If k’< k, then the single
additional set I’ is defined by P(I’)= { V’,..., V’Vb/,’’ ", Vk’, {Vi}}. If k’ k, then
there are k- b additional set I’, for which P(I’) is obtained by deleting any one of the
sets Vb/l,’’’, Vk’ from {V’I,’", V’, Vb/,’’’, Vk,, {vi}}. (Note that these sets are
not maximal in the case that a > 0.)

Since K’= O(k) and independence testing requires O(m) time, the overall running
time of the procedure is O(n2mkK).

4.3. Knapsack problems. Next consider the knapsack inequality --1 ajxi <=
b, xi e {0, 1} (j 1,. ., n), where al =>a2=>" ->an >0. The feasible solutions to this
inequality correspond in a natural way to the independent sets of an independence
system with E {1, , n } and I e 5 if ix ai <= b. We are interested in generating all
maximal feasible solutions.

Consider the ! LI {j} problem and assume that I LI {j}g i. Feasibility is restored by
removing any element h from I t.J{j}. Thus K’ =<j, and the ! U{j} problem can be
solved in O(n) time.

For a given ! e 5_, define re(h)= max {i[i < h, i I}; let amax 00. A set I’
(I-{h})U{j} (h el) passes the maximality test if and only if Y’.gx, ai-b a,(i> b, and it
passes the lexicography test if and only if 1ag- ah + a,(h > b. Moreover, for all I’
arising from I LI {/’}, these tests can be carried out in O(n) time altogether. It follows that
the overall running time of the procedure is O(n2K).

The unbounded knapsack inequality, in which the x. are allowed to take on any
nonnegative integer value, is reducible to the 0-1 case by introducing 2a., 4ai, , 2kai
into the problem in addition to ai, where k is the smallest integer such that 2k+lai > b.
Then E contains O(n log b) elements, and the algorithm is still strictly polynomial.

4.4. On-time sets of jobs. Suppose there are n jobs to be processed, one at a time,
by a single machine starting at time 0. Job/" requires an uninterrupted processing time of
p units and has a deadline dr. Let E {1, , n } and let I e if all the jobs in I can be
scheduled for completion by their deadlines. It is well known that such a schedule exists
if and only if the jobs in I are all completed on time when sequenced in order of
nondecreasing deadlines. Hereafter, assume d _-< d2-<’ <= dn.

GENERATING ALL MAXIMAL INDEPENDENT SETS 563

Again consider the I U {j} problem and assume that I U {/’}g 5j. In this case, we
have ,ixPi +Pj > di. Independence is restored by removing job j from I (.J {j} or by
removing some jobs from I such that job j, which can be assumed to remain in the last
position, is completed on time. It follows that solving the I LI {j} problem is equivalent
to finding all maximal subsets H

_
I such that iHPi <= di-pi, which can be accom-

plished by applying the knapsack procedure of 4.3. By Theorem 3, the number of
maximal subsets H does not exceed K- 1. Hence the I (A {j} problem can be solved in
O(neK) time.

Since maximality and lexicography tests require O(n) time, it follows that the
overall running time of the procedure is O(n3K2).

4.5. Inequality systems. The problems considered in 4.1, 4.3 and 4.4 can all be
viewed a special instances of the general problem of finding all maximal feasible
solutions to an inequality system of the form Ax <= b, xi {0, 1}(j 1, , n), where the
m n-matrix A (aij) and the m-vector b (bg) have nonnegative components.

For example, given a et $ {1, , m} and a family 6e {$1, , Sn} of subsets of
$, define aii-- 1 if $i, a0 0 otherwise. In the case that bg 1 (i 1,..., m), the
maximal feasible solutions correspond to the maximal packings in S; they can be
generated in polynomial time, as has been shown in 4.1. In the case that bi-
i-_la0-I (i=l,...,m), the maximal feasible solutions correspond to the
complements of the minimal coverings of S. We have not been able to devise a
polynomial-time algorithm for this problem. Nor have we been able to obtain an
NP-hardness result similar to Theorem 1 for this case or even for a general inequality
system, although we conjecture that no polynomial-time algorithm exists unless

For the scheduling problem discussed in 4.4, we have m n, aii P if >-- j, ai 0
otherwise, and bg dg (cf. [4]). The same technique as above can be applied to a slightly
wider class of inequality systems, where b is an m-vector with nondecreasing
components and A is a nonnegative rn n-matrix such that

(i) aii > 0 implies aij, > 0 for all j’< j, and
(ii) the strictly positive entries in each column are nonincreasing.

In this case, the I U {/’} problem with I U {/’} 5i can be solved by applying the knapsack
procedure of 4.3 to the constraint of smallest index h such that ahi > O. Any maximal
subset of I ID {j} that satisfies constraint h will then satisfy the remaining constraints as
well.

The reader may be able to construct other examples in which a certain property of
A permits one to restrict attention to a single constraint when independence has to be
restored. In each such case, the knapsack procedure can be applied to solve the I t_J {j}
problem in polynomial time.

4.6. Facet generation. Consider the convex hull P of all 0-1 vectors x satisfying
the general inequality system Ax <-b, where A->_0. Balas and Zemel [1] have
established a correspondence between the facets of P and the minimal covers of A, i.e.
the minimal feasible solutions to Ax; b. Such covers are in one-one correspondence to
the maximal feasible solutions to Ax’ ; b ’, where b ==1 ai-b-I (i= 1,..., m),
under the assumption that all data are integers.

Thus, in order to generate the facets of P, it suffices to generate the K maximal
feasible solutions to Ax’; b’. This inequality system can be considered as the disjunc-
tion ofm knapsack inequalities --1 axi (i 1," ", m), the ith such inequality
having Ki maximal feasible solutions. In the case that m 1, the procedure of 4.3 can
be applied to yield all minimal covers in polynomial time. In the general case, the

564 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

following procedure may have some practical value, even though it is not polynomial in
K.

A maximal feasible solution to the entire system has to be feasible and maximal
with respect to at least one of the separate inequalities. The procedure of 4.3 is now
applied to each of these inequalities in turn. However, a maximal feasible solution to
inequality is accepted as a maximal feasible solution to Ax’; b’ only if it is

(i) infeasible for each of the inequalities 1,..., i-1, and
(ii) infeasible or maximal feasible for each of the inequalities + 1,..., m.

It is not hard to see that this procedure generates all minimal covers without dupli-
cation.

For inequality i, application of the knapsack procedure requires O(n2Ki) time, and
conditions (i) and (ii) can be checked in O(mn) time for any candidate solution, or in
O(mnKi) time altogether. It follows that the overall running time of the procedure is
O((rnn +n 2) .Ki). Unfortunately, there exist inequality systems for which Ki is
exponentially related to K. For example, in the simple case that m n 1, aij 1, b
(i 1,.. , m, j 1,. , n), we have Ki (i) (i 1,. , m), . Ki 2 1, and K n.

For some special cases, truly polynomial-time algorithms can still be obtained. For
example, suppose A is such that the entries in each row are monotone nonincreasing. If
ILI {j}’, then removal of any element from I U {j} restores feasibility, so that K’ <= n.

In analogy to the above approach, one might view a general inequality system
Ax <= b as the conjunction of m knapsack inequalities. In this case, however, a maximal
feasible solution to the entire system can be feasible but nonmaximal with respect to
each of the separate inequalities. It seems hard to make any significant progress beyond
the special cases discussed in 4..5.

4.7. Matroid intersections. A matroidM (E,) is an independence system such
that for all J

E, all independent sets maximal within J have the same cardinality [3].

Given rn matroids Mi (E,) (i 1, , m) with E {1, , n}, their intersection
(E,) is an independence system defined by f’l % i. We are interested in generat-
ing all maximal independent sets in (E,), assuming that independence testing in M
requires timeci (i=l,...,m).

Consider the ! U {j} problem. If ! U {j} ., then addition of j must have destroyed
independence in some of the m matroids, say, in M1, , Ml. Each of these matroids M,.
contains a unique minimal dependent set or circuit Ci, and independence in Mi is
restored by removing any one element from C.

It follows that, in order to solve the ILI {j} problem, it is necessary to find all
minimal subsets of LI i--1Ci that contain at least one element from each circuit, i.e., all
minimal coverings of (C1, , C). In view of our remark in 4.5, we settle for a brute
force approach: consider all n possible solutions. This yields an overall running time of
O(nm+2K ci), which is, at least, polynomial for fixed m.

For certain special cases, e.g. the generation of all spanning trees [7], the special
structure of the system can be exploited and significant improvements made.

5. An enumeration procedure of Read. We conclude by noting a relationship
between our techniques and those proposed by Read [6] for the enumeration of graphs,
digraphs, and other combinatorial configurations. We restate the essential features of
Read’s procedure in our terms, as follows.

The family 5. is to be obtained from the family j-1 by applying an augmentation
operation to each set in 3_1. These sets are processed in a canonical linear order "<"
and the augmentation routine produces sets I’ from each I 5i-1 in this same order. For

GENERATING ALL MAXIMAL INDEPENDENT SETS 565

each I’ 6 i, let f(I’) denote the first set in -1 which produces I’ when subjected to the
augmentation operation. Suppose that the canonical order is weakly monotonic in the
sense that for all I’, I" j, I’<I" implies f(I’)<=f(I"). Then it is simple to avoid
duplications: when applying the augmentation operation, retain the next set produced
only if it follows the member of 5j that has been obtained lastly.

Consider, for example, how this procedure is applied by Read to generate all the
nonisomorphic digraphs on five vertices. The nondiagonal elements of the adjacency
matrix are written as a string of 20 bits, which can be interpreted as a binary integer. A
canonical digraph is one which has the largest such integer of all digraphs in its
isomorphism class, and this integer is its code. Let 5.-1 be the family of all canonical
digraphs with j- 1 arcs; their codes specify the canonical linear order. For each ! ._

1,

the augmentation operation produces digraphs I’ with/" arcs by systematically changing
a 0 to a 1 in the 20-bit representation of L Each such 1’ is tested for canonicity. Each I’
that passes the canonicity test is added to the list . if and only if its code is strictly
greater than that of the most recently obtained member of i. It can be shown that the
property of weak monotonicity is satisfied. Thus, all canonical digraphs with j arcs are
generated in this way, without duplication.

We have been unable to devise a weakly monotonic ordering for the problems
considered in this paper. The lexicography test of Tsukiyama et al. is, in effect, an
alternative to Read’s technique for eliminating duplications and amounts to an analysis
of the inverse of the augmentation operation. That is, when I’ is obtained from
I ,-/-1, I’ is retained only if f(I’) L where f(I’) denotes the lexicographically smallest
set in 5.-1 which produces I’ when subjected to the augmentation operation.

REFERENCES

[1 E. BALAS AND E. ZEMEL, All the facets of zero-one programming polytopes with positive coefficients,
Management Sciences Research Report 374, Carnegie-Mellon University, Pittsburgh, 1975.

[2] S. A. COOK, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. Theory
Comput., (1971), pp. 151-158.

[3] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.

[4] E. L. LAWLER AND J. M. MOORE, A functional equation and its application to resource allocation and
sequencing problems, Management Sci., 16 (1969), pp. 77-84.

[5] M. C. PAULL AND S. H. UNGER, Minimizing the number of states in incompletely specified sequential
switching functions, IRE Trans. Electron. Comput., EC-8 (1959), 356-367.

[6] R. C. READ, Every one a winner, or how to avoid isomorphism search when cataloguing combinatorial
configurations, Ann. Discrete Math, 2 (1978), pp. 107-120.

[7] R. C. READ AND R. E. TARJAN, Bounds on backtrack algorithms for listing cycles, paths, and spanning
trees, Networks, 5 (1975), pp. 237-252.

[8] S. TSUKIYAMA, M. IDE, M. ARIYOSHI AND I. SHIRAWAKA, A new algorithm for generating all the
maximal independent sets, this Journal, 6 (1977), pp. 505-517.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0010 $01.00/0

BOUNDS ON SELECTION NETWORKS*

ANDREW CHI-CHIH YAO#

Abstract. We investigate the complexity of network selection by measuring it in terms of U(t, N), the
minimum number of comparators needed, and T(t, N), the minimum delay time possible, for networks
selecting the smallest elements from a set of N inputs. New bounds on U(t, N) and T(t, N) are presented. In
particular, the asymptotic forms of U(t, N) and T(t, N) are determined for any fixed t.

Key words, comparator, complexity, delay time, network, selection, sorting network

1. Introduction. A (t, N)-selector where 1-< <N is a network with N inputs
(Xa, X2,"" xN) and N outputs (x’1, x2,. , x) such that the set {x
consists of the smallest elements of Xl, x2, , xN. We consider (t, N) selectors that
are built of basic modules called comparators which are themselves (1, 2)-selectors. We
shall draw comparators as in Knuth [6] (see Fig. 1). A (2, 5)-selector is shown in Fig. 2.

Y Y,
Y2

FIG. 1. A comparator (with y =min {ya, Y2}, Y =max {Yx, Y2}).

X4

X5

level 1, level 2, level 3,

FIG. 2. A (2, 5)-selector.

level 4

Note that the "sorting networks" (for N elements), which have been extensively studied
[1], [2], [3], [6], are networks that are (t, N) selectors for all (1 <- < N).

In a network the comparators may be grouped into levels, where within each level
are some comparisons that can be made simultaneously (see Fig. 2). The delay time of a
network is the minimum number of levels that its comparators can be grouped into.

In this paper, we investigate the complexity of network selection by measuring it in
terms of U(t, N), the minimum number of comparators needed in any (t, N)- selector,
and T(t, N), the minimum delay time possible for any (t, N) selector. New bounds on
U(t, N) and T(t, N) are presented. In particular, U(3, N) is determined to within a
constant of 2, and asymptotic formulae for U(t, N) and T(t, N) are given for fixed t. A
new lower bound on the delay time for sorting networks is also obtained. Main results
are contained in Theorems 3.1, 3.3, 3.7, 4.3, 4.5.

(1)

2. Previous results. The following bounds are known in the literature.
(a) [6]

U(1,N)=N-1, U(2, N)=2N-4.
(b) (Due to V. E. Alekseyev, see [6, p. 234].)

(2t(t))(N- t)[log (t + 1)] _<- U(t, N) <- (N- t) 1 +(2)

* Received by the editors May 3, 1979.
t Computer Science Department, Stanford University, Stanford, California 94305. This research was

supported in part by the National Science Foundation under Grants GJ 41538 and MCS-77-05313.

566

BOUNDS ON SELECTION NETWORKS 567

where (t) is the minimum number of comparators needed in any sorting network with
inputs.

(c) (Due to F. F. Yao, [7].)

(3) T(t,N)>=
1 (log +log (1-)).log 3- 1

3. New results concerning U(t, N). In this section, we shall show that U(t, N) is
well approximated by [log (t + 1)IN when is small compared to x/. A new lower
bound for U(t, N), which improves on Alekseyev’s bound (2) in most cases, is also
derived. As a consequence, U(3, N) is determined to within a constant.

3.1. Asymptotic behavior of U(t,N) for fixed t. Since the best upper bound
known for (t) is of the order t(log t)2 for general t, the inequality that can be deduced
from (2)is

(4) [log (t + 1)] (N- t) <-_ U(t, N) <= C(log t)2N,
where C is a constant. Thus, the asymptotic behavior of U(t, N) for fixed is not well
determined by (2). We shall construct (t, N) selectors that yield a better upper bound
for U(t, N). This enables us to identify the leading term of U(t, N). For example, when

11, we can obtain

(5) 4(N-11)=< U(11, N)<=4N+C((logN)2)
for some constant C. In general, we have"

THEOREM 3.1.

(6) U(t, N)= [log (t + 1)IN + O((log N)r,og(t+l)/3)l) forfixed t.

To prove Theorem 3.1 we need the following lemma.
LEMMA 3.2.

(7) U(t, N) <= U(Lt/2], LN/2]) + U(t, [N/21 + Lt/2]) + LN/2].

Proof ofLemma 3.2. We need only show that a (t, N)- selector can be constructed
from one ([t/21, [N/2J)-selector, one (t, IN/2] + [t/2J)-selector, and [N/2I addi-
tional comparators. Figure 3 shows such a construction. The reason that it works as a
(t, N)-selector is that, after the initial IN/2] comparisons in A, at most It/2] of the
smallest elements can come out on the IN/2] lines of the lower half. These possible

iii

-selector

A B

FIG. 3. A (t, N)-selector.

(t, IN/2] + [t/2])
selector

Throughout this paper, logarithms are taken with respect to base 2.

568 AYDIFW CHI-CHIH YAO

"small" elements are selected by B and input into C. Therefore all of the smallest
elements are fed into the (t, IN/2] + [t/2J)-selector C which finally outputs those
elements on the top output lines. This proves Lemma 3.2. 71

Proof of Theorem 3.1. We need the following useful identities.2 For any integer
t_->3,

(8) [log (t + 1)] 1 + [log (It/2] + 1)],

and

(9) [log t+ 1] [t/2] + 1
3 |=1+[log

3 1"
We shall prove by induction that, for any t’>_- 1,

(10)
U(t’, N) <= [log (t’+ 1)]N + ct,(log N) [lg((t’+)/3)]

for some constant c,, and all N.

By (1), statement (10) is true for t’= 1, 2. Now, assume that it is true for all t’ < (where
-> 3); we shall establish (10) for t’ t.

Let c’= C[t/2], /’-- [log ((It/2] + 1)/3)], and [log ((t + 1)/3)].

By elementary calculus, (l-x)x _-< 1- (hx)/2 for all small enough nonnegative x. Thus
there exists a numberN -> 2(t + 2) so that (1 log /log N)a _-< 1 1/2 (log 34-)/log N for all
N >-_ Nt. Choose ct such that

(11) hc > max {4c’, 4t [log (t + 1)] }/log 34-,
and

U(t, N’) <- [log (t + 1)]N’+ ct(log N’)x for all N’ <-Nt.
We wish to show, by induction on N’, that

(12) U(t, N’) <- [log (t + 1)IN’+ ct(log N’)x for all N’.

Let N > Nt. Assume that (12) is true for all N’ <N. Then, by (7) and the induction
hypotheses,

U(t, N) <= [log (It/2] + 1)] IN + c’(log N)x’

+[log(t+l)]([N/2]+[t/2])+ct log
2
+1 +IN/2].

Using (8), (9), (11), and the fact N _-> Nt, we obtain

U(t,N) <- [log(t+ 1)]N+t[log(t+ 1)] + c’(log N)x-a + ct(log-]N)x

[log (t + 1)IN + c, (log N-log)x + c’(log N)x-a + [log (t + 1)]

<= [log(t+l)]N+c,(logN) 1-(log)/log +c’(logN)X-l+t[log(t+l)]

<- [log (t + 1)IN + c,(log N)x.
This completes the induction proof of (1.2).

We give a proof of (8)" all the identities involving ceiling and floor functions in this paper can be

similarly proved. Let 2 _-< <2+a, then2- + <= It/2] + 2. Both sides of (8) are thus equalto=k + 1. See
Knuth [5, 1.2.4] for more discussions of such identities.

BOUNDS ON SELECTION NETWORKS 569

We have completed the induction step in the proof of (10). Theorem 3.1 follows
from (10) and Alekseyev’s bound (2).

It is clear that (t, N)- selectors which satisfy the bound of Theorem 3.1 can be
explicitly constructed by following the inductive scheme illustrated in Fig. 3, using as
bases (1, N)-selectors and (2, N) selectors that achieve (1). As will be seen in 3.3, the
(3, N)-selectors thus constructed are optimal within a constant number of comparators.

3.2. Other sufficient conditions for U(t, N) [log (t + 1)IN. According to
Theorem 3.1, [log (t + 1)IN is the dominant term of U(t, N) for fixed as N-> .
Actually, this is true under more general situations. We have the following theorem"

THEOREM 3.3. Iff(N) O(N1/2-) for some fixed 0 < e < 1/2, then
U(f(N),N)

lim 1.
v-,oo N [log (f(N) + 1)]

COROLLARY 3.4. If 0 < o < 1/2, then

U(N’,N)
lim c.
N- N log N

Thus, for any satisfying t=O(N/2-), U(t,N) is well approximated by
[log (t + l)] N. We shall see that Theorem :3.3 (and hence Corollary 3.4) is a
consequence of the following theorem and Alekseyev’s lower bound [log (t + 1)] (N- t)
for U(t, N).

THEOREM 3.5. For <

(13) U(t, N) <_ [log (t + l)] N +12 [log (t + 2)] 3([log N])[log ((t + 1)/3)]

The proof of Theorem 3.5 will be given in Appendix A. Obviously, (13) provides
an alternative proof of Theorem 3.1. We have proved Theorem 3.1 separately because
it has a more elegant proof of its own, also the construction described there often yields
better networks than those obtained by the construction used in Appendix A.

Proof of Tkeorem 3.3. To prove that Theorem 3.3 follows from Theorem 3.5 and
Alekseyev’s lower bound, it is sufficient to show that, for O(N1/2-e) o(N(1-e)/2),

[log N]) O(NI_a)
[log ((t + 1)/3)]

for some constant 8 > O.

Write n= [logN], k= [((1- e)/2) log N] and a=k/n. Let H(x) by the binary
entropy function (x log (1/x)+(1-x) log (1/(1-x))). For large N,

[log N] n([log ((t + 1)/3)]) <-- (k)
n

k!(n -k)!

(42"n’n(n/e)n)0
x/2rran(n/e),x/2r(l_)n((l_)n/e)(_)n

--o(2n(’)n),

where we have used the monotonicity of (n] for 0 <=]<= In/2] and Stirling’s approxi-

mation (see, e.g. [5]). As H(x) increases strictly on [0,1/2], we have for large N,

570 ANDREW CHI-CHIH YAO

e)<H(1/2) landthus,

([lgN]) (2(1-)n
flog ((t + 1)/3)]

:O

O(NI-),
where 8 1-H(1/2-1/4e). This proves Theorem 3.3.

3.3. Lower bounds for U(t,N). Since U(1, N)=N-1 and U(2, N)=2(N-2),
it is an interesting question whether Alekseyev’s lower bound flog (t+ 1)](N-t) is
in general achievable for U(t, N). We shall give a new lower bound which shows that,
for most values of t, Alekseyev’s lower bound cannot be achieved.

THEOREM 3.6. If is not a power of 2, we have

U(t, N) >= flog(t+ 1)]N + (t- 2 tgt) log N + C(t)

]:or some function C(t).
Proof. We first prove the theorem for the special case 3, i.e., we will show

(14) U(3, N) => 2N-6 + flog IN/3]].

The basic idea of "pruning" a network used in this proof was originally used for
sorting networks (Green [4]). Let A be a.ny (3, N)-selector such as the one shown in Fig.
4a. We will show that, by removing at least flog IN/3] comparators from A and
reconnecting some of the lines, we shall be left with a (2, N- 1)-selector. This leads to
inequality (14) since

U(3, N)_-> U(2, N-l)+ flog IN/3]] =2N-6+ flog [N/3]].

We begin by numbering the lines of the network from the top as in Fig. 4a. If the
smallest element is input to the/’th line, for any 1 -<_/" <_- N, this element will always move
"upward" across any comparators encountered, and wind up on one of the top three
lines at the output end (see Fig. 4b). As runs from 1 to N, these N paths can be divided
into three groups according to the output line they lead to. One group will contain at
least IN/3] paths. We can look at this group of paths as a binary tree, regarding the
comparators contained in the paths as branch nodes (internal nodes), and the input
terminals as leaves. Since there are at least [N/3] leaves, there is a path with at least
flog [N/3] comparators connected to it (Fig. 4c). We can remove this path and all the
comparators incident with it (Fig. 4d). The resulting network looks different from a
standard network, as it may contain "twisted" lines. In particular, the N- 1 input lines
consecutively numbered from top down can appear in a permuted order at the output
end (the order is 1, 3, 2, 4, 5 in Fig. 4d). Also, a comparator across two lines and f with
</" may send the smaller element carried to line] (instead of i); for example, the last

comparator in Fig. 4d compares elements carried on lines 2 and 3 and sends the smaller
to line 3. Nevertheless, the resulting network (Fig. 4d) is functionally identical to a
(2, N-1)-selector, in that the two smallest input elements always appear in two
specified output lines. We now show how a (2, N- 1)-selector can be obtained from it.

By straightening out the lines while keeping the comparators attached to the same
set of lines, we obtain a network with two types of comparators" those that move a
smaller input to the upper line and those that move it to the lower line; we distinguish
the two types by associating the former with an "up" arrow and the latter with a "down"
arrow (see Fig. 4e). It is not hard to transform this network with "arrowed" comparators
(see Knuth [6, p. 236]) into a (2, N-1)-selector in the standard form with the same

BOUNDS ON SELECTION NETWORKS 571

(b)

(c)

,___I___[____V-,
(d)

i!

(e)

FIG. 4. "Pruning"a (3, N)-selector.

number of comparators, using the procedure described in Knuth [6, p. 239, Ex. 16]
originally developed for sorting networks. This completes the proof of formula (14).

For general t_-> 2, the above argument is easily extended to give

U(t,N)>-U(t-I,N-1)+ Fog FN/t]].

Theorem 3.6 follows by repeatedly applying the above inequality and using Alekseyev’s
bound (2),

U(2LlgtJ,N)>= [log (t + 1)] (N-2Ugd). 71

We conclude this section with the following theorem.
THEOREM 3.7. For N >- 5,

2N-6 + [log IN/a] _<- U(3, N) <_- 2N- 5 + [log (N- 3)J.

572 ANDREW CHI-CHIH YAO

Proof. We need only prove the upper bound. From Lemma 3.2, we have

(15)
U(3, N)=< U(3, [N/2] + 1)+ U(1, [N/2])+ IN/2]

U(3, IN/2] + 1) + 2 iN/2] 1.

Using U(3, 5) 6 and U(3, 6) 8 (see Knuth [6, p. 235]) as the basis of induction, and
making use of the identity

1 + [log (IN/2] -2)] [log (N-3)],

one can prove by induction from (15) that

U(3, N)_-< 2N- 5 + [log (N- 3)]. fi

Theorem 3.7 determines U(3, N) to within a constant of 2; as it is not hard to check
through case analysis (let N 31, 31-1, or 3/-2 with 2k-1< l--<_2) that, for N-> 5,

[log (N 3)] _-< 1 + [log IN].

4. New results concerning T(t,N). In this section a new inequality involving
T(t, N) is derived. With the help of this inequality, we can determine the asymptotic
value of T(t, N) for fixed and large N to within a term of the order log log log N. For
general values of and N, this inequality also provides a new method for deriving lower
bounds on T(t, N). As an interesting application, it is shown that the minimal delay time
for a sorting network with N inputs is at least 2.4 log N for large N.

4.1. Main theorem. This subsection is devoted to a proof of the following theorem
which forms the basis of all later discussions. Throughout this section we adopt the

-(k)is zero if k<j.convention that the binomial coefficient
f

THEOREM 4.1. T(t, N) satisfies the following inequality:

(16) t[log(t+ 1)] =2r(t.r-------- ([log(t+ 1)] -i)
T(t,N)

i=0

COROLLARY 4.2.

(17) T(t,N)>-logN+log[l (T(t’N))][log (t + l)] [logt]

Proof of Theorem 4.1. In a network that is divided into s levels, each line can be
viewed as being partitioned into s / 1 segments as shown in Fig. 5. Let us associate with
each line segment a weight as in Knuth [6, p. 234]:

1st 2nd 3rd 4th 5th
segment

FIG. 5. Dividing a network into segments.

(1) The first (i.e., the leftmost) segment of each line is assigned weight 0.
(2) If a line is not connected to any comparator at the/th level, then its weights on

the/th and the (l + 1)st segments are the same.

BOUNDS ON SELECTION NETWORKS 573

(3) Let mi and mj be the weights on the/th segments of line and j respectively
where < j and >- 1. If there is a comparator at the/th level between line and
line j, then on their (l + 1)st segments line has weight min (mi, m.) and line j
has weight max (mi, mi)+ 1.

An example of the weight assignment of a network is shown in Fig. 6.

0 0 0 0 0

o o o
o
"0 [o,1i

2

2 2

2 2

FIG. 6. Weight assignment of a network.

For a (t, N) selector with s levels, we define two s + 1 by flog tJ + 1 matrices
X (Xlk) and Y (Ylk) by letting

and

the number of lines whose/th segments have weight equal to k,

k

(18) Ylk (k+l--U)Xlu, /=l,2,...,s+l,
u=0

In particular, y lo N.

k=0,1,2,..., [logt].

Of course the difference y + 1,k Yl, k depends on the locations of comparators at the
/th level. A comparator at the/th level will not affect y l+l,k- Yl, k if at least one of its
input segments has weight exceeding k, because this type of comparator does not
change the number of lines with weights u for u <- k; only those comparators at the/th
level where the maximum weight of two input segments does not exceed k can affect
y 1/1, y,. In fact, it is easily seen that every such comparator contributes exactly -1 to
the difference Yl+l,k Yl, k.

LEMMA A.
0 <= Yl,k Y l+ 1,k 1/2(Xlo -- Xll -+’" @ Xlk).

Proof o[Lemma A. As mentioned above, Y/,k--Y/+l,k is equal to the number of
comparators at the /th level for which both input line segments have weights not
exceeding k. Clearly the number of such comparators is bounded by 1/2(xlo + Xll +" +
Xlk). ["]

LEMMA B.

(19)
Y/+I,0 gY/,o,

Yl+l,k (Yl,k + Yl,k-1), k >= 1.

.Proof ofLemma B. By definition of Yk,

Xlo Y/O, Xlo 21- Xll -" -" Xlk Ylk Y l,k-1, k > 1.

According to Lemma A, we have

Yz,o Y l+ 1,0 -< Yt,o

and

Yl,k Y/+ 1,k 1/2(Ylk Y l,k-1), k>=l.

This then leads to (19).

574 ANDREW CHI-CHIH YAO

LEMMA C.

Yi>- (/+1-i), l=l,2,...,s+l, /=0,1,2,..., [logtJ.
i=0

Proof ofLemma C. Use Lemma B and prove by induction.
We are now ready to prove Theorem 4.1. As was shown in Knuth [6, p. 235], when

the weight function is so defined, there are in a (t, N)-selector at most output lines
which have weight less than or equal to [log tJ. Therefore,

togt]

y+l,o, ([log tl / 1-i)xs+i,i
i=O

<-([log tJ +l)t= [log (t+ 1) t.

Note that we have used the identity [log (t + 1) [log t + 1 or all integers 1. On
the other hand, according to Lemma C

2 ([logt]+l-i)
s

(21) Ys+l,[logt] e i=0

Comparing (20) and (21), we obtain

() [o(+)] ([o(+1)]-)

This completes the proof of Theorem .I.

4.2. Vale ol (t,N) lot fixe t a large N. It is easy to transform
(t, N) selector into a (t- to, N t0)-selector by deleting the top to lines together with all
the comparators that are connected to them. This leads to,

() T(, N) T(- o, N- 0).

In particular, when N/2, we have

(2) T(t, N) T(I, N- + 1) [log (N- + i)] [log NJ- 1.

Formula (2) is true for all as T(t, N) T(N-t, N).
To derive a better bound than (2) we use (1),

(25) T(t, N), log N+log [1 (T(t, N)][log (t + l)] [logtJ}

Now, according to (24), T(t, N) [log N] 1. Thus, (25) implies

t[log (t + 1)] [log t]

For fixed and large N,

([log N] -1 ([log N]) tg O(log[lo] ([lo]

Therefore, (26) becomes

(27) T(t, N) log N + [log t] log log N + C(t) for some function C(t).

The next theorem states that the lower bound in (27) is actually a good
approximation to T(t, N) in the asymptotic sense. (We remark that it is easy to see that
T(1, N) [lo g]).

BOUNDS ON SELECTION NETWORKS 575

THEOREM 4.3. For any fixed >-2 and large N,

T(2, N) log N + log log N + O(1),

T(t, N) log N + flog tJ log log N + O(log log log N).

Proof. Because of (27), the theorem can be proved by exhibiting (t, N) selectors
that have the desired number of levels. The construction is quite similar to that used in
the proof of Theorem 3.5, and will be left to Appendix B.

4.3. More applications on Theorem 4.1. We shall develop a technique which
generates lower bounds for T(t, N) from formula (16). Let us state Theorem 4.1 in the
following form: For given t, N, let So be the smallest integer s satisfying

(28) [log (t + l)] -> [log (t + l)] -i)
i--0

then T(t, N) -> So.
Let A flog tJ + 1. The right-hand side of (28) can be written as

2 ,o (A-i)
s 1

1

N[(s-i) - (s-i)]=2--7 (A-i) + Z (A-l-i)
i=o i=o

2 (a-it
s-1

<z7 i;o

Thus, the right-hand side of formula (28) is a decreasing function of s for fixed and N.
Therefore, any s that violates (28) will satisfy So > s, and, as a consequence, T(t, N) > s.
This leads to the following procedure:

A TECHNIQUE FOR aENERATINa LOWER BOUNDS. For any given t, N, find an s
violating (28). We then have T(t, N) > s.

To see how this technique works, we prove the following theorem.
THEOREM 4.4. For N >- 2 and N/(2 log N) = _-> 2,

(29) T(t, N) _-> 2 [log t].

Pro@ Let s 2 [log t]. The right-hand side of (28) is equal to

X [logt]

() s [lt]
2 2 [log (t + l)] i)

s

i=o =o

=>22i=o =-"
The left-hand side of (28) is equal to

N
t[log (t+ 1)] t([log tJ + 1) <

2 log N
N

(logN-log log N)_-<.
Thus (28) is not true for s 2 flog tJ. This proves T(t, N) _-> 2 flog tJ.

It should be pointed out that a slightly different form of (29) can be derived in
another way. Noting that each level can contain at most N/2 comparators, we can
combine the inequality T(t, N)>= U(t, N)/(N/2) with Alekseyev’s lower bound (2) to
obtain a result similar to (29).

576 ANDREW CHI-CHIH YAO

The following theorem is a more interesting application of our technique.
THEOREM 4.5. Let ao 1/(3(2-1og 3)) 0.8. For any fixed e >0, there exists a

number f(e) such that

(0) r([No] N) > -e logN(2.41-e)logN
2-log 3

]:or all N >- f(e).
COROLLARY 4.6. There exists a function g(e) such that,

(1T(t,N) > -e logN
2-log 3

for all N >- g(e) and N/2 >-_ >-N%.
Proof of Theorem 4.5. Let eo > 0 be any fixed number. Without loss of generality

we can assume e satisfies eo > e > 0. We shall choose eo to be small enough such that
eo < ao and that

h(e)>0 for alleo>e>0,

where

oo(3 (1
The existence of e0 is guaranteed by the facts h(0) 0 and h’(0) 2-log 3>0.

Now, let t= [N], and s= [(1/(2-1og 3) e) log N] [(3ao-e)logN]. We
shall prove that (28) is not satisfied when N is sufficiently large. This then implies the
theorem.

To prove our assertion, we observe that for large N, Stirling’s approximation yields

[(3ao- e log N]
[Ceo log N])

((3ao e) log N)!
(ao log N) !((2ao- e) log N)!

e) log N((3a-x/2r(3co-
\

e) log N)e

(3ao--e) log N

(ao log N)
’gv

N((2ao-e)logN)42rrao log N 427r(2ao e) log
e e

constant
1 N(3o-e) log (3ao-e)-a log ao-(2ao-e) log (2ao-e)

x/log N

Therefore, in formula (28)

(2ao--e) logN

right-hand side-> (r(3ao s) log N]
[ao log N]

1
_-> constant, x/log N

Nl-(3-e)

N(3ao- log (3 ao--)--o log ao--(2ao-- log (2ao--

BOUNDS ON SELECTION NETWORKS 577

After some algebraic manipulation, we have,

"log NN%Nh()(31) right-hand side -> constant.
41

However, the left-hand side of (28) is equal to

(32) left-hand side flog (t + 1)] <- constant. N (a0 log N).

Since h(e)>0, a comparison of (31) and (32) shows that, for sufficiently large N, the
right-hand side of (28) is greater than the left-hand side. This is a violation of (28). We
have proved our assertion.

Corollary 4.6 can be obtained in the following way: First we use (23) to get,

T(t, N) >- T(N%, N +N"o t) >= T(N,).
A lower bound for T(N, N/2) can be obtained in exactly the same way as that for
T(N, N). This leads to the corollary.

An interesting consequence of Theorem 4.5 is that, for a sorting network with N
inputs, the delay time is at least 2.4 log N for sufficiently large N. This result seems to be
new.

Remarks. For simplicity, we have treated (3a0- e) log N, a0 log N as if they were
integers in the proof of Theorem 4.5. It is straightforward to modify the proof
(bound Ix]! by (x + 1)! or (x- 1)!) to make it completely rigorous.

5. Conclusions. In this paper, bounds have been given on the minimal "cost" and
"delay time" of selection networks built of comparators. In particular, we have
identified the leading asymptotic terms of U(t,N) and T(t,N) for fixed t. Many
questions still remain open. For example,

(1) What is the exact value of U(3, N)?
(2) What is the order of magnitude of U(N/2, N) as N oe? Does

U(N/2, N)
lim exist?
N-, N log N

(3) What is T(N/2, N)?
(4) When the inputs are restricted to be Boolean variables, a comparator can be

replaced by a pair of "AND" "OR" logic gates. In this case, networks of
comparators are logic circuits of a special type. By adding t- 1 comparators
between the top output lines of a (t, N)-selector, one can obtain a network
whose tth output line contains the tth smallest of the inputs. Replacing the
comparators by "AND" "OR" pairs of gates yields a monotone circuit
(consisting only of "AND OR" gates) that computes the tth order
symmetric function of n input Boolean variables. Our results (Theorem 3.1)
show that 2 flog (t + 1)] n gates are sufficient as n . Question: Do there
exist much better (in terms of the number of gates) general monotone circuits
for the symmetric functions?

Appendix A. Proof of Theorem 3.5. Let f(t, N) be a function (to be defined later)
that satisfies f(t, N)>= t. We shall construct a family of networks E(t, N) called (t, N)-
eliminators with the following property: Of the N output lines of E(t, N) there are
f(t,N) designated lines among which the smallest elements are found for any
permutation of the inputs.

578 ANDREW CHI-CHIH YAO

According to Alekseyev’s upper bound (2), there exists a (t, f(t, N))- selector F
(dependent on and N) that contains (f(t,N)-t)(1 +2(t)/t)<=3[log (t+2)]2f(t, N)
comparators.3 We can append this network F to the (t, N)-eliminator E(t,N) by
making the [(t, N) designated output lines of E (t, N) the inputs to the network F. Figure
A.1 shows such an arrangement. Clearly this gives us a (t, N)- selector.

E(t,N)

f(t, N)

FIG. A.1. Construction of a (t, N)-selector.

If g(t, N) is the number of comparators contained in E(t, N), then the total number
of comparators in the (t, N) selector of Figure A.1 is bounded from above by

g(t, N) + 3 [log (t + 2)] 2f(t, N).
We have proved

LEMMA A. 1.

(A.1) U(t, N) <- g(t, N) + 3 [log (t + 2)] 2f(t, N).
We shall now define f(t, N), E (t, N), and derive upper bounds for g(t, N). They can

then be substituted into (A.1) to prove Theorem 3.5.
Network E(t, N). E(t, N) and f(t, N) are derived inductively as follows:
(a) f(1, N) 1, f(2, N) 2. Networks E(1, N) and E(2, N) are shown in Figs. A.2

and A.3, respectively.
(b) t->3:

(i) If >_- N, then f(t, N) N and E(t, N) contains no comparators.
(ii) If < N, then f(t, N) is given by

(A.2) f(t,N)=f(t, [N/2])+f(Lt/2], [N/2]),

and E(t, N) is defined as in Figure A.4. (Note that of the smallest
input elements, at most It/2] will be input to E(It! 2], IN). This
insures that the construction gives a (t, f(t, N)) eliminator.)

Batcher’s sorting
+2g(t)/t<-_3[log(t+2)] 2.

FIG. A.2. The network E(1, N).

network [1] gives (t)<_-(l+ [logt]2/4)2 rgtl<- [log (t + 2)] 2t. Hence

BOUNDS ON SELECTION NETWORKS 579

FIG. A.3. The network E(2, N).

N

E(t, [N/21)

E(Lt/2J, [N/21)

FIG. A.4. The network E(t, N) when 3 <= < N" the f(t, N) designated output lines are the union of the
designated lines orE(t, IN/2]) and E([t/2J, [N/2J).

Clearly, the networks E(t, N) as defined are (t, f(t, N))-eliminators.
From this construction, we have

(A.3)

0

N-1
g(t,X)=

2N-4
(g(t, IN/2]) + g([t/2J, LN/2]) + {N/2J

LEMMA A.2. For t, N >- 1,

if t>=N,
if I<N,

if =2<N,
if 3 <=t <N.

(A.4)
g(t,N)<= [log (t+

< 21-/’ rlof(t, N)

Proof. We prove the lemma by induction in the lexicographic order of (t, N). We
will only show the inductive step. Let _-> 3. One can verify it directly for N _-< t. For
N > t, we have

g(t, N) g(t, [N/21) + g([t/2], [N/2]) + [N/2J
_-< [log (t + 1)] [N/21 + [log ([t/2l + 1)1 IN/2] + IN/2]

{log (t + 1)] [N/2] +([log (t+ 1)]- 1)IN/2] + [N/2]

[log (t + 1)IN,

580 ANDREW CHI-CHIH YAO

and, using the notations h, h’ (with h 1 + h’) as in the proof of Theorem 3.1,

f(t, N)=f(t, [N/2])+f([t/2], IN/2])

))=o =o

i=o i-1

=2 i (flog r/all+1).
i=o

=o

We have used the monotonicity of (n) in n and the identity rlo N? rlo rN/?? +

for N_-> 2 in the last derivation. [3

Substituting (A.4) into (A.1), we obtain

rlog((t+l)/3)l (rlog N])(A.5) U(t,N)<--rlog(t+l)]N+6rlog(t+2)l 2 Z

Now, if < 4,
rlog N] rlog N1) <-(rlog ((t + 1)/3)]

for all k 0, 1, 2,. , rlog ((t + 1)/3)]. Therefore (A.5) implies

U(t, N) <_ [log (t + l)] N + lZ [log (t + 2)] 3([log N])[log ((t + 1)/3)]

for < /. This completes the proof of Theorem 3.5.

Appendix B. Proof of Theorem 4.3. It suffices to exhibit (t, N)- selectors (t => 2)
with the desired delay time. As the construction is very similar to that in Appendix A,
we shall only sketch the proof.

Define networks E’(t, N) recursively as in Fig. B.1. It is easy to see that E’(t, N) is a
(t, f’(t, N)-eliminator, where f’(t, N) is given by

f’(1, N) 1,

f’(t,N)=N, if t>=N,

and

f’(t,N)=f’(t, [N/21)+f(Lt/2], LN/2]) if N>t>-2.

By induction, one can prove (cf. the proof of Theorem 3.1) that

(B.1) f’(t, N) O((log N)tlogtl) for fixed => 2.

It is also easy to check that the delay time of E’(t, N) is at most [log N].
We now define a (t, N)-selector for fixed _-> 2 and large N. We let the N input

lines first go through the network E’(t, N), and then feed the f’(t, N) output lines that
are known to contain the smallest elements into a network E’(t,f’(t, N)). The

BOUNDS ON SELECTION NETWORKS 581

(a) E’(1, 2)

N

E’(1, IN/2])

(b) E’(1, N) for N_>_3.

N

(c) E’(t,N) for t>=N.

E’(t, IN

E’([t/2J, [N/2J) }
(d) E’(t, N) [orN > >- 2.

FIG. B.1. The definition of E’(t, N); the designated output lines are the union of the designated lines of
E’(t, IN/2])and E’([t/2J, IN/2/).

NI(f’(t, f’(t, N))) output lines that may contain the smallest elements are then fed
into an E’(t, N1), whose N2(f’(t, N1)) output lines containing the smallest elements
are then fed into a Batcher’s sorting network [1] to complete the (t, N)-selector (see Fig.
B.2). As the Batcher’s network with n inputs has delay time O((log n)2), the (t, N)-
selector we constructed above has delay time

s [log N] + [log f’(t, N)] + [log N1] + O((log N2)2).

Using the bounds given by (B. 1), we obtain that, for any fixed => 2,

(B.2) T(t, N) <=log N + [log t] log log N + O(log log log N).

To complete the proof of Theorem 4.3, we need to show that the O(log log log N)
term can be replaced by O(1) in the case 2.

Consider the network E’(2, N), It is easy to see from the construction that in the
output end, the minimum element always appears in either of the top two lines, and the
2nd smallest element may appear in one of some f’(2, N) lines (which include always the
top two lines). A (2, N)-selector with delay time no greater than [log N] +1 +

582 ANDREW CHI-CHIH YAO

[log N] levels [log N1] levels

N E’(t,N)

[log f’(t, N)] levels

J
.’
E (t, f’(t, N))

N
E’(t, N)

Batcher’s network

FIG. B.2. The construction of a (t, N)-selector with delay time log N+ [log tJ loglogN+
O(log.!og log N); N1 f’(t, f’(t, N)), N2 f’(t, NI).

[10g (f’(2, N)- 1)] can be constructed by cascading an E’(2, N) with a single compara-
tor between the top two lines and an E’(1, f’(2, N)- 1) (see Fig. B.3). This proves

T(2, N) -<log N + log log N + O(1).

E’(2, N)

f’(2, N)-
E’(1, f’(2, N)- 1)

FIG. B.3. A (2, N)-selector with delay time log N + log log N + O(1).

The proof of Theorem 4.3 is completed. [

Acknowledgment. A preliminary version of this paper was presented at the 15th
IEEE Symposium on Switching and Automata Theory, October 1974.

REFERENCES

K. E. BATCHER, Sorting networks and their applications, Proc. AFIPS Spring Joint Computer Conference
32 (1968), AFIPS Press, Montvale, NJ, 1968, pp. 307-314.

[2] R. L. DRYSDALE III AND F. H. YOUNG, Improved dividemerge sorting networks, this Journal, 4
(1975), pp. 264-270.

[3] M. W. GREEN, Some improvements in non-adaptive sorting algorithms, Proc. 6th Annual Princeton
Conference on Information, Sciences and System, 1972, pp. 387-391.

[4],Some observations on sorting, Cellular Logic in Memory Arrays, Final Report, Part 1, SRI Project
5509, Stanford Research Institute, Menlo Park, CA, 1970, pp. 49-71.

[5] D. E. KNUTH, The Art of Computer Programming, vol. 1, 2nd edition, Addison-Wesley, Reading, MA,
1973.

[6], The Art of Computer Programming, vol. 3, 2nd printing, Addison-Wesley, Reading, MA, 1975.
[7] F. F. YAO, unpublished manuscript, 1974.

SIAM J. COMPUT.
Wol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0903-0011 $01.00/0

AN OPTIMAL ALGORITHM FOR SYMBOLIC FACTORIZATION
OF SYMMETRIC MATRICES*

ALAN GEORGE," AND JOSEPH W. H. LIU$

Abstract. A fundamental problem in the computer solution of a sparse, N by N, positive definite system
of equations Ax b is, given the structure of A, to determine the structure of its Cholesky factor L, where
A LLT. This problem arises because it is often desirable to set up a data structure for L before the numerical
computation is performed, and in order to do this we must know the positions of the nonzeros of L. We
describe a representation tL for L which typically requires far fewer data items than the number of nonzeros in
L, and an algorithm is then described which generates .. The time and space complexity of the algorithm is
shown to be o(Ial, I1), and can never be worse than O(Itl). Here I,.I denotes the number of items in the
data structure for L, and IAI and ILl denote the number of nonzeros in A and L respectively. For a certain class
of problems, we show that the execution time of the algorithm is O(N), even though ILl is O(N log N). We
also provide some numerical results showing that the algorithm can be implemented so that the program
performance reflects its theoretically predicted behavior.

Key words. Symbolic factorization, sparse matrices, linear equations

1. Introduction. Consider the symmetric positive definite system of linear equa-
tions

(1.1) Ax=b,

where A is N by N sparse. If we solve (1.1) using Cholesky’s method, the system is
usually first reordered by an algorithm such as the minimum degree algorithm, so that
its Cholesky factor suffers low fill-in. We do not deal with this reordering problem here,
and simply assume that (1.1) has already been reordered appropriately.

Since L is sparse, the next step in the solution process is to construct a data
structure for L, so that only its nonzeros are stored. In order to do this we must know the
positions of the nonzeros of L, leading to the problem which we deal with in this paper.
That is, given the structure of A, we want to determine the corresponding structure of its
Cholesky factorization. Since the process is entirely logical, involving no numerical
computation, it is often referred to as "symbolic factorization."

At least two.such algorithms for computing the fill-in (or the structure of L) have
been described in the literature [8], [9]. The algorithms are quite similar, and their time
complexity has been shown to be O(ILI), where ILl denotes the number of nonzeros in
L. If the desired output of the algorithms is the positions of the nonzeros in L, then the
immediate implication is that these algorithms are asymptotically optimal.

However, in practice, the reason for performing symbolic factorization is to
construct a storage scheme for L, and very often these data structures involve far fewer
than ILl items of information [9]. For example, for one such data structure and problem
class, the number of data structure pointers etc. is O(N), even though ILl is O(N log N)
[3]. In this context it seems reasonable to regard an algorithm as optimal only if its
execution time and its space requirement are both O(]LI, IAI), where L is the
representation used to describe the structure of L.

In this paper we describe an algorithm for symbolic factorization which generates a
specific representation for L. The time complexity of the algorithm is shown to be

* Received by the editors September 15, 1978, and in revised form August 7, 1979. This research was
supported in part by the Canadian National Research Council under Grant A8111.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
$ Systems Dimensions Ltd., 111 Avenue Road, Toronto, Ontario, Canada.

583

584 ALAN GEORGE AND JOSEPH W. H. LIU

optimal in the above sense (i.e., o(1 1, [A[)) and can never be worse than O([LI). For a
special class of finite element problems, appropriately ordered, we show that the
execution time of the algorithm is O(N), even though [L[is O(N log N).

In general, we note that the representation produced may not be optimal with
respect to [L[. However, the algorithm is optimal for producing this representation.

Our algorithm has another important feature not present in previous algorithms.
The algorithm does not use any of its output during execution; it operates only on the
graph of A. Thus, if insufficient space is available to retain L, it can be discarded; the
algorithm can still execute and determine the number]L], thus furnishing the amount
of space needed for 5L. Alternatively, L can be written on secondary storage as it is
generated. In either case, we argue that our algorithm is optimal in terms of space
requirements.

An outline of our paper is as follows. In 2 we describe a useful representation L
for the structure of L which is the basis for at least two efficient storage schemes for
sparse matrices [3], [9]. Section 3 contains a review of a quotient graph model of
symmetric factorization, developed by the authors in [5]. Section 4 contains a
development of the symbolic factorization algorithm, using the quotient graph model,
and 5 contains an example illustrating that its execution can be of an order lower than

ILl. Section 6 contains a few numerical experiments showing that the algorithm can be
implemented efficiently, along with a discussion of its advantages and disadvantages
compared with alternative symbolic factorization algorithms.

2. Representation of the structure of L. In this section we consider the problem of
efficiently representing the structure of the lower triangular matrix L. This task is clearly
fundamental in the design of an efficient data structure for storing L.

It is often true that when symmetric Gaussian elimination is applied to matrices
which have been ordered so as to suffer low fill-in, the resulting factor L has many
"similar" columns. That is, for some column k, there are several columns/’,/" > k, having
essentially the same nonzero structure. This fact motivates the following definition.

Given anN byN lower triangular matrix L, column k is a representative for column, j > k, if and only if for all >= j, Lii 0 =) Lik O. Simply stated, column k represents
column j if they have identical structure below position j. Note that column k represents
itself.

If we know the structure of column k, and we know which columns it represents,
then their structure is completely determined. Since we are interested in representing
the entire structure of L, we are led to the following definitions.

A representative map for L is an ordered set of integers (m, m2, , raN) such
that 1 =< mi <=. f, and such that m k implies that column k is a representative for column
/’. The subset J//* c J// consisting of distinct members of yP/is called a representative set
for L. Finally, a representation for L by J//is the set t, where t is given by

L {(i, J) J *, L 0}.

An example illustrating these definitions is given in Figure 2.1.
A representative map is said to be monotone if mi --< mi+l, 1 <_- < N. In this case it is

clear that //* and L are sufficient to describe the structure of L, since J// can be
inferred from

3. The quotient graph model of symmetric elimination.
3.1. Graph theoretic preliminaries. Symbolic factorization is the process of

simulating the numerical factorization of a given matrix A in order to obtain the
zero-nonzero structure of its factor L. Since the numerical values of the matrix
components are of no significance in this connection, the problem can be conveniently

SYMBOLIC FACTORIZATION OF SYMMETRIC MATRICES 585

L--

X X

X X X

X X X X X

X X X X .X X

X X X

X X X

2 3 4 5 6 7 8 9 10

(1, 2, 3, 4, 4, 6, 1, 6, 4, 6)

* {1, 2, 3, 4, 6}
L {(7, 1), (8, 1), (3, 2), (s, 3), (7, 3), (8, 3), (5, 4), (7, 4), (8, 4), (9, 4), (10, 6)}

FIG. 2.1. An example illustrating the sets JA, J/g* and L.

studied using a graph theory model. The readers are assumed to know the basic notions
in graph theory, reference to which can be found in 1]. We now introduce some more
definitions and establish results that are pertinent in the study of the elimination
process.

Let G (X, E) be a given undirected graph.. Consider a subset S X and a node
y 6 X S. The node y is said to be reachablefrom a node x through S if there exists a path
(x, s1,’’’, s,, y) such that si 6 S for 1 <_-i <-t. The reachable set of y through S is then
defined to be

Reach (y, S) {x X- Six is reachable from y through S}.

A related notion is the neighborhood set of y in S, which is the subset

Nbrhd (y, S) {s Sly is reachable from s through S}.

For convenience in later discussions, we define the closure of y in S to be

Closure (y, S) Reach (y, S) 1.3 Nbrhd (y, S) I..J {y }.
We now review the relevance of these notions in Gaussian elimination. Let A be

an N by N symmetric matrix. The labeled undirected graph of A, denoted by
GA (XA, EA), is the one for which XA is labeled from 1 to N:

xA--{X1, X2, ,XN},

and {xi, xi} EA if and only if Aii O.
Let A LLr, where L is the Cholesky factor of A. The matrix F L +Lr is called

the filled matrix of A and the corresponding graph Ge= (XA, E:) the filled graph of
GA. The following result relates Ee directly to EA using the reachable set notion. This
idea was discovered independently in [8]. Let Si--{Xx,’",xi} for l<-i<-N and
So= .

LEMMA 3.1 [4]. Let
xi Reach (xi, Si-).

COROLLARY 3.2 [4]. --[/=1 IReach (xi, Si-a)I.

586 ALAN GEORGE AND JOSEPH W. H. LIU

In subsequent sections of this paper, these various graph theoretic notions will be
applied to different graphs. When the graph is not clear from context, we will attach the
appropriate subscript to the nomenclature. Thus, notations of the following type will be
used" Adjo (y), dego (y), Reacho (y, S), etc.

3.2. The quotient graph model. In [5], the authors introduced a quotient graph
model for the study of the Gaussian elimination process. We now briefly review this
model.

The central notion is that of a quotient graph. Let G (X, E) be a given graph. Let
be a partitioning of the node set X"

That is, t_J = Yk X and Y f’l Y for #/’.
The quotient graph of G with respect to is defined to be the graph (, g’), where

{Yi, Y} g’ if and only if Yi f’) Adj (Y)# 0. This graph will be denoted by G/.
An important tyle of partitioning is that defined by connected components. Let S

be a subset of X. The component partitioning (S) of S is defined as

re(S) ={Y SI G(Y) is a connected component in the subgraph G(S)}.

This can be extended to a partitioning on X. We define the partitioning on Xinduced by S
to be

We are now ready to model the elimination process as a sequence of quotient
graphs. Let GA (XA, EA) be the graph and xl, x2, , xN be the sequence of node
elimination. As in 3.1, let Si={Xl, ,xi} for l<-_iNN and So .

Consider the partitioning (Si) induced by S and the corresponding quotient
graph G/’(S). We shall denote this quotient graph by i. In this way, we obtain a
sequence of quotient graphs

We quote the following result from [5].
THEOREM 3.3. For y

Reach, ({y}, (Si)) {{x}lx Reach, (y, Si)}.

By Lemma 3.1, the filled graph Gv is characterized by the set of reachable sets
Reacho,, (xi, Si-x). Then, the above theorem implies that the filled graph can be
implicitly represented by the sequence of quotient graphs.

The primary advantage of the quotient graph model is that its computer imple-
mentation is very efficient. In particular, it can be implemented in space proportional to
the number [Ea[of nonzeros in A. The in-place implementation of the model relies on
the following results quoted from [5].

THEOREM 3.4. Let di ((Si), gi), 1 <-_ <-N, be the sequence of quotient graphs.
Then, for 1 <- <-N

(Si/l)] =< (Si)[,
and

THEOREM 3.5. For x Si+l

IAdj ci+ ({X})[-< IAdj ({x})l.

SYMBOLIC FACTORIZATION OF SYMMETRIC MATRICES 587

For details of the in-place implementation, the reader is referred to [5]. In the next
subsection, we shall consider some properties of the induced partitionings (Si).

3.3. The component partitionings (Sj). In the formulation of the quotient graph
model, the sequence of node subsets

S1,$2,.’. SN
defines a sequence of component partitionings

((Sl), ((S2),""", ((ff(SN).

We first establish the relation between (9(Si_1) and ((Si) through a series of lemmas.
LEMMA 3.6. Nbrhd (xi, Si-1)= D{Y (Si-1)]xi Adj (Y)}.
Proof. Consider any Y(Si-1) with xisAdj (Y). For y s Y cSi_l, since

xi Adj (Y), y is reachable from’a subset of Y and hence y s Nbrhd (xi, Si-1).
On the other hand, consider y s Nbrhd (xi, $i-1). Let (xi, sl, , st, y) be a path

where {sl," , st, y}= Si-1. Define Y ’(Si-1) such that {sl," , st, y}c Y. Clearly
Adj (Y) contains xi and hbnce the result follows. 71

LEMMA 3.7. {xi}ONbrhd (Xi, Si-1) ((Si).
Proof. Clearly {xi}UNbrhd (xi, Si-1)c Si and is connected. That it is a maximal

connected set in G(S) is left as an exercise.
THEOREM 3.8.

((ff (Si) {{xi } J Nbrhd (x,, Si-1)} .J { Y c(S,_1)[x, Adj Y)}.

Proof. The proof follows from Lemmas 3.6 and 3.7. q
We now establish an interesting property on the component partitionings (Si).

Define the set -- LA {%(S,)[1i N},
that is, contains all the component subsets in all (S).

THEOREM 3.9. {{X} Nbrhd (xi, Si-1) 1 <= <= N}.
Proof. By Lemma 3.7, it suffices to show that

(Sg) c {{xg} t.J Nbrhd (x, Sg-1) 11 -< _-< N}

for k 1,..., N. But this can be proved by induction on k using Theorem 3.8.
There is therefore a one-to-one correspondence between the node set X and the

component set . Indeed, the mapping is given by

xi <=> {xg} U Nbrhd (x, $-1).

This correspondence will be useful in establishing complexity bounds for the symbolic
factorization algorithm. The following result relates the set with Reach (xi, Si-1).

LEMMA 3.10. Reach (xi, $i-1)= Adj ({xi} U Nbrhd (xi, Si-1)).

4. Symbolic factorization using the quotient graph model.
4.1. Symbolic factorization. Consider a symmetric matrix A with Cholesky factor

L. Let GA-- (XA, EA) be its associated graph, where

xA--{XI, X2,

In view of the result of Lemma 3.1, symbolic factorization of A may be regarded as the
determination of the sets

Reacho (xi, {X1,""", Xi-1})

for 1,...,N.

588 ALAN GEORGE AND JOSEPH W. H. LIU

These reachable sets in the graph GA can, however, be determined in terms of the
structure in the quotient graphs. The correspondence is given in Theorem 3.3. With this
connection, we can state a symbolic factorization algorithm in terms of quotient graphs.

Step O. (Initialization) Let So Q, o GA/c(So).
Also put - 1.

Step 1. (Reachable set determination) Find the reach set

Reach,_ ({xi}, (-(Si-1))

in the quotient graph
Step 2. (Quotient graph transformation) Form Si Si-1 .J{Xi} and (Si) as given

by Theorem 3.8.
Perform the in-place transformation [5] of the quotient graph 3g from
3i-1, where

i GAI (Si).

Step 3. (Loop or stop) Set ,-- + 1. If > N, stop; otherwise go to Step 1.
To consider the complexity of the algorithm, we first study the overall contribution

from Step 1. The next lemma shows that it is bounded by O([EFI). In the next section,
we shall show that Step 2 can be implemented with the same bound. Thus, it is an
O([El) algorithm.

LEMMA 4.1. The overall complexity in the reachable set determination step is
O(IE I)o

Praaf. Consider the ith step in determining

Reach,_, ({xi}, ((Si-1)).

This can be done by inspecting

Adj,_, ({xi}) and Adj,_l (Y),

for every Y (Si_I) Adj,,_1 ({xi}). By Theorem 3.5,

E [Adj,_l({Xi})l2 IAdjo (Xi)[--" O(IEA]).

On the other hand, by Theorem 3.9 and Lemma 3.10,

2 {IAdj,_,(g)ll g (Si-1) Adj,_l({x})}

2 {[Adj (g)ll g W}

{[Reach (xi, Si-1)[1 -<i -< N}

Combining, we have shown that the complexity is

4.2. Incomplete quotient graph transformation. In this section, we shall introduce
the technique of incomplete transformation, which helps to reduce the amount of work
in Step 2 of symbolic factorization as described in 4.1. This basic idea is similar to that
exploited by Rose et al. [8] and Sherman [9], although here the technique is presented in
the context of quotient graph transformations. We first prove a lemma. Recall that

=U{(S)II<=i<-_N}.

SYMBOLIC FACTORIZATION OF SYMMETRIC MATRICES 589

LEMMA 4.2. Let Y 2T. Then Y Adj,,_1 ({xi}) if and only if
min {k[xk Adjo(Y)} i.

Proof. (if). Assume min {k[xk Adjo (Y)} i. By Theorem 3.9, let

Y {xj} U Nbrhd (xj, $--1).

Since the minimum subscript of neighbors of Y is i, by Theorem 3.8, we have

Y c(S.) ((Sj+l) 0 ((Si-1).

In other words, Y (Si-1) so that Y Adj,,_ ({xi}).
(only if). Assume Y6Adj,_l({xi}). Clearly we have xiAdjo (Y).

If Y={xi}UNbrhd (xi, S.-1), we have Yc(S)71 (3(Si_). That means
Adj (Y)71 (xi+,..., xi-} Q, and hence the result. E3

The idea of incomplete quotient graph transformation is based on Lemma 4.2. In
performing the transformation

(i--1 (((Si--1), ’i--1) "-) i ((/(Si), i),

if Y {x} (_J Nbrhd (x, S_x), the complete transformation requires the setting up of

Adjv, (Y)= {{x}lx e Adjo (Y)}

and for x Adjo (Y),

Adj,, ({x}) (Adj,_ ({x}) U { Y}) f’) q(Si).

However, in view of Lemma 4.2, we do not have to form all the Adj,, ({x}) for every
x 6Adjo (Y). Instead, the neighbors update need only be performed on the
x 6 Adjo (Y) with the smallest subscript. Thus, we have proved the following result.

LEMMA 4.3. The overall complexity in the iticomplete quotient graph step is O(IEFI).
4.3. Mass symbolic elimination. The results of Lemmas 4.1 and 4.3 imply that the

symbolic factorization process can be implem6nted in time proportional to O(IEF[). In
this section, we discuss another enhancement so that the time complexity becomes
O(]1), where L is the representation used to describe the structure of L, discussed in
2.

The idea for the enhancement is motivated from an implementation of the
minimum degree algorithm by the authors [4]. We first quote some results about
reachable sets.

Let G (X, E). Consider a subset S c X, and a node y $.

LEMMA 4.4. Let x X- S. If
Adj (x)c Closure (y, S),

then Reach (x, S) Reach (y, S) CJ {y }.

COROLLARY 4.5. Let x be as in Lemma 4.4. Then

Reach (x, S t3 {y }) Reach (y, S).

Proof. Consider any u Reach (x, S t_J {y }). Clearly u # y. If u can be reached from
x via S, it follows from Lemma 4.4 that u Reach (y, S). Otherwise, the path from x to u
via S U {y} has to go through the node y; again this implies u 6 Reach (y, S). [3

LEMMA 4.6. If x Reach (y, S), then

Reach (x, S U {y }) Reach (y, S) {x }.

590 ALAN GEORGE AND JOSEPH W. H. LIU

Proof. Consider any u Reach (y, S)-{x}. There exists a path u, S1, St, y
where {s 1, , st} c $. However, x Reach (y, S), which implies there exists one from y
to x through S,

By joining the two paths, we see that u is reachable from x through S U {y}.
THEOREM 4.7. Let x X- S. If

and

then

x Reach (y, S)

Adj (x)c Closure (y, $)

Reach (s, S kJ {y}) Reach (y, S) -{x}.

Proof. The proof is a direct consequence of Corollary 4.5 and Lemma 4.6.
The result in Theorem 4.7 can be used to speed up the symbolic factorization

algorithm. After the reachable set

Reich,,_1 ({Xg}, (Sg-x))

has been determined at Step 2, the two conditions in Theorem 4.7 can be tested for the
node {Xi/x} in i-1. If they are satisfied, we have immediately the reach set for {Xg/x}.
This can be applied repeatedly to

{X+l}, {x+},.

until one that violates either of the two conditions is encountered. Only then, the
quotient graph transformation step is performed.

In this way, we need only examine the adjacent sets Ad] (Xg+l), Adj (xg+2), in
order to find the reachable sets

Reach (xg+l, Sg), Reach (xg+2, Sg+l), ".

Moreover, these reachable sets can be represented implicitly by that of xg. Thus, a set

[: {Xil, Xi2, ", Xir}

of representatives is defined naturally by the algorithm, where each xi represents the
immediately succeeding nodes until the next representative xi+l.

Let IReach (xg, Si-l)[, It follows then that the complexity of the
improved algorithm is O(IEa]+[[). In the next section, we consider a practical
example where the improvement is significant.

5. An exampleNested dissection on an n n grid. To demonstrate the
effectiveness of the algorithm in 4, we consider the nested dissection ordering [3], [6]
of the n n regular grid. Figure 5.1 shows such an ordering on the 10 10 grid problem.

It has been established that the nested dissection strategy produces orderings that
are optimal in the order of magnitude sense. With such orderings, the amount of
arithmetic required to factor the matrix problem is O(n 3) and the number of nonzeros
in the factored matrix is O(n 2 log n).

We now consider the symbolic factorization of the grid problem with such

orderings. On applying the improved algorithm in 4, we note that the nodes in the

"dissectors" (nodes grouped by encircling lines in Fig. 5.1) satisfy the conditions in

SYMBOLIC FACTORIZATION OF SYMMETRIC MATRICES 591

78 77

76 75

74 73

85 68 67 100

84 66 65 99

[83 (70 6,) 98

i82 64 63 97

72 71 181 62 61 96

89 88 87 86) 95

54 53 60 46 45 94

52 51 59 44 43 93

(,.6, 55) 581 (4.8 4?) 92

50 49 57 42 41 911

29 28

27 26

36 20

35 19

25 24 33 18

23 22 32 17

40 39 38 37)
10 9 116 3

8 7 15 2

(12 I!) 14

6 5 13

FIG. 5.1. A nested dissection ordering of a 10 x 10 grid.

Theorem 4.7. Thus, as far as the symbolic factorization is concerned, a dissector can be
represented by the lowest subscripted node in it, and such representation is in fact set up
by the enhanced algorithm.

With the so-defined representative set, let s(n) be the number of nonzeros in the
representative columns of the factored matrix for the n x n grid. That is, s(n) is the
corresponding size ILI. It is easy to establish the following recursive equations:

s(n) <-g(n) where g(n)<= 12n +4g().
On solving the equations, we have

s(n)<-g(n)<-12n 2.
Together with the observation in 4.3, we have proved that the symbolic

factorization of an n x n grid problem ordered by nested dissection can be done in time
proportional to n 2, even though the number of nonzeros in the triangular factor is
O(n21ogn).

6. Some numerical experiments and concluding remarks. In this section we
present numerical experiments demonstrating the performance of our algorithm. We
also discuss its advantages and disadvantages compared with a very good "con-
ventional" implementation supplied in the Yale Sparse Matrix Package [2], which was
kindly provided to us by Professor Stanley Eisenstat. In what follows, we refer to the
Yale routine as SSF, and to ours as SFQG.

In order to demonstrate experimentally the results of 4, we applied SFQG to a
sequence of "graded L" problems taken from [6]. This is a set of similar problems of
increasing size, typical of those arising in finite element applications. The ordering used
was produced by the implementation of the minimum degree algorithm described in [4].

592 ALAN GEORGE AND JOSEPH W. H. LIU

Execution times reported are in seconds on an IBM 360/75 computer. The program
was written in Fortran, and the optimizing version of the H-level compiler was used.
The results of the experiment are summarized in Table 6.1. As the theory developed in
4 predicts, the execution time for SFQG appears to be proportional to I[.

TABLE 6.1

Execution time and L[for SFQG, along with their
ratio, for the sequence of graded-L problems from [4].

N Time [L[Time/[LI
265 .16 1353 1.19
406 .24 2252 1.08
577 .33 3293 1.05
778 .48 4604 1.04
1009 .58 5842 .99
1270 .80 7856 1.02
1560 .95 9424 1.00
1882 1.19 11707 1.01

(XIO-4)

How does SFQG compare with a good conventional implementation of symbolic
factorization, such as the subroutine SSF from [2]? To a substantial degree, their
relative merits depend upon the computing environment.

We have already observed that the major advantage of our subroutine is that it
"fails gracefully." Since it does not use its output during execution, if insufficient storage
is available, the output can be discarded but the program can still execute, producing the
number Alternatively, the output L could be printed on an auxiliary file as it is
generated, and the subroutine then only needs storage for GA.

To be fair, we must point out that in some contexts this storage argument is not
relevant. Some ordering algorithms can be quite easily modified so as to provide either

or a good upper bound, so that we can be assured when we use either SSF or SFQG
with such orderings that they will not fail. However, it is not clear that all ordering
algorithms can efficiently provide a good upper bound for [L]; for example, we do not
know how to appropriately modify the automatic nested dissection algorithm in [6] so
that an inexpensive estimate for Itl is provided.

In terms of execution times our implementation is somewhat slower than SSF for
small problems. The distributed version of SSF, applied to the graded-L problems of
Table 6.1, produced the times shown in Table 6.2, along with which we have included
the SFQG times from Table 6.1. After discussing our work with Professor Eisenstat, he
showed us how to modify SSF so that it too employed our "mass elimination"
technique, described in 4.3. The column in Table 6.2 labeled SSF* contains the
execution times of this modified subroutine.

The execution time of SSF is apparently growing faster than IL[, so for large
enough problems, the SFQG subroutine would be faster than SSF. However, the
improved version SSF* appears to execute in time proportional to 15tl, and continues
to enjoy a substantial execution time advantage over SFQG, even for the larger
problems. We should note that neither SSF nor SSF*, as implemented, can be proved to
run in O(ltl) time. Modifications to these subroutines which allow the complexity
bounds to be established considerably increase their execution times.

SYMBOLIC FACTORIZATION OF SYMMETRIC MATRICES 593

TABLE 6.2

Comparison of execution times of SFQG, SSF and a modified version of SSF.

N

265
406
577
778
1009
1270
1561
1882

SFQG

Time Time/lLI
.16 1.19
.24 1.08
.33 1.05
.48 1.04
.58 .99
.80 1.02
.95 1.00

1.19 1.01
(10-4)

SSF

Time Time/lLI
.01 .07
.17 .75
.26 .78
.37 .80
.47 .80
.64 .81
.82 .87

1.04 .88
(x 10-’)

SSF*

Time Time/ll
.08 .06
.14 .62
.20 .60
.27 .59
.35 .60
.46 .59
.57 .6O
.68 .58

(X 10-4)

Thus, to summarize, our implementation of symbolic factorization, based on
quotient graphs, has some advantages in terms of storage and being able to "fail
gracefully." In particular, since its execution is independent of its output, it is very
attractive when storage is scarce, and auxiliary storage devices must be used. In
exchange, it appears to execute more slowly than the best conventional implementation
of which we are aware.

It is important for the reader to understand the sense in which our implementation
is "optimal." We have shown only that it is optimal in the sense that it executes in time
proportional to the size of its output, but we have not shown that its output is optimal. For
purposes of data structure construction, it is desirable to produce an L having as few
members as possible because this will tend to reduce the "overhead" storage require-
ments of the data structure for L. It is not difficult to construct examples where the]LI
produced by our algorithm is larger than necessary. (In particular, note that SFQG only
generates monotone representative maps M.) Investigation into the development of an
algorithm which is optimal in both of the above senses is an interesting area of future
research.

REFERENCES

[1] C. BERGE, The Theory of Graphs and its Applications, John Wiley, New York, 1962.
[2] S. C. EISENSTAT, M. C. GURSKY, H. M. SCHULTZ AND A. H. SHERMAN, Yale sparse matrix package

I--The Symmetric Codes, Research Report # 112, Dept. of Computer Science, Yale University,
1977.

[3] ALAN GEORGE, Numerical experiments using dissection methods to solve n by n grid problems, SIAM J.
Numer. Anal., 14 (1977), pp. 161-180.

[4] ALAN GEORGE AND JOSEPH W. H. LIU, A minimal storage implementation of the minimum degree
algorithm, Ibid., to appear.

[5], A quotient graph model for symmetric factorization, Research Report CS-78-04, Dept. of
Computer Science, University of Waterloo, Waterloo, Ontario, February 1978.

[6],An automatic nested dissection algorithm for irregular finite element problems, SIAM J. Numer.
Anal., 15 (1978), pp. 1053-1069.

[7] S. V. PARTER, The use of linear graphs in Gauss elimination, SIAM Rev. 3 (1961), pp. 364-369.
[8] D.J. ROSE, R. E. TARJAN AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs, this

Journal, 5 (1975), pp. 266-283.
l"9] A. H. SHERMAN, On the efficient solution of sparse systems of linear and nonlinear equations, Research

Rept. #46, Dept. of Computer Science (doctoral thesis), Yale University, 1975.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0012 $01.00/0

DESIGN AND ANALYSIS OF A DATA STRUCTURE FOR
REPRESENTING SORTED LISTS*

MARK R. BROWN; AND ROBERT E. TARJAN:!:

Abstract. In this paper we explore the use of 2-3 trees to represent sorted lists. We analyze the
worst-case cost of sequences of insertions and deletions in 2-3 trees under each of the following three
assumptions: (i) only insertions are performed; (ii) only deletions are performed; (iii) deletions occur only at
the small end of the list and insertions occur only away from the small end. Our analysis leads to a data
structure for representing sorted lists when the access pattern exhibits a (perhaps time-varying) locality of
reference. This structure has many of the properties of the representation proposed by Guibas, McCreight,
Plass and Roberts [A new representation for linear lists, Proc. Ninth Annual Symposium on Theory of
Computing, Boulder, CO, 1977, pp. 49-60], but it is substantially simpler and may be practical for lists of
moderate size.

Key words, analysis of algorithms, deletion, finger, insertion, sorted list, 2-3 tree

Introduction. The 2-3 tree [1] is a data structure which allows both fast accessing
and fast updating of stored information. For example, 2-3 trees may be used to
represent a sorted list of length n so that a search for any item in the list takes O(log n)
steps. Once the position to insert a new item or delete an old one has been found (via a
search), the insertion or deletion can be performed in O(log n) additional steps.

If each insertion or deletion in a 2-3 tree is preceded by a search requiring D.(log n)
time, then there is little motivation for improving the above bounds on the worst-case
time for insertions and deletions. But there are several applications of 2-3 trees in which
the regularity of successive insertions or deletions allows searches to proceed faster than
f(log n). One example is the use of a sorted list represented as a 2-3 tree to implement a
priority queue [6, p. 152]. In a priority queue, insertions are allowed anywhere, but only
the smallest item in the list at any moment can be deleted. Since no searching is ever
required to find the next item to delete, an improved bound on the cost of consecutive
deletions might lead to a better bound on the cost of the method as a whole.

In this paper, we prove several results about the cost of sequences of operations on
2-3 trees. In 1 we derive a bound on the total cost of a sequence of insertions (as a
function of the positions of the insertions in the tree) which is tight to within a constant
factor. In 2 we derive a similar bound for a sequence of deletions. If the sequence of
operations is allowed to include intermixed insertions and deletions, there are cases in
which the naive bound cannot be improved: 0(log n) steps per operation may be
required. However, we show in 3 that for the priority queue application mentioned
above, a mild assumption about the distribution of insertions implies that such bad cases
cannot occur.

In 4 we explore some consequences of these results. We propose a modification
of the basic 2-3 tree structure which allows us to save a finger to an arbitrary position in
the tree, with the property that searching d positions away from the finger costs
O(log d) steps (independent of the tree size). Fingers are inexpensive to move, create,

* Received by the editors January 24, 1979.
i Computer Science Department, Yale University, New Haven, Connecticut 06520
:!: Computer Science Department, Stanford University, Stanford, California 94305. The work of this

author was supported in part by the National Science Foundation under Grant MCS 75-22870 AO2, the
Office of Naval Research under Contract N0014-76-C-0688, and a Guggenheim Fellowship.

A function g(n) is f(f(n)) if there exist positive constants c and no with g(n) >= cf(n) for all n => no; it is
O(f(n)) if there exist positive constants cl, c2, and no with Clf(n) <- g(n) <= c2f(n) for all n _-> no. Hence the "0"
can be read "order exactly" and the "fl" as "order at least"; Knuth [7] gives further discussion of the 0 and f
notations.

594

SORTED LIST DATA STRUCTURE 595

or abandon, and several fingers into the same structure can be maintained simul-
taneously. We use the bound on sequences of insertions to show that even when fingers
are used to speed up the searches, the cost of a sequence of insertions is dominated by
the cost of the searches leading to the insertions. The same result holds for a sequence of
deletions and for a sequence of intermixed insertions and deletions satisfying the
assumptions of 3. Our structure is similar to one proposed earlier by Guibas,
McCreight, Plass and Roberts [4], but it is much simpler to implement and may be
practical for representing moderate-sized lists. Their structure has the interesting
property that individual insertions and deletions are guaranteed to be efficient, while
operations on our structure are efficient only when averaged over a sequence. Our
structure has the compensating advantage that fingers are much easier to move. An
obvious generalization of our structure to B-trees [2] makes it suitable for larger lists
kept in secondary storage.

In the final section we discuss some practical issues arising in an implementation of
the structure, describe some of its applications, and indicate directions for future work.

1. Insertions into 2-3 trees. A 2-3 tree [1], [6] is a tree such that 2- or 3-way
branching takes place at every internal node, and all external nodes occur on the same
level. An internal node with 2-way branching is called a 2-node, and one with 3-way
branching a 3-node. It is easy to see that the height of a 2-3 tree with n external nodes
lies between [log3 n] and [lg n .2 An example of a 2-3 tree is given in Fig. 1.

FIG. 1. A 2-3 tree.

There are several schemes for associating data with the nodes of a 2-3 tree; the
usefulness of a particular organization depends upon the operations to be performed on
the dafa. All of these schemes use essentially the same method for updating the tree
structure to accomodate insertions, where insertion means the addition of a new
external node at a given position in the tree. (Sometimes the operation of insertion is
considered to include searching for the position to add the new node, but we shall
consistently treat searches separately in what follows.)

Insertion is accomplished by a sequence of node expansions and splittings, as
shown by example in Fig. 2. When a new external node is attached to a terminal node p
(an internal node having only external nodes as offspring), this node expands to
accomodate the extra edge. If p was a 2-node prior to the expansion, it is now a 3-node,

We use lg n to denote log2 n.

596 MARK R. BROWN AND ROBERT E. TARJAN

FIG. 2. A 2-3 tree insertion.

and the insertion is complete. If p was a 3-node prior to expansion, it is now a "4-node",
which is not allowed in a 2-3 tree; therefore, p is split into a pair of 2-nodes. This split
causes an expansion of p’s parent, and the process repeats until either a 2-node expands
into a 3-node or the root is split. If the root splits, a new 2-node is created which has the
two parts of the old root as its children, and this new node becomes the root..An
insertion in a 2-3 tree can be accomplished in 0(1 + s) steps, where s is the number of
node splittings which take place during the.insertion.

One way to represent a sorted list using a 2-3 tree is shown in Fig. 3. The elements
of the list are assigned to the external nodes of the tree, with key values of the list
elements increasing from left to right. Keys from the list elements are also assigned to
internal nodes of the tree in a "symmetric" order analogous to that of binary search
trees. More precisely, each internal node is assigned one key for each of its subtrees
other than the rightmost, this key being the largest which appears in an external node of
the subtree. Therefore each key except the largest appears in an internal node, and by
starting from the root of the tree we can locate any element of the list in O(log n) steps,
using a generalization of binary tree search. (Several 2-3 search tree organizations have
been proposed which are similar but not identical to this one [1, p. 147], [6, p. 468].)

SORTED LIST DATA STRUCTURE 597

FIG. 3. A 2-3 tree structure for sorted lists.

Any individual insertion into a 2-3 tree of size n can cause up to about lg n
splittings of internal nodes to take place. On the other hand, if n consecutive insertions
are made into a tree initially of size n, the total number of splits is bounded by about n
instead of n lg n, because each split generates a new internal node and the number of
internal nodes is initially at least (n- 1)/2 and finally at most 2n- 1. The following
theorem gives a general bound on the worst-case splitting which can occur due to
consecutive insertions into a 2-3 tree.

THEOREM 1. Let T be a 2-3 tree of size n, and suppose that k insertions are made
into T. If the positions of the newly-inserted nodes in the resulting tree are pl < p2 <" <
pk, then the number ofnode splittings which take place during the insertions is bounded by

2([lg (n +k)] + 2
l<i<=k

{lg (Pi-Pi- + 1)]).
The proof divides into two parts. In the first part, we define a rule for (conceptually)

marking nodes during a 2-3 tree insertion. This marking rule has two important
properties when a sequence of insertions is made: the number of marked nodes bounds
the number of splits, and the marked nodes are arranged to form paths from the inserted
external nodes toward the root of the tree.

The effect of marking the tree in this way is to shift our attention from dealing with
a dynamic situation (the 2-3 tree as it changes due to insertions) to focus on a static
object (the 2-3 tree which results from the sequence of insertions). The second part of
the proof then consists of showing that in any 2-3 tree, the number of nodes lying on the
paths from the external nodes in positions pl < p2 <" < pk to the root is bounded by
the expression given in the statement of the theorem.

We now define the marking rule described above. On each insertion into a 2-3 tree,
one or more nodes are marked as follows:

(1) The inserted (external) node is marked.
(2) When a marked node splits, both resulting nodes are marked. When an

unmarked node splits, a choice is made and one of the resulting nodes is
marked; if possible, a node is marked which has a marked child.

We establish the required properties of these rules by a series of lemmas.
LEMMA 1. After a sequence of insertions, the number of marked internal nodes

equals the number of splits.
Proof. No nodes are marked initially, and each split causes the number of marked

internal nodes to increase by one.

598 MARK R. BROWN AND ROBERT E. TARJAN

LEMMA 2. I] a 2-node is marked, then at least one of its children is marked; if a
3-node is marked, then at least two of its children are marked.

Proof. We use induction on the number of marked internal nodes. Since both
assertions hold vacuously when there are no marked internal nodes, it is sufficient to
show that a single application of the marking rules preserves the assertions. There are
two cases to consider when a 3-node X splits"

Case 1. X is marked. Then before the insertion which causes X to split, X has at
least two marked children. When the insertion expands X to overflow, this adds a third
marked child (by rule 1 or rule 2). Thus the two marked 2-nodes which result from the
split of X each have at least one marked child.

Case 2. X is unmarked. Then before the insertion which causes X to split, X may
have no marked children. When the insertion expands X to overflow, a new marked
child is created. Thus the single marked 2-node which results from the split of X can be
chosen to have a marked child.

A marked 3-node is created when a marked 2-node expands. This expansion
always increases the number of marked children by one. Since a marked 2-node has at
least one marked child, it follows that a marked 3-node has at least two marked
children.

LEMMA 3. After a sequence of insertions, there is a path of marked nodes from any
marked node to a marked external node.

Proof. Obvious from Lemma 2.
LEMMA 4. The number of splits in a sequence of insertions is no greater than the

number of internal nodes in the resulting tree which lie on paths from the inserted external
nodes to the root.

Proof. Immediate from Lemmas 1 and 3. 71
This completes the first part of the proof as outlined earlier; to finish the proof we

must bound the quantity in Lemma 4. We shall require the following two facts about
binary arithmetic. For any nonnegative integer k, let u(k) be the number of one-bits in
the binary representation of k.

LEMMA 5 [5, p. 483 (answer to Ex. 1.2.6-11)]. Leta and b be nonnegative integers,
and let c be the number of carries when the binaky representations of a and b are added.
Then ,(a + ,(b v(a + b) + c.

LEMMA 6. Let a and b be nonnegative integers such that a < b and let be the number
of bits to the right o] and including the leftmost bit in which the binary representations ofa
and b differ. Then _-< ,(a)- u(b)+ 2 [lg (b -a + 1)].

Proof. If k is any positive integer, the length of the binary representation of k is
[lg (k + 1)]. Let be the number of carries when a and b-a are added. By Lemma 5,
u(a)+,(b-a)=u(b)+c. When a and b-a are added, at least i-fig(b-a+1)]
carries are required to produce a number which differs from a in the ith bit. Thus
i- [lg (b-a + 1)] _-< c. Combining inequalities, we find that

i<-c +[lg (b-a + 1)] -< t,(a)-u(b)+ u(b-a)+ [lg (b-a + 1)]

<-,(a)-,(b)+2[lg(b-a+l)]. q

LEMMA 7. Let Tbe a 2-3 tree with n external nodes numbered 0, 1, , n 1 from
left to right. The numberM of nodes (internal and external) which lie on the paths from
external nodes pl < pz <" < pk to the root of T satisfies

M<=2([lgn]+ E
l<i<=k

[lg (Pi-Pi-1 +)]).

SORTED LIST DATA STRUCTURE 599

Proof. For any two external nodes p and q, let M(p, q) be the number of nodes
which are on the path from q to the root but not on the path from p to the root. Since the
path from pt to the root contains at most [lg n + 1 nodes, we have

M_-< [lg n] + 1+ Z M(pi-1, pi).
l<i<=k

We define a label for each external node as follows. If is an internal node of T
which is a 2-node, we label the left edge out of with a 0 and the right edge out of with a
1. If is a 3-node, we label the left edge out of with a 0 and the middle and right edges
out of with a 1. Then the label l(p) of an external node p is the integer whose binary
representation is the sequence of 0’s and l’s on the path from the root to p.

Note that if p and q are external nodes such that q is the right neighbor of p, then
l(q) <= l(p) + 1. It follows by induction that l(pi)- l(p_x) <- pi-pi-1 for 1 < _-< k.

Consider any two nodes pi-1, pi. Let be the internal node which is farthest from the
root and which is on the path from the root to p_x and on the path from the root to pi.

We must consider two cases.
Case 1. The edge out of leading toward pi-1 is labeled 0 and the edge out of

leading toward p is labeled 1. Then l(p)> l(p_a). Furthermore M(pi-a, Pi), which is
the number of nodes on the path from to pi (not including t), is equal to the number of
bits to the right of and including the leftmost bit in which the binary representations of
l(pi-) and l(pi) differ. By Lemma 6,

M(pi-1, Pi) <= l(l(pi-1))- l,’(l(pi))-t- 2 [lg (l(pi)- l(pi-1) q’- 1)]
<- u(l(p_))- ,(l(p)) + 2 [lg (p-p_ + 1)].

Case 2. The edge out of leading toward p.i-1 is labeled 1 and the edge out of
leading toward pi is also labeled 1. Let l’(pi-1) be the label of pi-1 if the edge out of
leading toward pi-1 is relabeled 0. Then l(pi)-l’(pg_)<-pi-pi- and l(pi)> l’(pi-1).
Furthermore M(pi-1, pi) is equal to the number of bits to the right of and including the
leftmost bit in which the binary representations of/’(p-l) and l(pi) differ. By Lemma 6,

M(pi-, pi) <= ’(l’(Pi-1))- ’(l(pi)) + 2 [lg (l(pi)- l’(pi-) + 1)]

--< p(I’(p-I))- ,(l(p))+ 2 [lg (p-pi-1 + 1)]

<= t’(l(pi-1)) ,(l(p)) + 2 [lg (Pi -P-I + 1)]

since u(l(pi_))= ,(l’(pi-)) + 1.
Substituting into the bound on M given above yields

M--<[lgn] +1+ 2 (,(l(pi-1))-,(l(pi))+2[lg(pi-pi-+l)]).
l<i<=k

But much of this sum telescopes, giving

M_-<[lgn]+l+,(l(px))-,(l(pk))+2 , [lg(pi-pi-+l)]
l<i<-k

=<2([lgn]+ Y
l<i<=k

[lg (Pi--Pi-1 + 1)])
(since u(l(pk))>--i and u(l(p)) < [lgn] unless k=l). This completes the proof of
Lemma 7 and Theorem 1.

600 MARK R. BROWN AND ROBERT E. TARJAN

The bound given in Theorem 1 is tight to within a constant factor; that is, for any n
and k there is a 2-3 tree with n external nodes and some sequence of k insertions which
causes within a constant factor of the given number of splits. We omit a proof of this
fact.

2. Deletions from 2-3 trees. The operation of deletion from a 2-3 tree means the
elimination of a specified external node from the tree. As with insertion, the algorithm
for deletion is essentially independent of the particular scheme used for associating data
with the tree’s nodes.

initial step

or

(a)

(b)

general step

(c)

or

(d)

a 8 ’ 8

or

(0

FIG. 4. Transformations for 2-3 tree deletion. (Mirror-images of all transformations are possible.)

SORTED LIST DATA STRUCTURE 601

FIG. 5. A 2-3 tree deletion.

602 MARK R. BROWN AND ROBERT E. TARJAN

The first step of a deletion is to remove the external node being deleted. If the
parent of this node was a 3-node before the deletion, it becomes a 2-node and the
operation is complete. If the parent was a 2-node, it is now a "l-node", which is not
allowed in a 2-3 tree; hence some additional changes are required to restore the tree.
The local transformations shown in Fig. 4 are sufficient, as we shall now explain. If the
1-node is the root of the tree, it can simply be deleted, and its child is the final result (Fig.
4(c)). If the 1-node has a 3-node as a parent or as a sibling, then a local rearrangement
will eliminate the 1-node and complete the deletion (Figs. 4(d), 4(e)). Otherwise we]use
the 1-node with its sibling 2-node (Fig. 4(f)); this creates a 3-node with a 1-node as
parent. We then must repeat the transformations until the 1-node is eliminated. Figure
5 shows an example of a complete deletion.

A deletion in a 2-3 tree requires O(1 +f) steps, where " is the number of node
fusings required for the deletion. Since the propagation of fusings up the path during a
deletion is similar to the propagation of splittings during an insertion, it is not surprising
that a result analogous to Theorem 1 holds for deletions.

THEOREM 2. Let The a 2- 3 tree ofsize n, and suppose that k <- n deletions are made
from T. If the positions o] the deleted external nodes in the original tree were pl < p2 <

< pk, then the number o]’node fusings which took place during the deletions is bounded
by

2([lg n] + 2
l<i<--_k

[lg (pi-pi-1 + 1)]).
Proof. We shall initially mark all nodes in T which lie on a path from the root of T

to one qf the deleted nodes. By Lemma 7, the number of marked nodes is bounded by
the given expression; hence the proof is complete if we show that during the sequence of
deletions it is possible to remove one mark from the tree for each fusing.

During the sequence of deletions, we shall maintain the invariant property that
every 2-node on the path from a marked external node to the root is marked. This is
clearly true initially. During a deletion, the marks are handled as indicated in Fig. 6. An
"x" on the left side of a transformation indicates a node which the invariant (or a
previous application of transformation (b) or (f)) guarantees will be marked; an "x" on
the right side indicates a node to be marked after the transformation. These rules make
only local rearrangements and create only marked 2-nodes, and hence they maintain
the invariant. The fusing transformation (f) removes at least one mark from the tree.
One of the terminating transformations (e) may create a new mark, but this is
compensated by the starting transformation (b) which always destroys a mark. Hence a
deletion always removes at least one mark from the tree per fusing, which proves the
result.]

The bound of Theorem 2 is tight to within a constant factor; that is, for any n and
k _-< n there is a 2-3 tree with n external nodes and a sequence of k deletions which
causes within a constant factor of the given number of fusings. We omit a proof.

3. Mixed sequences of operations. When both insertions and deletions are
present in a sequence of operations on a 2-3 tree, there are cases in which f(log n) steps
are required for each operation in the sequence. A simple example of this behavior is
shown in Fig. 7, where an insertion causes splitting to go to the root of the tree, and
deletion of the inserted element causes the same number of fusings. We expect that
when insertions and deletions take place in separate parts of the tree, it is impossible for
them to interact in this way. The following result shows that this intuition is justified, at
least for a particular access pattern arising from priority queues.

SORTED LIST DATA STRUCTURE 603

initial step

or

(a)

(b)

general step

(c)

(d) or

or

(f)

FIG. 6. Deletion transformations]:or proof of Theorem 2.

THEOREM 3. Let Tbe a 2-3 tree ofsize n, and suppose that a sequence ofk insertions
and deletions is performed on T. If all deletions are made on the leftmost external node
T, and no insertion is made closer than (lg m)1.6 positions from the point of the deletions
(where m is the tree size when the insertion takes place), then the total cost ofthe operations
is

O(logn+k+l+ log(pi
l<i<=k

where k’ <= k is the number ofinserted nodes that have not been deleted andpl < p2 <" <
Pk’ are the positions of these nodes in the final tree.

604 MARK R. BROWN AND ROBERT E. TARJAN

insertion here
produces tree below

deletion here
produces tree above

FIG. 7. An expensive insert/delete pair.

Proof. We shall first sketch the argument and then give it in more detail. Insertions
are accounted for by marking the tree in a manner almost identical to that used in
proving Theorem 1. Deletions may destroy some of these marks, so we charge a
deletion for the marks it removes; the remaining marks are then counted using Lemma
7. Because we assume that insertions are bounded (lg m)16 positions away from the
point of deletions, the left path is unaffected by insertions up to a height of at least
lg lg m. Therefore roughly lg m deletions occur between successive deletions that
reference an "unprotected" section of the left path. These lg rn deletions cost O(log m)
altogether, as does a single deletion that goes above the protected area, so deletions

SORTED LIST DATA STRUCTURE 605

cost roughly O(l) steps to execute. Adding this to the cost of the insertions gives the
bound.

We shall present the full argument as a sequence of lemmas. First we need some
terminology. The leftpath is the path from the root to the leftmost external node. Note
that deletions will involve only left-path nodes and the children of such nodes. We say
that an insertion changes the left path if it splits a 3-node or expands a 2-node on the left
path.

LEMMA 8. Under the assumptions o] Theorem 3, the cost of the sequence o]
insertions is

O(log n + k + log (Pi--Pi-1)l d- O(cost ofdeletions).
\ l<=i<=k !

Proof. On each insertion, we mark the nodes of T according to rules (1) and (2) in
the proof of Theorem 1, while observing the following additional rule:

(3) When a marked 2-node on the left path expands, an unmarked 3-node is
created.

As in the proof of Theorem 1, the cost of all insertions is bounded by the number of
marks created using rules (1) and (2). Rule (3), which destroys a mark, can be applied at
most once per insertion, and hence the number of marks removed by this rule is O(k).

This marking scheme preserves the property that on the left path, no 3-node ever
becomes marked. It does not preserve any stronger properties on the left path; for
example, a marked 2-node with no marked offspring may occur. But it is easy to prove
by induction on the number of insertion steps that the stronger properties used in the
proof of Theorem 1 (a marked 2-node has at least one marked offspring, a marked
3-node has at least two marked offspring) do hold on the rest of the tree. The intuitive
reason why the corruption on the left path cannot spread is that it could do so only
through the splitting of 3-nodes on the path; since these nodes aren’t marked, they
never create "unsupported" 2-nodes off the left path.

The motivation for these marking rules is that deletions will necessarily corrupt the
left path. During deletions, we treat marks according to the following rule:

(4) Any node involved in a deletion transformation (i.e., any node shown explicitly
in Fig. 4) is unmarked during the transformation.

This rule removes a bounded number of marks per step, and hence over deletions the
number of marks removed is O(cost of deletions). Since this rule never creates a
marked node, it preserves the property of no marked 3-nodes on the left path. It also
preserves the stronger invariants on the rest of the tree, since it will only unmark a node
whose parent is on the left path.

It follows that after the sequence of insertions and deletions, all marked nodes lie
on paths from the inserted external nodes to the root, except possibly some marked
2-nodes on the left path. The number of nodes on the left path is O(log (n + k l)), and
by Lemma 7 the number of marked nodes in the rest of the tree is

O(log (n + k -l)+ log (Pi--Pi-1 + 1)].
\ l<i<_k /

Adding these bounds to our previous estimates for the number of marks removed
by rules (3) and (4), and noting that lg (x + y) -<lg x + y for x, y _-> 1, gives the result.

LEMMA 9. Suppose that a sequence of] deletions is made on the leftmost external
node ofa 2-3 tree, such that the de.letions do not reference any left-path nodes changed by
an insertion made during the sequence. Then the costofthe sequence is O(f) + 0 (heightof
the tree before the deletions).

606 MARK R. BROWN AND ROBERT E. TARJAN

Proof. The cost of a deletion is O(1 + f), where f is the number of fusings required.
Each fusing destroys a 2-node on the left path, so the total cost of the j deletions is
0(]) / O(number of left-path 2-nodes destroyed). But each deletion creates at most
one left-path 2-node, and insertions do not create any 2-nodes that are referenced by
the deletions, so the cost is in fact O(j) + 0 (number of originally present left-path
2-nodes destroyed). This is bounded by the quantity given above. 71

LEMMA 10. Under the assumptions of Theorem 3, if the tree T has size m then an
insertion cannot change any left-path node of height less than lg lg m.

Proof. A 2-3 tree of height h contains at most 3 h external nodes. Hence a subtree
of height lg lg m contains <_- 3Iglgm (lg m)lg3 external nodes, which is strictly less than
the (lg m)16 positions that are protected from insertions under the conditions of
Theorem 3. [3

LEMMA 11. Suppose that the bottommost k nodes on the left path are all 3-nodes,
and deletions are performed on the leftmost external node. If insertions do not change any
nodes of height <= k on the left path, then at least 2 k deletions are required to make a
deletion reference above height k on the left path.

Proof. Let us view the left path as a binary integer, where a 2-node is represented
by a zero and a 3-node by a one, and the root corresponds to the most significant bit.
Then deletion of the leftmost external node corresponds roughly to subtracting one
from this binary number. Consideration of the deletion algorithm shows that the precise
effect is as follows: if the left path is xx...xl then a deletion causes it to become
xx xO (subtraction of 1), and if the path is

xx x lO’/’O

then it becomes either

xx xOll 1 (subtraction of 1) or xx xlO1..’--. (addition of 2g-l-l).

Only this final possibility (corresponding to using the transformation in Fig. 4(e)) differs
from subtraction by one. Note that under these rules everything to the left of the
rightmost one-bit is unreferenced by a deletion.

Before a deletion reference above height k can take place, the number represented
by the rightmost k bits must be transformed from 2k- 1 into 0 by operations which
either subtract one or add a positive number. Thus 2k- 1 subtractions are required,
corresponding to 2 k 1 deletions. 71

LEMMA 12. Under the assumptions of Theorem 3, the cost of the sequence of
deletions is O(log n + k + l).

Proof. For accounting purposes we shall divide the sequence of deletions into
disjoint epochs, with the first epoch starting immediately before the first deletion.
Intuitively, epochs represent intervals during which insertions do not interact directly
with deletions. We define the current epoch to end immediately before a deletion that
references any node on the left path that has been changed by an insertion since the first
deletion of the epoch. This deletion is then the first in the new epoch; the final epoch
ends with the last deletion of the sequence. According to this definition, each epoch
contains at least one deletion.

Let li denote the number of deletions during the ith epoch, ki the number of
insertions during this epoch, and m the tree size at the start of the epoch. The first
deletion of epoch costs O(log m). By Lemma 9, the final li-1 deletions cost

SORTED LIST DATA STRUCTURE 607

O(li +log mi) since they operate on a section of the left path that is unaffected by
insertions. Hence the total cost of the deletions in epoch is O(li + log me). We shall
prove that except for the first and last epochs, this cost is O(li + ki-1), so that the total
cost of these epochs is O(l + k). Since me <= n + k, each of the first and last epochs costs
O(lg + log (n + k)). Combining gives the bound in the lemma.

Consider an epoch that is not the first or the last. The first deletion of an epoch
transforms all nodes below height h on the left path into 3-nodes, where h is the height
of some left-path node that has been changed by an insertion since the start of epoch
i-1. Let hi =[lg lg m]- 1. By Lemma 10, the allowable insertions at this point
cannot change the left_path below height hi. This remains true even if the tree size grows
to m or shrinks to x/m, since this changes the value of lg lg tn by only 1. Hence if h >- hi
(i.e., all left-path nodes below height h are 3-nodes), Lemma 11 shows that 2 hi

f(log me) deletions are necessary to reference a node above height hi. Thus li
D(log me), which means that O(li + log mz), the cost of the epoch, is O(li). If on the other
hand h < hi, this implies that at some p_9_jnt during epoch i- 1 the tree size m was much
smaller than mi, in particular m < x/mi. But this shows that ki-. (m), so O(li
log m) O(lg + ki-). In summary, we have shown that the cost of epoch is O(li + ki-a)
regardless of the value of h.

Combining the results of Lemmas 8 and 12 proves Theorem 3.
Theorem 3 is certainly not the ultimate result of its kind. For example, it is possible

to allow some number of insertions to fall close to the point of deletion and still preserve
the time bound. (Note that Lemma 8 does not depend on any assumption about the
distribution of insertions, so only the proof of the bound on deletions needs to be
modified.) It may also be possible to prove a nontrivial bound when deletions are less
highly constrained; for example, we might consider a "queue-like" access pattern in
which insertions fall only in the right subtree of the root, and deletions are made only
from the left subtree.

4. Level-linked trees. The results in 1-3 show that in several interesting cases
the O(log n) bound on individual insertions and deletions in a 2-3 tree is overly
pessimistic. In order to use this information we must examine the cost of searching for
the positions where the insertions and deletions are to take place. If the pattern of
accesses is random, there is little hope of reducing the average search time below
O(log n); it is impossible for any algorithm based solely on comparisons to beat
fi(log n). But in many circumstances there is a known regularity in the reference pattern
that we can exploit.

One possible method of using the correlation between accesses is to keep a
fingerma pointer to an item in the list. For a suitable list representation it should be
much more efficient to search for an item near the finger than one far away. Since the
locale of interest may change with time, the list representation should make it easy to
move a finger while still enjoying fast access near it. There may be more than one busy
area in the list, so it should be possible to efficiently maintain multiple fingers.

The basic 2-3 tree structure for sorted lists shown in Fig. 3 is not suitable for finger
searching, since there are items adjacent in the list whose only connection through the
tree structure is a path of length 0(log n). Figure 8 shows an extension of this structure
that does support efficient access in the neighborhood of a finger. The arrangement of
list elements and keys is unchanged, but the edges between internal nodes are made
traversible upwards as well as downwards, and horizontal links are added between
external nodes that are neighbors (adjacent on the same level). We shall call this list
representation a level-linked 2-3 tree.

608 MARK R. BROWN AND ROBERT E. TARJAN

2 4

5 6 10 11

FIG. 8. A level-linked 2-3 tree.

A finger into this structure consists of a pointer to a terminal node of the tree. It
would seem more natural for the finger to point directly to an external node, but no
upward links leading away from the external nodes are provided in a level-linked tree;
the reasons for this decision will become evident when implementation considerations
are discussed in 5. Note that the presence of a finger requires no change to the
structure.

Roughly speaking, the search for a key k using a finger f proceeds by climbing the
path from f toward the root of the tree. We stop ascending when we discover a node (or
a pair of neighboring nodes) which subtends a range of the key space in which k lies. We
then search downward for k using the standard search technique.

A more precise description of the entire search procedure is given below in an
Algol-like notation. If is an internal node, then we define LargestKey(t) and Smallest-
Key(t) to be the largest and smallest keys contained in t, and let LeftmostLink(t)
and RightmostLink(t) denote respectively the leftmost and rightmost downward edges
leaving t. The fields INbr(t) and rNbr(t) give the left and right neighbors of t, and are Nil
if no such nodes exist; Parent(t) is the parent of t, and is Nil if is the root.

procedure FingerSearch (f, k)
comment Here f is a finger (a pointer to a terminal node) and k is a key. If there is
an external node with key k in the structure fingered by f, then FingerSearch
returns a pointer to the parent of the rightmost such node. Otherwise the
procedure returns a pointer to a terminal node beneath which an external node
with key k may be inserted. Hence in either case the result may be used as a (new)
finger.
if k => LargestKey(f) then return SearchUpRight(f, k)
elseif k < SmallestKey(f) then return SearchUpLeft(f, k)
else return f
endif

end FingerSearch

procedure SearchUpRight(p, k)
loop

comment At this point either f- p, or f lies to the left of p’s right subtree.
The key k is larger than the leftmost (smallest) descendant of p.
if k < LargestKey(p) or rNbr(p)= Nil then return SearchDown(p, k)
else q - rNbr(p

SORTED LIST DATA STRUCTURE 609

end

if
eiseif
else
endif

endif
repeat
SearchUpRight

k < SmallestKey(q) then return SearchDownBetween(p, q, k)
k < LargestKey(q) then return SearchDown(q, k)
p <- Parent(q)

procedure SearchUpLeft(p, k)
{similar to the above}

procedure SearchDownBetween(p, q, k)
loop until p and q are terminal:

comment Here p is the left neighbor of q, and k is contained in the range of
key values spanned by the children of p and q.
if
elseif
else

k < LargestKey(p) then return SearchDown(p, k)
k _-> SmallestKey(q) then return SearchDown(q, k)
p <- RightmostLink(p)
q <-- LeftmostLink(q)

k < Key[RightmostLink(p)]

endif
repeat
if then return p

else return q
endif

end SearchDownBetween

procedure SearchDown(p, k)
{the standard 2-3 tree search procedure},

This algorithm allows very fast searching in the vicinity of fingers. In spite of this,
we shall show that if a sequence of intermixed searches, insertions, and deletions is
performed on a level-linked 2-3 tree, the cost of the insertions and deletions is
dominated by the search cost, at least in the cases studied in 1-3. In order to carry out
this analysis we must first examine the cost of individual operations on a level-linked
tree.

LEMMA 13. If the key k is d keys awayfrom a fingerf, then FingerSearch(f, k) runs
in 0(log d) steps.

Proof. The running time of FingerSearch is bounded by a constant times the height
of the highest mode examined, since the search procedure examines at most four of the
nodes at each level. It is not hard to see from the invariants in Search UpRight (and
SearchUpLeft) that in order for the search to ascend levels in the tree, there must exist
a subtree of size 2 all of whose keys lie between k and the keys of the finger node. The
lemma follows. [3

LEMMA 14. A new external node can be inserted in a given position in a level-linked
2-3 tree in 0(1 + s) steps, where s is the number of node splittings caused by :he insertion.

Proof. We sketch an insertion method which can be implemented to run in the
claimed time bound. Suppose we wish to insert a new external node with key k, During
the insertion process we must update the links and the keys in the internal nodes. Let
node p be the prospective parent of node e. If e would not be the rightmost child of p, we
make e a child of p, insert the key k in node p and proceed with node-splitting as
necessary. If e would be the rightmost child of p but e has a right neighbor, we make e a
child of the right neighbor. Otherwise k is larger than all keys in the tree. In this case we

610 MARK R. BROWN AND ROBERT E. TARJAN

make e a child of p and place the previously largest key in node p. (The key k is not used
in an internal node until it is no longer the largest.)

When a 4-node q splits during insertion, it is easy to update the links in constant
time. To maintain the internal key organization, we place the left and right keys of q in
the new 2-nodes produced by the split, and the middle key in the parent of q.

LEMMA 15. An external node can be deleted from a level-linked 2-3 tree in 0(1 +f)
steps, where f is the number of node fusings.

Proof. Similar to the proof of Lemma 14.
LEMMA 16. Creation or removal of a finger in a level-linked 2-3 tree requires 0(1)

time.

Proof. Obvious.
Now we apply the results of 1-3 to show that even though the search time in

level-linked 2-3 trees can be greatly reduced by maintaining fingers, it still dominates
the time for insertions and deletions in several interesting cases.

THEOREM 4. LetL be a sorted list ofsize n represented as a level-linked 2- 3 tree with
one finger established. Then in any sequence ofsearches, finger creations, and k insertions,
the total cost of the k insertions is O(log n + total cost of searches).

Pro@ Let S be any sequence of searches, finger creations, and insertions which
includes exactly k insertions. Let the external nodes of L after the insertions have been
performed be named 0, 1, , n + k 1 from left to right. Assign to each external node
p a label l(p), whose value is the number of external nodes lying strictly to the left of p
which were present before the insertions took place; these labels lie in the range
0,1,...,n.

Consider the searches in S which lead either to the creation of a new finger (or the
movement of an old one) or to the insertion of a new item. Call an item of L accessed if it
is either the source or the destination of such a search. (We regard an inserted item as
the destination of the search which discovers vhere to insert it.) Let pl < p2 <" <p be
the accessed items.

We shall consider graphs whose vertex set is a subset of {pill _-< _-< l}. We denote an
edge joining pi < p in such a graph by pi- Pi and we define the cost of this edge to be
max [lg (l(pi) l(pi) + 1)], 1). For each item pi (except the initially fingered item) let
be the fingered item from which the search to pi was made. Each qi is also in {pill -<_ <_- l}
since each finger except the first must be established by a search. Consider the graph G
with vertex set {pi]l <_-i <_-l} and edge set {(q, pg)]l _-<iN and p is not the originally
fingered item}.

Some constant times the sum of edge costs in G is a lower bound on the total search
cost, since [/(pi) -/(qi)[+ 1 can only underestimate the actual distance between qi and p
when pi is accessed. We shall describe a way to modify t, while never increasing its cost,
until it becomes

where rl<r2<’" <rk are the k inserted items. Since the cost of this graph is
Y’.l<i_-<k [lg (ri- ri- + 1)], the theorem then follows from Theorem 1.

The initial graph G is connected, since every accessed item must be reached from
the initially fingered item. We first delete all but l-1 edges from G so as to leave a
spanning tree; this only decreases the cost of G.

Next, we repeat the following step until it is no longer applicable" let pi- pi be an
edge of G such that there is an accessed item p satisfying p <p < p.. Removing edge
pi-p now divides G into exactly two connected components. If pk is in the same
connected component as pi, we replace pi- pi by pk -p.; otherwise, we replace p -p. by
pi -p. The new graph is still a tree spanning {pill --< _<- l} and the cost has not increased.

SORTED LIST DATA STRUCTURE 611

Finally, we eliminate each item p. which is not an inserted item by transforming
Pi--Pj--Pk to Pi--Pk, and by removing edges Pj--Pk where there is no other edge
incident to p.. This does not increase cost, and it results in the tree of inserted items

rl-r2 r
as desired.

THEOREM 5. LetL be a sorted list ofsize n represented as a level-linked 2-3 tree with
one finger established. Then in any sequence ofsearches, finger creations, and k deletions,
the cost of the deletions is O(log n + total cost of searches).

Proof. Similar to the proof of Theorem 4, using Theorem 2.
THEOREM 6. LetL be a sorted list ofsize n represented as a level-linked 2-3 tree with

one finger established. For any sequence of searches, finger creations, k insertions, and
deletions, the total cost of the insertions and deletions is O(log n + total cost ofsearches) if
the insertions and deletions satisfy the assumptions of Theorem 3.

Proof. Similar to the proof of Theorem 4, using Theorem 3.

5. Implementation and applications. In 4 we described a level-linked 2-3 tree in
terms of internal and external nodes. The external nodes contain the items stored in the
list, while the internal nodes are a form of "glue" which binds the items together. The
problem remains of how to represent these objects in storage.

External nodes present no difficulty: they can be represented by the items
themselves, since we only maintain links going to these nodes (and none coming from
them). Internal nodes may be represented in an obvious way by a suitable record
structure containing space for up to two keys and three downward links, a tag to
distinguish between 2- and 3-nodes, and other fields. One drawback of this approach is
that because the number of internal nodes is unpredictable, the insertion and deletion
routines must allocate and deallocate nodes.’In random 2-3 trees [9] the ratio of
2-nodes to 3-nodes is about 2 to 1, so we waste storage by leaving room for two keys in
each node. Having different record structures for the two node types might save storage
at the expense of making storage management much more complicated.

Figure 9 shows a representation which avoids these problems. A 3-node is
represented in a linked fashion, analogous to the binary tree structure for 2-3 trees [6,
p. 469]. The internal node component containing a key k is combined as a single record
with the representation of the item (external node) with key k. Hence storage is
allocated and deallocated only when items are created and destroyed, and storage is
saved because the keys in the internal nodes are not represented explicitly. (The idea of
combining the representations of internal and external nodes is also found in the
"loser-oriented" tree for replacement selection [6, p. 256].)

An example which illustrates this representation is shown in Fig. 10. Each external
node except the largest participates in representing an internal node, so it is convenient
to assume the presence of an external node with key + oo in the list. This node need not
be represented explicitly, but can be given by a null pointer as in the figure. Null rLinks
are also used to distinguish a 3-node from a pair of neighboring 2-nodes. There are
several ways to identify the 1Links and rLinks that point to external nodes: one is to
keep track of height in the tree during FingerSearch, since all external nodes lie on the
same level. Another method is to note that a node p is terminal if and only if
ILink p p.

We now consider the potential applications of this list representation. One
application is in sorting files which have a bounded number of inversions. The result
proved by Guibas et al. [4], that insertion sort using a list representation with one finger

612 MARK R. BROWN AND ROBERT E. TARJAN

node representation.

parent

-iNbr rNbr

1Link rLink

key

item-related
information

FIG. 9. A storage representation for internal and external nodes.

gives asymptotically optimal results, applies equally to our structure since insertion sort
does not require deletions.

A second application is in merging: given sorted lists of lengths m and n, with
m _-< n, we wish to merge them into a single sorted list. Any comparison-based algorithm
for this problem must use at least

comparisons; we would like an algorithm whose running time has this magnitude. We
solve this problem using our list structure by inserting the items from the smaller list in
increasing order into the larger list, keeping the finger positioned at the most recently
inserted item. This process requires O(m) steps to dismantle the smaller list, and
O(log n + 1<i,, log di) steps for the insertions, where di is the distance from the finger
to the ith insertion. Since the items are inserted in increasing order, the finger moves
from left to right through the larger list, and thus Y’.<i=,,,dg<-n. To maximize
2X<i=m log di subject to this constraint we choose the di to be equal, and this gives the

SORTED LIST DATA STRUCTURE 613

[4[

2 4

node format:

parent

1Nbr rNb’r
1Link rLink

key

FIG. 10. A structure and its storage representation.

desired bound of O(m log (n/m)) steps for the algorithm. (The usual height-balanced
or 2-3 trees can be used to perform fast-merging [3], but the algorithm is not obvious
and the time bound requires an involved proof.)

When an ordered set is represented as a sorted list, the merging algorithm just
described can be modified to perform the set union operation: we simply check for, and
discard, duplicates when inserting items from the smaller list into the larger list. This
obviously gives an O(m log (n/m)) algorithm for set intersection as well, if we retain the
duplicates rather than discarding them. Trabb-Pardo [8] has developed algorithms
based on trie structures which also solve the set intersection problem (and the union or
merging problems) in O(m log (n/m)) time, but only on the average.

Another application for the level-linked 2-3 tree is in implementing a priority
queue used as a simulation event list. In this situation the items being stored in the list
are procedures to be executed at a known instant of simulated "time"; to perform one
simulation step we delete the item from the list having the smallest time and then
execute it, which may cause new events to be inserted into the list. Theorem 3 shows
that unless these new events are often very soon to be deleted, a 2-3 tree can process a
long sequence of such simulation steps with only a constant cost per operation
(independent of the queue size). Furthermore, searches using fingers will usually be

614 MARK R. BROWN AND ROBERT E. TARJAN

very efficient since the simulation program produces events according to known
patterns. (Some simulation languages already give programmers access to crude
"fingers", by allowing the search to begin from a specified end of the event list.)

Another interesting application is to text editing. A text can be represented as a list
of component strings that, when concatenated, form the entire text string. If the list of
components is represented as a level-linked 2-3 tree, then insertion, deletion, and
searching in the text can all be performed efficiently. There is a great deal of reference
locality in text editing, so the average search will be very fast while the worst case is only
logarithmic in the number of components. Thus the proper use of this data structure
might significantly improve the responsiveness of an interactive text editor.

An obvious question relating to our structure is whether it can be generalized so
that arbitrary deletions will not change the worst-case time bound for a sequence of
accesses. This seems to be difficult, since the requirement for a movable finger conflicts
with the need to maintain path regularity constraints [4]. Thus a compromise between
the unconstrained structure given here and the highly constrained structure of Guibas et
al. [4] should be explored.

Even if such a more general structure could be found, it might be less practical than
ours. To put the problem of deletions in perspective, it would be interesting to derive
bounds on the average case performance of our structure under insertions and
deletions, using a suitable model of random insertions and deletions. It may be possible,
even without detailed knowledge of random 2-3 trees, to show that operations which
require 0(log n) time are very unlikely.

REFERENCES

[1] ALFRED V. AHO, JOHN E. HOPCROFT AND JEFFREY D. ULLMAN, The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] RUDOLF BAYER AND EDWARD M. MCCREIGHT, Organization and maintenance of large ordered
indexes, Acta Informatica, (1972), pp. 173-189.

[3] MARK R. BROWN AND ROBERT E. TARJAN, A fast merging algorithm, J. Assoc. Comput. Mach. 26
(1979), pp. 211-226.

[4] LEo J. GUIBAS, EDWARD M. MCCREIGHT, MICHAEL F. PLASS AND JANET R. ROBERTS, A new
representation /:or linear lists, Proc. Ninth Annual ACM Symposium on Theory of Computing,
Boulder, CO, 1977, pp. 49-60.

[5] DONALD E. KNUTH, The Art ofComputerProgramming, Vol. 1, FundamentalAlgorithms, 2nd edition,
Addison-Wesley, Reading, MA, 1975.

[6], The Art of Computer Programming, Vol..3, Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

[7] Big omicron and big omega and big theta, SIGACT News (8), 2 (April 1976), pp. 18-24.
[8] LuIs TRABB-PARDO, Set Representation and Set Intersection, Stanford Computer Science Dept. Rep.

STAN-CS-78-681, Stanford Univ., Stanford, CA, December 1978.
[9] ANDREW C.-C. YAO, On random 2-3 trees, Acta Informatica, 9 (1978), pp. 159-170.

SlAM J. COMPUT.
Vol. 9, No. 3, August 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0013 $01.00/0

APPLICATIONS OF A PLANAR SEPARATOR THEOREM*

RICHARD J. LIPTON’ AND ROBERT ENDRE TARJAN:

Abstract. Any n-vertex planar graph has the property that it can be divided into components of roughly
equal size by removing only O(x/) vertices. This separator theorem, in combination with a divide-and-
conquer strategy, leads to many new complexity results for planar graph problems. This paper describes
some of these results.

Key words, algorithm, Boolean circuit complexity, divide-and-conquer, graph embedding, lower
bounds, matching, maximum independent set, nonserial dynamic programming, pebbling, planar graphs,
separator, space-time tradeoffs

1. Introduction. One efficient approach to solving computational problems is
"divide-and-conquer" [1]. In this method, the original problem is divided into two or
more smaller problems. The subproblems are solved by applying the method recur-
sively, and the solutions to the subproblems are combined to give the solution to the
original problem. Divide-and-conquer is especially efficient when the subproblems are
substantially smaller than the original problem. In this paper we explore the efficient
application of divide-and-conquer to a variety of problems on planar graphs. We
employ the following theorem.

THEOREM 1 [20]. Let G be any n-vertex planar graph with nonnegative vertex costs

summing to no more than one. Then the vertices of G can be partitioned into three sets A,
B, C, such that no edge joins a vertex in A with a vertex in B, neither A nor B has total
vertex cost exceeding, and Ccontains no more than 2x/-/- vertices. Furthermore A, B, C
can be found in O(n) time.

In the special case of equal-cost vertices, this theorem becomes
COROLLARY 1. Let G be any n-vertex planar graph. The vertices of G can be

partitioned into three sets A, B, C, such that no edge joins a vertex in A with a vertex in B,
neither A nor B contains more than 2n/3 vertices, and C contains no more than 2x/-x/-
vertices.

Corollary 1 verifies a conjecture of Ungar [32], who obtained a similar result but
with a bound of O(x/ log n) on the size of C. It is easy to construct examples to show
that Corollary 1 is tight to within a constant factor in the worst case [20].

Each section of this paper describes a different use of Theorem 1. The results range
from an efficient algorithm for finding maximum independent sets in planar graphs to
lower bounds on the complexity of planar Boolean circuits. In each case, the only
property of planar graphs that we use is Theorem 1, and our results generalize easily to
any class of graphs which can be separated into small components by removing a small
number of vertices. For instance., by employing the following result of Sider, we can
extend our results to graphs of arbitrary genus.

LEMMA 1 [2], [30]. Let G be any n-vertex graph of genus g>0. Then there exists a
subset ofno more than x/n vertices whose removal reduces the genus ofG by at least one.

* Received by the editors August 9, 1978, and in final revised form September 11, 1979.
Computer Science Department, Yale University, New Haven, Connecticut. Now at Computer Science

Division, University of California, Berkeley, Clifornia 94720. This research was partially supported by
the U.S. Army Research Office, Grant No. DAAG 29-76-G-0338.

Computer Science Department, Stanford University, Stanford, California 94305. This research was

partially supported by National Science Foundation Grant MCS-75-22870 and by the Office of Naval
Research Contract N00014-76-C-0688.

615

616 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

THEOREM 2. IfG is an n-vertex graph ofgenus g > O, there is a subset ofno more than
g/n vertices whose removal leaves a planar graph.

Pro@ The proof is by induction on g employing Lemma 1.
We state our results only for the planar case, since it seems the most interesting,

and leave as an exercise the extension of these results to graphs of higher genus.

2. Approximation algorithms forNP-complete problems. Divide-and-conquer in
combination with Theorem 1 can be used to rapidly find good approximate solutions to
certain NP-complete problems on planar graphs. As an example we consider the
maximum independent set problem, which asks for a maximum number of pairwise
non-adjacent vertices in a planar graph. We need the following generalization of
Theorem 1.

THEOREM 3. Let G be an n-vertex planar graph with nonnegative vertex costs
summing to no more than one and let 0 <= e <- 1. Then there is some set C of O(x/-e)
vertices whose removal leaves G with no connected component of cost exceeding e.
Furthermore the set C can be found in O(n log n) time.

Proof. If e _-< 1/x/, let C contain all the vertices of G. Then the theorem holds.
Otherwise, apply the following algorithm to G.

Initialization. Let C .
General Step. Find some connected component K in G minus C with cost

exceeding e. Apply Theorem 1 to K, producing a partition A 1, B1, C1 of its vertices. Let
C=CUC.

Repeat the general step until G minus C has no component with cost exceeding, e.
The effect of one execution of the general step is to divide the component K into

smaller components, each with no more than two-thirds the cost of K. Consider all
components that arise during the course of the algorithm. Assign a level to each
component as follows. If the component exists when the algorithm halts, the component
has level zero. Otherwise the level of the component is one greater than the maximum
level of the components forfned when it is split by the general step. With this definition,
any two components on the same level are vertex-disjoint.

Each level one component has cost greater than e, since it is eventually split by the
general step. Thus, for > 1, each level component has cost at least (})i-1 e. Since the
total cost of G is at most one, the total number of components of level is at most

__<e. In particular, the maximum level k must satisfy i ()-I/e ()-4, which
means k -<_ (log3/a n)/2 + 1. Since the time to split a component is linear in its number of
vertices, and since any two components on the same level are vertex-disjoint, the total
running time of thealgorithm is O(n log n).

It remains for us to bound the size of the set C produced by the algorithrn. Let
K1, K. K, of sizes n l, n,..., n, respectively, be the components of some level

,-> I. The number of vertices added to C by splitting K1, Ka,..., K is bounded by

2/X=14’. We have -< ()’-’/e and ,= n. _-< n. For fixed l, the sum Y’v= /n, subject
to E,=ln,<-n is maximized by setting ni nil for l<=j<=l; thus
24-,/-nl<=24-4n/e() i-1/2 It follows that]C[<E/=I 2/-4n/e() (i-1/2

n
The following algorithm uses Theorem 3 to find an approximately maximum

independent set I in a planar graph G (V, E). The algorithm uses a function k(n) to
be chosen later.

Step 1. Apply Theorem 3 to G with e k(n)/n and each vertex having cost 1In to
find,a set of vertices C of size O(n//k(n)) whose removal leaves no connected
component with more than k (n) vertices.

A PLANAR SEPARATOR THEOREM 617

Step 2. In each connected component of G minus C, find a maximum independent
set by checking every subset of vertices for independence. Form I as a union of
maximum independent sets, one from each component.

Let I* be a maximum independent set of G. The restriction of I* to one of the
connected components formed when C is removed from G can be no larger than the
restriction of I to the same component. Thus II*1-1II- O(n/4k(n)). Since G is planar,
G is four-colorable, and [I*1 >- n/4. Thus (1I*1- III)/1I*1 O(1/4k(nii, and the relative
error in the size of I tends to zero with increasing n as long as k (n) tends to infinity with
increasing n.

Step 1 of the algorithm requires O(n log n) time by Theorem 2. Step 2 requires
O(ni 2"’) time on a connected component of ni vertices. The total time required by Step
2 is thus

(/ }) (n
O max

i-1
ni2’*’

i=1
ni n and O_-< ni <- k(n) O k(n)k(n)2g") O(n2k("))"

Hence the entire algorithha requires O(n max {log n, 2k(")}) time. If we shoose k (n)
log n, we get an O(n2)-time algorithm with O(1/x/log n) relative error. If we choose
k(n) log log n, we get an O(n log n) algorithm with O(1/x/log log n) relative error.

3. Nonserial dynamic programming. Many NP-complete problems, such as the
maximum independent set problem, the graph coloring problem, and others, can be
formulated as nonserial dynamic programming problems [3], [27]. Such a problem is of
the following form" maximize the objective function f(xl, , xn), where f is given as a
sum of terms fk ("), each of which is a function of only a subset of the variables. We shall
assume that all variables xi take on values from the same finite set S, and that the values
of the terms fk (") are given by tables. Associated with such an objective function f is an
interaction graph G (V, E), containing one vrtex vi for each variable xi in f, and an
edge joining xi and xj for any two variables xi and xi which appear in a common term
f(.).

We can formulate the maximum independent set problem as a nonserial dynamic
programming problem as follows. Let G (V, E) be an undirected graph. For each
vertex v, 1-< <= n, let x be an associated variable which can assume a value of either
zero or one. Let the objective function]’(x, x2,. , x) be defined by

f(Xl, X2,""", Xn)= ’, fe(Xi, Xj) -Jr- Xi,
(vi, ui)EE

where fe(Xi, X)=--0 if Xi=X 1, fe(Xi, X)= 0 otherwise. Then a maximum indepen-
dent set in G corresponds to an assignment of values 0, 1 to Xl, x.,..., xn which
maximizes f; xi 1 means xi is in the independent set, xi 0 means xi is not in the
independent set. Other graph problems can be formulated similarly. Note that G is the
interaction graph of f.

By trying all possible values of the variables, a nonserial dynamic programming
problem can be solved in 2<n) time. We shall show that if the interaction graph of the
problem is planar, the problem can be solved in 2’/) time. This means that substantial
savings are possible when solving typical NP-complete problems restricted to planar
graphs. Note that if the interaction graph of f is planar, no term fk (") Of f can contain
more than four variables, since the complete graph on five vertices is not planar.

in order to describe the algorithm, we need one additional concept. The restriction
of an objective function f=k=lfk to a set of variables Xil, xii is the objective
function f’=".{fklfk depends only upon Xil, Xii }.

618 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

Given an objective function f(xl, , xn) Ek=lfk and a subset S of the variables
x 1, , xn which are constrained to have specific values, the following algorithm solves
the problem" maximize f subject to the constraints on the variables in S. In the
presentation, we do not distinguish between the variables x1,"’, xn and the cor-
responding vertices in the interaction graph.

Step 1. If n < 100, solve the problem by exhaustively trying all possible assignments
to the unconstrained variables. Otherwise, go to Step 2.

Step 2. Apply Corollary 1 to the interaction graph G of f. Let A, B, C be the
resultiiag vertex partition. Let fl be the restriction of f to A U C and let f2 be the
restriction of f to B t.J C. For each possible assignment of values to the variables in
C- S, perform the following steps:

(a) Maximize fl with the given values for the variables in C U S by applying the
method recursively;

(b) maximize f2 with the given values for the variables in C U S by applying the
method recursively;

(c) combine the solutions to (a) and (b) to obtain a maximum value of f with the
given values for the variables in C kl S.

Choose the assignment of values to variables in C U S which maximizes f and
return the appropriate value of f as the solution.

The correctness of this algorithm is obvious. If n => 100, the algorithm solves at
most 2(’/;) subproblems in Step 2, since C is of O(/) size. Each subproblem contains
at most 2n/3+2v//=<29n/30 variables. Thus if t(n) is the running time of the

o(,/-) t(29algorithm, we have t(n)<-O(n)+2 n/30) if n _-100, t(n)=O(1) if n <100.
An inductive proof shows that t(n)<-2’/-).

4. Pebbling. The following one-person game arises in register allocation problems
[28], the conversion of recursion to iteration [23], and the study of time-space tradeoffs
[4], [12], [25]. Let G (V, E) be a directed acyclic graph with maximum in-degree k. If
(v, w) is an edge of G, v is a predecessor of w and w is a successor of v. The game involves
placing pebbles on the vertices of G according to certain rules. A given step of the game
consists of either placing a pebble on an empty vertex of G (called pebbling the vertex)
or removing a pebble from a previously pebbled vertex. A vertex may be pebbled only if
all its predecessors have pebbles. The object of the game is to successively pebble each
vertex of G (in any order) subject to the constraint that at most a given number of
pebbles are ever on the graph simultaneously.

It is easy to pebble any vertex of an n-vertex graph in n steps using n pebbles. We
are interested in pebbling methods which use fewer than n pebbles but possibly many
more than n steps. It is known that any vertex of an n-vertex graph can be pebbled with
O(n/log n) pebbles [12] (where the constant depends upon the maximum in-degree),
and that in general no better bound is possible [25]. We shall show that if the graph is
planar, only O(x/) pebbles are necessary, generalizing a result of [25]. An example of
Cook [4] shows that no better bound is possible for planar graphs.

THEOREM 4. Any n-vertex planar acyclic directed graph with maximum in-degree k
can be pebbled using 0(/-+ k log2 n) pebbles.

Proof. Let c 2x/’ and/3 =Let G be the graph to be pebbled. Use the following
recursive pebbling procedure. If n 1, pebble the single vertex of G. If n > 1, find a
vertex partition A, B, C satisfying Corollary 1. Pebble the vertices of G in topological
order. To pebble a vertex v, delete all pebbles except those on C. For each predecessor

That is, an order such that if v is a predecessor of w, v is pebbled before w.

A FLANAR SEPARATOR THEOREM 619

u of v, let G(u) be the subgraph of G induced by the set of vertices with pebble-free
paths to u. Apply the method recursively to each G(u) to pebble all predecessors of v,
leaving a pebble on each such predecessor. Then pebble v.

If p(n) is the maximum number of pebbles required by this method on any n-vertex
graph, then

p()=,

p(n)<-a/-+k+p([2n/3]) ifn>l.

An inductive proof shows that p(n) is O(/+ k log2 n). 1
It is also possible to obtain a substantial reduction in pebbles while preserving a

polynomial bound on the number of pebbling steps, as the following theorem shows.
THEOREM 5. Any n-vertex planar acyclic directed graph with maximum in-degree k

can be pebbled using O(n 2/3 + k) pebbles in O(n 5/3) time.

Proof. Let C be a set of O(n 2/3) vertices whose removal leaves G with no weakly
connected component2 containing more than n 2/3 vertices. Such a set C exists by
Theorem 2. The following pebbling procedure places pebbles permanently on the
vertices of C. Pebble the vertices of G in topological order. To pebble a vertex v, pebble
each predecessor u of v and then pebble v. To pebble a predessor u, delete all pebbles
from G except those on vertices in C or on predecessors of v. Find the weakly
connected component in G minus C containing u. Pebble all vertices in this component,
in topological order.

The total number of pebbles required by this strategy is O(n 2/3) to pebble vertices
in C plus n 2/3 to pebble each weakly connected component plus k to pebble predeces-
sors of the vertex v to be pebbled. We can bound the number of pebbling steps as
follows. To pebble a vertex v requires d(v)n 2/3 + 1 steps, where d(v) is the in-degree
of vertex v. The total pebbling time is thus n +vd(v)n2/3<=n +(3n-3)n/3=
O(n/). [3

5. Lower bounds on Boolean circuit sie. A Boolean circuit is an acyclic directed
graph such that each vertex has in-degree zero or two, the predecessors of each vertex
are ordered, and corresponding to each vertex v of in-degree two is a binary Boolean
operation bo. With each vertex of the circuit we associate a Boolean function which the
vertex computes, defined as follows. With each of the k vertices v of in-degree zero
(inputs) we associate a variable x and an identity function f, (x) x. With each vertex
w of in-degree two having predecessors u, v we associate the function fw bw (f, f).
The circuit computes the set of functions associated with its vertices of out-degree zero
(outputs).

We are interested in obtaining lower bounds on the size (number of vertices) of
Boolean circuits which compute certain common and important functions. Using
Theorem 1 we can obtain such lower bounds under the assumption that the circuits are
planar. Any circuit can be converted into a planar circuit by the following steps. First,
embed the circuit in the plane, allowing edges to cross if necessary. Next, replace each
pair of crossing edges by the crossover circuit illustrated in Figure 1. It follows that any
lower bound on the size of planar circuits is also a lower bound ori the total number of
vertices and edge crossings in any planar representation of a nonplanar circuit. In a
technology for which the total number of vertices and edge crossings is a reasonable
measure of cost, our lower bounds imply that it may be expensive to realize certain
commonly used functions in hardware.

2 A weakly connected component of a directed graph is a connected component of the undirected graph
formed by ignoring edge directions.

620 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

FIG. 1. Elimination o) a crossover by use ol three "exclusive or" gates. Relerence 11] contains a crossover
circuit which uses only "and" and "not".

A superconcentrator is an acyclic directed graph with m inputs and m outputs such
that any set of k inputs and any set of k outputs are joined by k vertex-disjoint paths, for
all k in the range 1-< k-< m.

THEOREM 6. Any m-input, m-output planar superconcentrator contains at least
m 2/72 vertices.

Proof. Let G be an m-input, m-output planar superconcentrator. Assign to each
input and output of G a cost of 1/(2m), and to every other vertex a cost of zero. Let A,
B, C be a vertex partition satisfying Theorem 1 on G (ignoring edge directions).
Suppose C contains p inputs and outputs. Without loss of generality, suppose that A is
no more costly than B, and that A contains no more outputs than inputs. A contains
between 2m/3-p and m -p/2 inputs and outputs. Hence A contains at least m/3-p/2
inputs and at most m/2-p/4 outputs. B contains at least m-p-(m/2-p/4)=
m/2-3p/4 outputs. Let k=min{[m/3-p/2], [m/2-3p/4]}. Since G is a super-
concentrator, any set of k inputs in A and any set of k outputs in B are joined by k
vertex-disjoint paths. Each such path must contain a vertex in C which is neither an
input nor an output. Thus 2x/-x/--p>=mih{m/3-p/2, m/2-3p/4}>-m/3-p, and
n >m2/72. Il

The property of being a superconcentrator is a little too strong to be useful in
deriving lower bounds on the complexity of interesting functions. However, there are
weaker properties which still require f(m z) vertices. Let G (V, E) be an acyclic
directed graph with m numbered inputs v, vz,..., v,, and m numbered outputs
w, wz,’", w,,. G is said to have the shi]ting property if, for any k in the range
1 _-< k _-< m, any in the range 0_<- _-< m k, and any subset of k sources {v, , v}
such that i, iz, , i <= m l, there are k vertex-disjoint paths joining the set of inputs
{v, , v} with the set of outputs {w+, , w+l}.

THZOZM 7. Let G be a planar acyclic directed graph with the shiftingproperty. Then
G contains at least [m/2]/162 vertices.

Proof. Suppose that G contains n vertices. Assign a cost of 1/m to each of the first
[m/2J inputs and to each of the last [m/2J outputs of G, and a cost of zero to every
other vertex of G. Call the first [m/2] inputs and the last [m/2J outputs of G costly. Let
A, B, C be a vertex partition satisfying Theorem 1 on G (ignoring edge directions).

Without loss of generality, suppose that A is no more costly than B, and that A
contains no more costly outputs than costly inputs. Let A’ be the set of costly inputs in
A,B’ the set of costly outputs in B, p the number of costly inputs and outputs in C, and q
the number of costly inputs and outputs in A. Then 2[m/2]/3-p <=q <= [m/21 -p/2.
Hence Ia’[>-_q/2 >-_ [m/21/3-p/2. Also

[A’I" IB’I-> IA’I ([m/2J-p-(q-[A’l))
>=q/2. ([m/2]-p-q/2).

A PLANAR SEPARATOR THEOREM 621

The function x([m/2J-p-x) for [m/2J/3-p/2<-x<-[m/2J/2-p/4 is mini-
mized either at x= [m/2J/3-p/2 or at x= [m/2J/2-p/4. If x= [m/2J/3-p/2,
we have x([m/2]-p-x)=2[m/212/9-p[m/2]/2+p2/4. If x=[m/2]/2-p/4,
we have x([m/2J -p -x)= [m/2Jz/4-p [m/2]/2 + 3p2/16. It follows that Ia’l. IB’I-->
2 [m/2] z/9-p [m/2]/2.

For v A’, w B’, and in the range 1 =< =< [m/2], call vi, wi, a match if j- I.
For every v A’ and w B’ there is exactly one value of which produces a match;
hence the total number of matches for all possible vi, wi, is [a’[.
2[m/2]z/9-p[m/2]/2. Since there are only [m/2J values of l, some value of
produces at least 2[m/2]/9-p/2 matches. Thus, for k=2[m/2J/9-p/2, there is
some value of and some set of k inputs A"={v, v,..., v}_A’ such that B"=
{w+l, wa+, , w+l}

_
B’. Since G has the shifting property, there must be k vertex-

disjoint paths between A" and B". But each such path must contain a vertex of C which
is neither an input nor an output. Hence 2/-/-p>=2[m/2J/9-p/2, and n_->

[m/212/162/
A shifting circuit is t Boolean circuit with m primary inputs x, x2, , x,, zero or

more auxiliary inputs, and m outputs z, z2,. , z,, such that, for any k in the range
0 <- k <- m, there is some assignment of the constants O, 1 to the auxiliary inputs so that
output z+ computes the identity function x, for ON <_-m- k. The Boolean con-
volution of two Boolean vectors (X l, X2,"" ", Xm) and (y, Y2,""", Ym) is the vector
(z2, z3,’’’, zz,,) given by Zk i+i=kXiyi.

COROLLARY 2. Any planar shifting circuit has at least [m/2]2/162 vertices.

Proof. Any shifting circuit has the shifting property. See [31], [33].
COROLLARY 3. Any planar circuit for computing Boolean convolution has at least

[m/212/162 vertices.

Proof. A circuit for computing Boolean convolution is a shifting circuit if we regard
Xl," , x, as the primary inputs and z2," , z,,+l as the outputs.

COROLLARY 4. Any planar circuit for computing the product of two m bit binary
integers has at least Lm/2j2/162 vertices.

Proof. A circuit for multiplying two m-bit binary integers is a shifting circuit.
The last result of this section is an f(m4) lower bound on the size of any planar

circuit for multiplying two m x m Boolean matrices. We shall assume that the inputs are
xij, yij for 1 _-< i,/" _-< m and the outputs are z0 for 1 -< i, j _-< m. The circuit computes
Z X. Y, where Z (z0), X (xii), and Y (yi). We use the following property of
circuits for multiplying Boolean matrices, called the matrix concentration property [31],
[33]. For any k in the range 1 -< k <- m 2, any set {Xijrll < r < k} of k inputs from X, and
any permutation tr of the integers one through m, there exist k vertex-disjoint paths
from {x##[1 <= r <- k} to {z,,(.)[1 _-< r -< k}. Similarly, for any k in the range 1 _-< k _-< m 2, any
set {y i,#[1 <= r <= k} of k inputs from Y, and any permutation o- of one through m, there
exist k vertex-disjoint paths from {yiall <- r <_- k} to {z=.,ll <_- r <_- k}.

THEOREM 8. Any planar circuit G for multiplying two m x m Boolean matrices
contains at least cm4 vertices, for some positive constant c.

Proof. This proof is somewhat involved, and we make no attempt to maximize the
constant factor. Suppose G contains n vertices, and that m is even. Assign a cost of
1 ! (4m 2) to each input x0 and each input yii, a cost of 1 ! (2m 2) to each output zii, and a
cost of zero to every other vertex. By Theorem 2, there is a partition A, B, C of the
vertices of G such that neither A nor B has total cost exceeding 1/2, no edge joins a vertex
in A with a vertex in B, and C contains no more than ClX/n vertices. Without loss of
generality, suppose that B contains no fewer outputs than A, and that A contains no
fewer inputs xii than inputs yii. Then B contains at least (m2-clx/-)/2 outputs,

622 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

which contribute at least 1/4-ClX/--/(4m 2) to the cost of B. Thus inputs contribute at
most 1/4-c1/-/(4m 2) to the cost of B, and B contains at most m2+cl/ inputs. A
contains at least 2m2-(m2+cl/-)-cl/-=m:-2cl/- inputs, of which at least
m2/2-c1/- are inputs xii. One of the following cases must hold.

Case 1. A contains at least 3m2/5 inputs xij. Letp be the number of columns of X
which contain at least 4m/7 elements of A. Then pm +(m-p)(4m/7)->-3m2/5, and
p >= m! 15. Let q be the number of columns of Z which contain at least 4m/9 elements of
B. Then qm + (m q)(4m/9) >= m2/2 ClX/-/2, and q >- m10-9clx/-/(lOm).

Let k =rain {m/15, m/lO-9cax//(lOm)}. Choose any k columns of X, each of
which contains at least 4m/7 elements of A. Match each such column of X with a
column of Z which contains at least 4m/9 elements of B. For each pair of matched
columns x,, z,i, select a set of 4m/7 + 4m/9 m m/63 rows such that x is in A and
Zlj is in B. Such a selection gives a set of km/63 elements in X fq A and a set of km/63
elements in Z fq B which must be joined by km/63 vertex-disjoint paths, since G has
the matrix concentration property. Each such path must contain a vertex of C. Thus
km/63 <- cx/-, which means either m2/(15 63) _-< c/ (i.e., (m2/(15 63Cl))2 -< n) or
m/63(m/lO-9ca/-/(10m))<-_c1/- (i.e., (m2/(9.71Cl))2 <=n).

Case 2. A contains fewer than 3m2/5 inputs x0. Then A contains at least
2m2/5 2clx/ inputs Y0. Let S be the set of m/2 columns of Z which contain the most
elements in B.

Subcase 2a. S contains at least 3m2/10 elements in B. Let p be the number of
columns of X which contain at least 4m/9 elements of A. Then pm +4(m-p)m/9 >=
m2/2--clx/, and p >-_ m/lO-9ClX//(5m). Let q be the number of columns of S which
contain at least 4m/7 elements of B. Then qm +4(m/2-q)m/7>-3m2/10, and q _->

m/30. A proof similar to that in Case I shows that n _-> cm4 for some positive constant c.
Subcase 2b. $ contains fewer than 3m2/10 elements in B. Then the m/2 columns

of Z not in $ contain at least m2/5-clx/-/2 elements in B. Let q be the number of
columns of Z not in S which contain at least m/lO elements in B. Then qm +
(m/2-q)(m/lO)>=m2/5-CxX/-/2, and q>-_m/6-5ClX/-/(9m). If O>-q>=m/6
5ClX/-/(9m), then (3m2/(10cl))2>= n. Hence assume q > 0. Then all columns in S must
contain at least m/lO elements in B, and 2m/3-Sclx/-/(9m) columns of Z must
contain at least m/10 elements in/3.

Let p be the number of columns of Y which contain at least m/25 elements
of A. Then pm+ (m -p)(m/25) >- 2m2/5 2ClX/, and p >- 3m/8- 25c1/-/(12m).

For any input yi e A and integer in the range -m + 1 -<_ -< m 1, call Y0,. a match
if z+,jeB. By the previous computations, there are at least 2m/3-Scl/-/(9m)+
3m/8-25clx/n/(12m)-m m/25-95clx/-/(36m)= m/25-cgx/-/m columns j such
that y,, contains m/25 elements of A and z.i contains m/lO elements of B. Each such
column produces m2/250 matches; thus the total number of matches is at least
m3/6250-mc2x/-n/250. Since there are only 2m-1 values of 1, some value of
produces at least k m2/12,500 c2x/-/500 matches. Since G has the matrix concen-
tration property, this set of matches corresponds to a set of k elements in Y fq A and a
set of k elements in Z f’l B which must be joined by k vertex-disjoint paths. Each such
path must contain a vertex in C. Thus k<-clx/-, which means m4/(12,500(c1+
2/500))2

In all cases n cm4 for some positive constant c. Choosing the minimum c
over all cases gives the theorem for even m. The theorem for odd m follows
immediately.

The bounds in Theorems 6-8 and Corollaries 2-4 are tight to within a constant
factor. We leave the proof of this fact as an exercise.

A PLANAR SEPARATOR THEOREM 623

6. Embedding of data structures. Let O1 V1, El) and G2 V2, E2) be undirec-
ted graphs. An embedding of O1 in 02 is a one-to-one map &: V1 - V2o The worst-case
proximity of the embedding is max {dE(& (v), &(w))]{v, w} El}, where dE(x, y) denotes
the distance between x and y in G2. The average proximity of the embedding is
(1/1E1[)/ {dE((v), &(w))l{v, w}6E1}. These notions arise in the following context.
Suppose we wish to represent some kind of data structure by another kind of data
structure, in such a way that if two records are logically adjacent in the first data
structure, their representations are close together in the second. We can model the data
structures by undirected graphs, with vertices denoting records and edges denoting
logical adjacencies. The representation problem is then a graph embedding problem in
which we wish to minimize worst-case or average proximity. See [5], [18], [26] for
research in this area.

THEOREM 9. Any planar graph with maximum degree k can be embedded in a
binary tree so that the average proximity is O(k).

Proof. Let G be an n-vertex graph of maximum degree k. Embed G in a binary tree
T by using the following recursive procedure. If G has one vertex v, let T be the tree of
one vertex, the image of v. Otherwise, apply Corollary 1 to find a partition A, B, C of the
vertices of G. Let v be any vertex in C (if C is empty, let v be a vertex in A). Embed the
subgraph of G induced by A (J C-{v} in a binary tree T1 by applying the method
recursively. Embed the subgraph of G induced by B in a binary tree T2 by applying the
method recursively. Let T consist of a root (the image of v) with two children, the root
of T1 and the root of T2. Note that the tree T constructed in this way has exactly n
vertices.

Let h(n) be the maximum depth of a tree T of n vertices produced by this
algorithm. Then

h(n)< 100

h(n) <-_ h(2n/3 + 2/x/- 1)+ 1 _-< h(29n/O) + 1

if n < 100,

if n _-> 100.

It follows that h (n) is O(log n).
Let G (V, E) be an n-vertex graph to which the algorithm is applied, let G1 be

the subgraph of G induced by A kJ C, and let G2 be the subgraph induced by B.
If s(G)=Y’.{dE(&(v),&(w))l(v,w)E}, then s(G)=0 if n=l, and s(G) <-
s(G1)+ s(G2) + 2k]C]h(n) if n > 1. This follows from the fact that any edge of G not in
G1 or G2 must be incident to a vertex of C.

If s(n) is the maximum value of s(G) for any n-vertex graph G, then

s()=o;

s (n) _-< max {s(i)+ s (n i- 1)+ ck’,/- log n In3 2x/-/- <= <- 2n/3 + 2x/x/}
if n > 1, for some positive constant c.

An inductive proof shows that s(n) is O(kn).
If G is a connected n-vertex graph embedded by the algorithm, then G contains at

least n 1 edges, and the average proximity is O(k). If G is not connected, embedding
each connected component separately and combining the resulting trees arbitrarily
achieves an O(k) average proximity. [3

It is natural to ask whether any graph of bounded degree can be embedded in a
binary tree with O(1) average proximity. (Graphs of unbounded degree cannot be so
embedded; a star consisting of a single vertex adjacent to n 1 other vertices requires
I)(log n) proximity.) Such is not the case, and in fact the property of being embeddable

624 RICHARD Jo LIPTON AND ROBERT ENDRE TARJAN

in a binary tree with O(1) average proximity is closely related to the property of having a
good separator. To make this statement more precise, let S be a class of graphs. The
class S has an f(n)-separator theorem if there exist constants a < 1, 3 > 0 such that the
vertices of any n-vertex graph in $ can be partitioned into three sets A, B, C such that
IA[, [B[_-< an, IcI =< f(n), and no vertex in A is adjacent to any vertex in B.

THZORZM 10. Let S be any class o1: graphs of maximum degree k closed under the
subgraph relation (i.e., if G $ and Gz is a subgraph of G, then
satisfies an n/(log n)Z+ separator theorem for some fixed e. Then any graph in S can be
embedded in a binary tree with O(k) average proximity.

Proof. Similar to the proof of Theorem 9.
THZORZM 11. Let G (V, E) be any graph o[n vertices and m edges which is

embeddable in a binary tree T with average proximity p. Then V can be partitioned into
three sets A, B, Csuch that]A[, [BI--< 2n/3, [C] _-< crnp/log n]:or some positive constant c,
and no edge joins a vertex in A with a vertex in B.

Proof. We can assume m _->2n/3; otherwise the theorem is immediate. Let v be a
vertex whose removal divides T into two or three connected components, each
containing fewer than 2n/3 vertices. Such a vertex can be found by initializing v to be
the root of T and repeating the following step until it is no longer applicable: if some
child w of v has at least 2n/3 descendants, replace v by w. Let A be the set of vertices in
G corresponding to the largest component of T when v is removed, let C be the set of
vertices in V-A adjacent to at least one vertex in A, and let B V-A- C. By the
choice of v and A, IA[<-2n/3 and [B[<-2n/3. Let T(A), T(B), T(C) be the sets of
vertices in T corresponding to A, B, C respectively. Since T is a binary tree, the number
of vertices in T(B) T(C) within a distance of from at least one vertex in T(A) is at
most 2g-1. Thus the average proximity of the embedding of G in T is at least
[CI" [log21C[J/(2m)..This means [C[log]C[O(mp), and

Erd6s, Graham, and Szemer6di [7] hav+ shown that for c a large enough constant,
almost all graphs of cn edges cannot be separated into small components without
removing l)(n) vertices. It follows from Theorem 1 1 that almost all graphs of cn edges
require I)(log n) average proximity when embedded in binary trees.

7. Maximum matching. Let G (V, E) be an undirected graph. A matching
ME is a set of edges no two of which have a common endpoint. A maximum
cardinality matching is a matchingM such that [MI is maximum. If each edge e E has
an associated real-valued weight w(e), a maximum weight matching is a matching M
such that eMW(e) is maximum. By using Corollary 1, we can find maximum
cardinality matchings in planar graphs in O(n 3/2) time and maximum weight matchings
in O(n3/21ogn) time. For arbitrary graphs, the best known algorithms require
O(/ m log log n) time to find maximum cardinality matchings [14] and O(mn log n)
time to find maximum weight matchings [8], where m IEI. For planar graphs, these
bounds are O(n 3/2 log log n) and O(n log n), respectively.

To describe the method, we need a few ideas from matching theory. If M is a
matching in a graph C, an unmatched vertex is a vertex incident to no edge of M. An
alternating path is a simple path or simple cycle whose edges are alternately in M and
not in M. The net weight of an alternating path is the total weight of its unmatched edges
minus the total weight of its matched edges. An alternating path is augmenting if its net
weight is positive and it is either a cycle or each of its first and last edges is either inM or
incident to an unmatched vertex. Given an augmenting path, we can increase the weight
of the matching by adding toM all previously unmatched edges on the path and deleting
fromM all previously matched edges on the path. Conversely, if there is no augmenting

A PLANAR SEPARATOR THEOREM 625

path, then M is of maximum weight. The next lemma provides a way to update a
maximum weight matching when a single vertex is added to a graph.

LEMMA 2. Let G V, E) be an undirected graph with edge weights w(e), let v V,
and let G-v be the subgraph of G induced by the vertex set V-{v}. Suppose M is a
maximum weight matching in G- v. If G contains no augmenting path (with respect to
M) with v as one endpoint, then M is a maximum weight matching of G. Otherwise,
let P be the edge set of an augmenting path of maximum net weight. Then M(P
M P-(M f’l P) is a maximum weight matching in G.

Proof. Let Mo be a maximum weight matching in G. Consider M@Mo=
M M0 (M Mo). Every vertex in G is incident to at most two edges ofM U M0; thus
MMo consists of a set of simple cycles and simple paths in G, each of which is an
alternating path with respect to Mo. Any augmenting path inM(Mo must have v as an
endpoint, or else M would not be of maximum weight in G- v. (Note that v is incident
to at most one edge in M(Mo). Thus M Mo contains at most one augmenting path,
and such a path has v as one endpoint. The lemma follows. I-1

Given a suitable representation of a maximum weight matching M in G-v, a
maximum weight matching Mo in G can be found in O(m log n) time by applying
Lemma 2; see [8] for details. Thus applying Lemma 2 to a planar graph requires
O(n log n) time. In the maximum cardinality case, all the weights are one, and
application of Lemma 2 requires O(m) time on an arbitrary graph, O(n) time on a
planar graph 13].

The following recursive algorithm makes use of Corollary 1 and Lemma 2 to find
maximum weight matchings.

Step 1. If G contains at most one vertex, return the empty set as a maximum weight
matching.

Step 2. Otherwise, apply Corollary 1 to G. Let A, B, C be the resulting vertex
partition and let GA, GB be the subgraphs of i induced by the vertex sets A, B,
respectively. Apply the algorithm recursively to find maximum weight matchings MA in
GA, Mn in GB. Let M MA U Mn, S A U B.

Step 3. Add C one vertex at a time to $. Each time a vertex is added to S, apply
Lemma 2 to replace M by a maximum weight matching in Gs, the subgraph of G
induced by the vertex set S. Stop when $ V.

After Step 2, M MA UMn is a maximum weight matching of GAUB. It follows
from Lemma 2 that after Step 3, M is a maximum weight matching of Gv. If t(n) is the
running time of the algorithm on an n-vertex graph, then

t(l)=cl;

t(n)-< max {t(nl)+ t(nz)+c2n 3/2 log nlnx + n2 <-n; nl, nz <-2n/3}

if n>l,

where c and c2 are suitable positive constants, since ICI O(/). An inductive proof
shows that t(n)= O(n3/2 log n). In the maximum cardinality case, the algorithm
requires only O(n 3/2) time.

$. Remarks. Theorem 1 and its corollaries have applications beyond those in this
paper. For instance, the planar separator theorem can be used to generalize George’s
"nested dissection" method [10] for carrying out sparse Gaussian elimination on a
system of linear equations whose sparsity structure corresponds to a square grid. The
generalized method solves any linear system whose sparsity structure corresponds to an
n-vertex planar graph in O(n 3/2) time and O(n log n) space [19]. Theorem 2 can be

626 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

employed to give a rather complicated O(log n) time, O(n)-space solution [21] to the
closest-point searching problem in two dimensions, sometimes called the post office
problem [16]. The previously best solutions to this problem required either O(log n)
time and O(n 2) space [29], or O((log n)2) time and O(n) space [6], [29]. Recently
Kirkpatrick [15] has discovered a simple O(log n)-time, O(n)-space solution which
does not use the separator theorem. We leave further applications of the separator
theorem to the reader.

Although most sparse graphs do not have good separators, there are other classes
besides planar graphs and graphs of fixed genus which do (see e.g. [19]). The results
discussed in this paper generalize to any such class. In some of the problems we have
examined, such as graph embedding (6) and sparse Gaussian elimination [19], the
existence of good separators is not only a sufficient but also a necessary condition for
efficient solution of the problem. This phenomenon deserves more study, and suggests
that for certain graph problems it may be valuable to define the concept of "usefully
sparse" as meaning that a graph has good separators.

Acknowledgment. We would like to thank Hal Gabow for his very perceptive
comments and for suggesting the results in 7. A preliminary version of this paper was
presented at the Eighteenth Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, 1977.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Efficient Computer
Algorithms, Additon-Wesley, Reading, MA., 1974.

[2] M. O. ALBERTSON AND J. P. HUTCHINSON, On the independence ratio ofa graph, J. Graph Theory, 2
(1978), pp. 1-8.

[3] U. BERTELE AND F. BRIOSCHI, Nonserial Dynamic Programming, Academic Press, New York, 1972.
[4] S. A. COOK, An observation on time-storage tradeoff, Proc. Fifth Annual ACM Symp. on Theory of

Computing (1973), pp. 29-33.
[5] R. A. DEMILLO, S. C. EISENSTAT AND R. J. LIPTON, Preserving average proximity in arrays, Comm.

ACM, 21(1978), pp. 228-230.
[6] D. DOBKIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp.

181-186.
[7] P. ERDtS, R. L. GRAHAM AND E. SZEMERtDI, On sparse graphs with dense long paths, Comp. and

Math. with Appl., 1 (i975), pp. 365-369.
[8] H. GABOW, An efficient implementation of Edmonds’ algorithm for maximum weight matching on

graphs, Technical Report CU-CS-075-75, University of Colorado, Boulder, Colorado (1975).
[9] M. R. GAREY, D. S. JOHNSON, F. P. PREPARATA, AND R. E. TARJAN, Triangulating a simple

polygon, Informat. Processing, Letters, 7 (1978), pp. 175-179.
[10] J. A. GEORGE, Nested dissection ofa regularfinite element mesh, SIAM J. Numer. Anal., 10 (1973), pp.

345-363.
11] L. GOLDSCHLAGER, The monotone andplanar circuit value problems are log space complete forP, ACM

SIGACT News 9, 2 (1977), pp. 25-29.
[12] J. HOPCROFT, W. PAUL AND L. VALIANT, On time versus space, J. Assoc. Comput. Mach., 24 (1977),

pp. 332-337.
[13] T. KAMEDA AND I. MUNRO, A O(VE) algorithm]:or maximum matching of graphs, Computing 12

(1974), pp. 91-98.
[14] O. KARIV, An O(n2"5) algorithm forfinding a maximum matching on a general graph, Ph.D dissertation,

Weizmann Institute of Science, Rehovot, Israel, 1976.
[15] D. KIRKPATRICK, private communication, 1979.
[16] D. E. KNUTH, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley,

Reading, MA., 1973.
[17] D. KOZEN, Dn parallelism in Turing machines, Proc. Seventeenth Annual Symp. on Foundations of

Computer Science, 1976, pp. 89-97.

A PLANAR SEPARATOR THEOREM 627

[18] R. J. LIPTON, S. C. EISENSTAT, AND R. A. DEMILLO, Space and time hierarchies for control structures

and data structures, J. Assoc. Comput. Mach., 23 (1976), pp. 720-732.
[19] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal.,

16 (1979), pp. 346-358.
[20] R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math.,

36(1979), pp. 177-189.
[21] ., Applications of a planar separator theorem, Proc. 18th Annual Symp. on Foundations of

Computer Science (1977), pp. 162-170.
[22] H. C. MARTIN AND G. F. CAREY, Introduction to Finite Element Analysis, McGraw-Hill, New York,

1973.
[23] M. S. PATERSON AND C. E. HEWITT, Comparative schematology, Record of Project MAC Conf. on

Concurrent Systems and Parallel Computation (1970), pp. 119-128.
[24] M. S. Paterson, Tape bounds]:or time-bounded Turing machines, J. Comput. System Sci., 6 (1972), pp.

116-124.
[25.] W. J. PAUL, R. E. TARJAN, AND J. R. CELONI, Space bounds]:or a game on graphs, Math. Systems

Theory 10 (1977), pp. 239-251.
[26] A. L. ROSENBERG, Managing storage]’or extendible arrays, this Journal, 4 (1975), pp. 287-306.
[27] A. ROSENTHAL, Nonserial dynamic programming is optimal, Proc. Ninth Annual ACM Symp. on

Theory of Computing (977), pp. 98-105.
[28] R. SETHI, Complete register allocation problems, this Journal, 4 (1975), pp. 226-248.
[29] M. J. SHAMOS, Geometric complexity, Proc. Seventh Annual ACM Symp. on Theory of Computing

(1975), pp. 224-233.
[30] N. SIDER, Partial colorings and limiting chromatic numbers, Ph.D. dissertation, Syracuse University,

Syracuse, NY (1971).
[31] L. G. VALIANT, On non-linear lower bounds in computational complexity, Proc. Seventh Annual ACM

Symp. on Theory of Computing (1975), pp. 45-53.
[32] P. UNGAR, A theorem on planar graphs, J. London Math. Soc., 26 (1951), pp. 256-262.
[33] L. G. VALIANT, Graph-theoretic arguments in low-level complexity, Computer Science Dept., Uni-

versity of Edinburgh, 1977.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0014 $01.00/0

RANDOM GRAPH ISOMORPHISM*

L/SZL(3 BABAIt, PAUL ERDS:I: AND STANLEY M. SELKOW

Abstract. A straightforward linear time canonical labeling algorithm is shown to apply to almost all
graphs (i.e. all but o(2)) of the 27) graphs on n vertices). Hence, for almost all graphs X, any graph Y can be
easily tested for isomorphism to X by an extremely naive linear time algorithm. This result is based on the
following: In almost all graphs on n vertices, the largest n15 degrees are distinct. In fact, they are pairwise at
least n

’3 apart.

Key words, graph, isomorphism testing, canonical labeling, random graph, naive algorithm, average-case
analysis, linear time, degree sequence of a graph

1. A straightforward algorithm. The problem of testing graphs for isomorphism
belongs to those combinatorial search problems for which no polynomial-time
algorithm is available as yet. It is, however, striking, that even the most trivial
isomorphism testing algorithms have a good performance if tested on randomly
generated graphs. The aim of the present note is to give some theoretical background
for this.

By a canonical labeling algorithm of the class {" of graphs we mean an algorithm
which assigns the numbers 1, , n to the vertices of each graph in Y{’, having n vertices,
in such a way that two graphs in Y{" are isomorphic (if and) only if the obtained labeled
graphs coincide. (We assume that Y{ is closed under isomorphisms.) Clearly, given a
canonical labeling algorithm of 77(, and an algorithm deciding whether a given graph
belongs to ?7{" or not, we also have an algorithm, deciding whether X Y for any two
graphs X, Y provided X ?7{. Namely, if Y: Y{ then X Y; and if Y ?7{ then we have
to check whether X and Y coincide after canonical labeling.

We describe a class ?7{" of graphs (closed under isomorphisms) and a canonical
labeling algorithm of YL Deciding whether X Y{ and subsequently, canonically
labeling X will require linear time (i.e. O(n), where n is the number of vertices) on a
random access machine which operates in one step on binary words of length O(log n).
We shall prove, that Y{ contains almost all graphs on n vertices (i.e. all but o (2)) of the
graphs on a fixed vertex set of cardinality n). In particular, we prove

THEOREM 1.1. There is an algorithm which, for almost all graphs X, tests any graph
Yfor isomorphism to X within linear time.

The algorithm is as follows"
Input: a graph X having n vertices. (The graph is represented by its adjacency

matrix.)
1. Compute. r [3 log n/log 2].
2. Compute the degree of each vertex of X.
3. Order the vertices by degree; call them v(1),..., v(n). Denote by d(i) the

degree of v(i):d(1)>=d(2) >-... >=d(n).
4. If d(i) d(i + 1) for some i, 1 _-< _-< r- 1, set Xg 77{, end. Otherwise
5. Compute

f(v(i)) a(i,/’)2; (i r + 1,. , n)
i=1

Received by the editor October 9, 1977.
t Department of Algebra and Number Theory, E61v6s L. University, H-1445 Budapest 8, Pf. 323,

Hungary.
Mathematics Institute of the Hungarian Academy of Sciences, Refiltanoda u. 1.3-15, H-1053

Budapest, Hungary.
Department of Computer Science, Concordia University, Montr6al, Quebec, Canada.

628

RANDOM GRAPH ISOMORPHISM 629

(the "code of v(i) with respect to v(1), ., v(r)"), where a(i,/’) 1 if v(i) and
v(j) are adjacent and a (i, j)= 0 otherwise.

6. Order the vertices v(r+l),..., v(n) according to their f-value: w(r+l),.., w(n) where f(w(r+ 1))_->.. .>=f(w(n)).
7. If f(w(i))=f(w(i+l)) for some i,r+l<-i<-n-1, set X_Y{, end. Otherwise
8. Label v(i) by for i=l,...,r, and w(i) by for i=r+l,...,n. This

labeling will be called canonical. Set X Y{’. End.
In other words, the first r labels will be assigned to the vertices with largest degrees,

in decreasing order of the degree. If this is not unique, then X’. The rest of the labels
will be assigned to the remaining n-r vertices in decreasing order of their codes with
respect to the first r vertices, as defined in step 5. Again, if two vertices get the same code
thenXY[.

Obviously, this algorithm defines a canonical labeling, indeed, and Y{" is closed
under isomorphisms. The running time of the algorithm is O(n2), as readily verified.
Our principal result is the following’

THEOREM 1.2. The probability that a random graph on n vertices belongs to the class
Y[, specified by our canonical labeling algorithm, is greater than 1 -7-]-i/n (for sufficiently
large n).

This clearly implies Theorem 1.1.
At this point we have to stress that our algorithm is not intended for practical use"

more involved but still very natural heuristic algorithms are much better. Our purpose is
to show that even such an extremely naive, fast algorithm solves the problem for almost all
graphs.

The referee and the first named author share the responsibility for almost two years
delay in publishing this paper. Since 1977, the paper has been circulated as a preprint
essentially in its present form (except for the introduction and a simplification of the
proof in 4, suggested by the referee).

In the preprint we formulated the following two problems:
(i) Find a fast canonical labeling algorithm with exponentially small probability of

rejection.
(ii) Find a canonical labeling algorithm of all graphs, with polynomial expected

running time.
The preprint seems to have inspired further work instantaneously. Both problems

have been solved shortly after submission of this paper. R. Lipton [8] gives a canonical
labeling algorithm with O(n 6 log n) running time and exponentially small probability
of rejection (c-,c>l). R. M. Karp [7] improves this, giving an O(n21ogn)
algorithm, with 0(rt3/22-n/2) probability of rejection. Babai and Kugzera [1] prove
that the standard vertex classification algorithm gives a canonical labeling in O(n)
time with c probability of rejection. In addition, it is proved in [1] that the rejected
graphs can be handled such as to obtain a canonical labeling algorithm of all
graphs with linear expected time, i.e. the average running time over the 2() graphs is
O(n2).

This short survey tends to convince us that, despite of the long delay, the present
note may merit some attention. Apart from 1], it still appears to be the only example of
a linear time canonization of almost all graphs. [1] definitely outscores our results, but
the simplicity of our algorithm can hardly be improved on, and it may be worth noting
that still, such an algorithm canonizes almost all graphs.

The performance of our algorithm relies on our results on the degree sequence of a
random graph. This aspect of the paper, which extends the idea of [4], may have interest
on its own. The results of 3 are stronger than what would be necessary to prove the

630 L/SZL6 BABAI, PAUL ERD6S AND STANLEY M. SELKOW

main theorem. Recently, B. Bollobfis [2] has obtained finer and more detailed results on
this subject.

More about random graphs can be found in Erd6s-Spencer [3].
Concerning the probabilistic analysis of some hard combinatorial problems we

refer to Karp [6].

2. Preliminaries. Throughout this paper, we shall use the following notation:

(1) P(m, l)= E
s=/+l

Clearly,

(2) P(m, l) P(m 1, l) + P(m 1, 1).

We shall refer to the following well-known asymptotic formula"

(m) ([m])(3)
m/2+t m/2

e

where r t2/m2+ t4m 3 (cf. Feller [5, Chap. VII/2]). The O notation always refers
to absolute constants (not depending on any of our parameters). Of course, m/2 +
should be an integer. This means that is either an integer or a half-integer, depending
on the parity of m. Similar restrictions on the possible values of parameters are
uladerstood throughout without explicit mention.

Random variables are denoted by block letters. A random graph X on the vertex
set V {1,..., n} assumes as its values each graph on V with probability 2 -().

We start with some elementary computation with binomial coefficients.

PROPOSITION 2.1. If m/2 + (0< < m/2) and f> r(log 2/2), then

(m)+f < 2-r(’)"

Proof.

(()m r

m/2
m

=(m-l)...(m-l-f+l)/(l+f)...(/+l)< /+1
<

l+f

=(1-2t/m)r <exp(-2tffm)<exp(-r log2)=2-r.

COROLLARY 2.2./f m/2 + (0 < < m/2) then

P(m,l)/ <--t
Proof. Let g [m log 2/(2t)]+ 1. Then, by Proposition 2.1,

(m)l ()m -7-()mm,P(m,l)< (g+g/2+g/4+. .)<2g < 7-]

On the other hand, a lower bound of the same order of magnitude also holds. To
this end, we need another simple estimate:

PROr’OSrrION 2.3. If m/2 + (0 < < m/2) and 0 < f< t, then

m) mf)(1 >(1- (1-4trim).

RANDOM GRAPH ISOMORPHISM 631

Proof.

(m)/(m)=(m-l+f). (m-l+l)/l(l-1). (l-f +l)>((m-l)/l)
z-f

>(1-2t/m)2> 1-4tf/m.
2+

COROLLARY 2.4. If m/2 + (2/< < m/30), then

P(m, Z > 23---"
Proof. For any natural number f, obviously

m m m

By Proposition 2.3, the right side exceeds f(1-4(t+f)f/m). Set =[m/9t]+ 1. So,
> m/gt and < m/9t + 1 < t/27; hence our quantity exceeds

(4.28 4.28 t) mm
1 >.

9t 9.27 27 m 23t

3. The largest degrees are distinct. Let X be a random graph on the vertex set
{1, , n }. Let d(x) denote the degree of the vertex x. Let us fix a natural number d, and
set zx 0 if d(x) -< d, Zx 1 otherwise. Let z x__l Zx.

We are interested in the behavior of the expected value E(z) (depending on the
choice of d).

LEMMA 3.1. Let m n 1, d m/2 + where

to + (-Om (m/log m) 1/2,
where

and

)1/2to (1/2m log m)1/2- (2m/log m log log m,

If (.I) < 0 then

log m/< Wm < m0"7.

E(z) > Cl e -1"4’"

if o,, > 0 then
2E(z) < ca exp(- 2.8om 2o) m/log m).

If om/log m - -e/x/2 (m - oe) where 0 < e < 1 (e is fixed) then

E(z) > m (2-+()).

Proof. Clearly, for any x (1 _-< x _-< n),

E(z) nE(zx)= n2-"+lP(n 1, d)

(1 + o(1))m2-mP(m, d).

Now we apply Corollaries 2.2 and 2.4 to obtain 0, 0 < 0 < 1 such that

1 () 1+ (1)
2.m e

m m 0 _2t/m/(t(1/2rm)l/2e(m,)=
+ 22----- a + 22o

632 LSZL6 BABAI, PAUL ERD(S AND STANLEY M. SELKOW

(by (3)). Hence,
log E(z)= O(1)+ 3 log m/2-1og t-2t2/m.

For to the right side is bounded; hence in the general case,

log E(z)= O(1)-log (t/to)-2(tz-t)/m
O(1)-log(1 + w,//log m)- 2w,(x/-/ log log m/4 log rn + w,/log m).

Now our assertions can be readily checked. 7
COROLLARY 3.2. With the notation ofLemma 3.1, the probability that x has a vertex

2o]’degree > to+w,n(m/log m)1/2 is less than c2 exp (-2.8win -2on/log m)(co,, >0).
In order to obtain the counterpart of Corollary 3.2 for o,, < 0, we have to compute

the variance of z.
LEMMA 3.3. Let rn n 1 and d m/2 + t, where 2/-< < m/30. Then

where

Proof. Clearly,
Var(z)/E(z)2 < 1/E(z) + 67t2/m 2.

Varz= E(z2)-E(z)2= mA+(n2)B,
A E(zx)(1 E(zx) < E(zx) (hence nA < E(z)),

B E(zxZy)-E(zx)2 (for any 1 =<x < y <=n).

Clearly, for x y

E(zxZy) Prob(d(x) > d and d(y) > d) (P1 +P2)/2,

where P1, P2 are conditional probabilities"

P1 Prob(d(x)> d and d(y)> dlx and y are adjacent)

=2-2n+4p(n-2, d-1)2;

P2 Prob(d(x)> d and d(y)> d]x and y are not adjacent)

2-2n+ap(n -2, d)2.
It follows (using (2)), that

B 2-2n+Z(2P(n -2, d- 1)2 + 2P(n -2, d)z-P(n 1, d)2)
2-2n+2(P(n -2, d- 1)-P(n -2, d))2

2-2+2(n -2) 2

d

Hence

Var z 1 n
B/E(z)2 < + /P(n 1 d

E(z)2<E-- + 2 d

<--+- /P(m, d) <-+- -< 1/E(z)+(23t/m)/8 < 1/E(z)+67t/m.
(We have used here the inequality (")<(a) which trivially holds for d > n/2; and
subsequently Corollary 2.4.)

RANDOM GRAPH ISOMORPHISM 633

COROLLARY 3.4. If the sequence dn is so chosen that (setting d dn) we obtain
E(z) - oo (n oo), then

Prob (z < E(z)/2) 0.

Using the notation ofLemma 3.1, for log m/2 <w < 0 we have

Prob (z < E(z)/2) < c3 e

If w/log m e/ where 0 < e < 1 (e is fixed), then

Prob (z < E(z)/2) < c4m--+).

Proof. By Chebyshev’s inequality,

Prob (z < E(z)/2) < 4 Var z/E(z)2.
This implies our second statement, by Lemmas 3.3 and 3.1. Namely,

22 < m log m + 2w ram/log m O(m log m),

hence

1/E(z) + 67tZ/m 2 < e -1"4 + O(log mm)

and log m/m =exp (loglog m-log m)=o(exp (-1.4 log m/))=o(e-l4). The
third statement follows similarly.

For the first statement, by Lemma 3.3 and Chebyshev’s inequality we only have to
prove that if E(z) then t/m O. This is obvious from Lemma 3.1.

LEMMA 3.5. Let 0<k <#, (g/2< <1 and t=(n logn)/2. Then the prob-
ability of the event that X has two vertices x, y o[degrees exceeding n/2 + such that
[d(x) d(y) < k is

p o(kn 3/2-2) (n).

Proof. Let n/2 < a b. The probability that d(x) a and d(y) b (x y) is clearly

n-2 n-2 n-2 n-2 22n_4 2_2.+4 n

a a a 1

Hence, the probability that a N (x) N (y) N (x) + k is at most

k 2-n+4
n-2
s 1

By Proposition 2.1, the sum here is less than

a-n/2 a

Setting a In/2 + t], we obtain (by (3))

(n) n e_4/n/P< 2
k- (5n)(l+o(1))

n k (n log n) n

< kn/-/(log n)/
(for n not too small).

634 L.SZL(BABAI, PAUL ERDOS AND STANLEY M. SELKOW

Now we are in the position to prove
THEOREM 3.6. Let al >- a2 an denote the degrees o[the vertices ofthe random

graph X. Let k In3] and [n15]. For n sufficiently large, the event that ai -aj >= k
-0.15for every i, satisfying 1 <-_ < <= has probability exceeding 1 n

)1/2/x/2, d [n/2+t]. Then, with theProof. Set e=2, a=l-e, t=a(n log n
notation of Lemma 3.1, to + o,, (m/log m)/ where o/log m --e/x/, whence, by
3.1,

E(z) > m e(2-e+(1)).

e(2-e)>0.157, hence E(z)/2>n15>-_l for sufficiently large n. By Cor. 3.4, this
implies that X has at least E(z)/2 vertices of degree >d with probability
> 1- c4m -e(2-e+(1)) > 1- m-155. Finally, by Lemma 3.5, the difference between the
degrees of any two of these vertices is at least k with probability > 1-kr/3/2-22 >
1--n3+1"5-22> 1--n -155. Hence the probability that X does not satisfy the
theorem is less than

-0.155 -0.1505 -0.15n +n <n V]

Remark. The particular corollary to Theorem 3.6, that the vertex having maximum
degree is unique in almost all graphs, appears in Erd6s-Wilson [4].

4. Uniqueness of the codes of the vertices. As in 3, let X be a random graph
having V={1,..., n} for its vertex set. Let dl_>-d2=>’’’->tin denote the degree
sequence of X. Set r [3 log n/log 2!, and let C denote the event that-d/_-> ai+1 4- 3 for

1, , r + 2. We write C for the negation of C. By Theorem 3.6,

Prob () <.n -0"15.
For /’, let C(i,) denote the event that in the graph X(i,]) obtained from X by deleting
and j, the largest r degrees are distinct. Clearly, C implies C (i,/’) for all i,/’(1 <- <_-/’ -<

n). Let A(i,) denote the event that either C(i, j) fails or and/" have identical codes
with respect to the vertices having the largest r degrees in X(i, j).

The probability that X is rejected by our algorithm is less than

Prob (C)+ Prob (C and the graph X has two vertices

with identical codes)

<=Prob (C)+ Prob (C and A(i, j))
i<j

_-<Prob (C)+ Prob (C(i, j) and A(i, j))
i<j

<=Prob (()+ E Prob (A(i, j)lC(i,
i<j

=Prob(C)+
2

-0"154" O()< n-1/7

This proves Theorem 1.2.

REFERENCES

[1] L. BABAI AND L. KU(2ERA, Canonical labelling of graphs in linear average time, 20th Annual IEEE
Symp. on Foundations of Comp. Sci. (Puerto Rico) 1979, pp. 39-46.

[2] B. BOLLOBAS, Degree sequences of random graphs, Aarhus University, 1978 preprint.

RANDOM GRAPH ISOMORPHISM 635

[3] P. ERD6S AND J. SPENCER, Probabilistic Methods in Combinatorics, Akad6miai Kiad6, Budapest, 1974.
[4] P. ERD6S AND R. J. WILSON, On the chromatic index of almost all graphs, J. Comb. TheorymB, 23

(1977), pp. 255-257.
[5] W. FELLER, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed., John Wiley, New

York, 1968.
[6] R.M. KARP, Thefast approximate solution ofhard combinatorial problems, Proc. 6th South-Eastern Conf.

Combinatorics, Graph Theory and Computing (Florida Atlantic U. 1975), pp. 15-31.
[7],Probabilistic analysis ofa canonical numbering algorithm for graphs, Proc. Symposia in Pure Math.

vol. 34, American Mathematical Society, Providence, RI, 1979, pp. 365-378.
[8] R. J. LIPTON, The beacon set approach to graph isomorphism, Yale University, 1978, preprint.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0015 $01.00/0

SPACE LOWER BOUNDS FOR MAZE THREADABILITY
ON RESTRICTED MACHINES*

STEPHEN A. COOKS- AND CHARLES W. RACKOFF

Abstract. A restricted model of a Turing machine called a JAG (Jumping Automaton for Graphs) is
introduced for solving the maze threadability problem (determining whether there is a path joining two
distinguished nodes in an input graph). A JAG accesses its input graph by moving pebbles from a limited
supply along the edges of the graph under a finite state control, and detecting when two pebbles coincide. It
can also cause one pebble to jump to another. We prove that for every N there is a JAG which can determine
threadability of an arbitrary N node input graph in storage O ((log N)2), where the storage of a JAG with P
pebbles and Q states is defined to be P log N + log Q. Further, we prove that any JAG which determines
threadability requires storage l((logN)2/log log N). Finally, we prove that even when the inputs are
restricted to undirected graphs (with no bound on the number of nodes), no single JAG can determine
threadability.

Key words, space, space lower bounds, maze threadability, pebble automata

1. Introduction. The question of whether nondeterminism adds power to a space
bounded Turing machine was apparently first posed by Kuroda [1] in 1964, who asked
whether deterministic and non-deterministic linear bounded automata are equivalent.
If we use the standard notation DSPACE (L(n)) (respectively NSPACE (L(n)) for the
class of sets of strings accepted in deterministic (respectively nondeterministic) space
L(n) by a Turing machine, then Kuroda’s question is equivalent to asking whether
DSPACE (n)- NSPACE (n). In 1969, Savitch showed in his Ph.D. thesis (and later
published in [2]) that NSPACE (L(n))_ DSPACE (L(n)2) for "spac.e constructible"
functions L(n >= log n, and also he used a padding argument to show that if
DSPACE (log n)= NSPACE (log n), then DSPACE (L(n))= NSPACE (L(n)) for any
space constructible L(n) (including L(n)= n). Further, he proved that a certain
interesting set, the "Threadable Mazes", is (using more recent terminology) log space
complete for NSPACE (log n). This means that this set is in NSPACE (log n), and if it is
also in DSPACE (log n), then DSPACE (L(n))= NSPACE (L(n)) for all reasonable
L(n)>-logn.

The purpose of this paper is to give evidence that the set of Threadable Mazes is not
in DSPACE (log n), by showing that a restricted model of a log space Turing machine
cannot recognize the set.

DEFINITION 1.1. A d-graph, d _-_ 2, is a directed graph in which every node has
outdegree at most d, and the edges leading out from each node have distinct labels from
the set {1, 2, , d}. The d-graph is said to be undirected iff whenever there is an edge
from a node x to a node y, there is also an edge from y to x. A d-maze is a triple
(G, s, g), where G is a d-graph, and s and g are nodes of G (the start and goal nodes,
respectively). The maze cg is threadable if there is a directed path from s to g.

In 2, we introduce a restricted model of a Turing machine, called a d-
JAG (Jumping Automaton for Graphs), for recognizing threadable mazes. A d-JAG
consists of a deterministic control (which one can think of as a Turing machine control
with space bounded work tapes, but actually it is more general than this, being an
arbitrary finite state control) which controls a finite set of pebbles which move on an
input d-maze. In one move, the machine can move a pebble along an edge, or jump it to

* Received by the editors March 19, 1978, and in revised form March 27, 1979.
t Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A7.

636

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 637

another pebble. We show (theorem 2.4) the model is powerful enough to execute an
adaptation of Savitch’s algorithm for recognizing threadable mazes in deterministic
space (log n)2.

To make a d-JAG equivalent in maze threading ability to a deterministic log space
Turing machine, it suffices to assume the input nodes are numbered in some arbitrary
way from 1 to N (where N is the number of nodes), and to give the d-JAG the ability to
move any one of its heads from node to node + 1 (where node N + 1 is node 1). In this
case, jumps are not necessary. The result is essentially Savitch’s Maze Recognizing
Automaton [3]. Unfortunately, we are unable to prove that this more general machine
cannot determine whether an arbitrary input d-maze is threadable.

A model similar to d-JAG’s is described by Blum and Sakoda [4]. They show that
some finite automaton with 4 pebbles can search any two dimensional maze (and hence
could check whether such a maze is threadable), and they prove that no finite collection
of finite automata is capable of searching every finite 3-dimensional maze. However,
our d-JAG’s are formally more powerful than the Blum-Sakoda finite automata with
pebbles, because d-JAG’s can cause pebbles to jump. This jumping ability substantially
complicates our lower bound arguments.

Our d-JAG’s are also like Tarjan’s reference machines (see [5]) restricted so that
they can search but not modify the data structure they are working on. It has been
suggested that our lower bounds might have relevance to search algorithms for data
structures.

One of the inspirations for this paper was a seminar talk [6] given by Michael Rabin
in 1967, attended by the first author. Rabin’s talk concerned a finite automaton moving
along the edges of a graph. The automaton can drop a pebble on a node, as well as detect
and pick up pebbles. Rabin outlined an argument that no such machine can completely
search an arbitrary undirected regular.graph of degree four. The informal argument
given in this paper early in 4 uses a different set of graphs than Rabin’s to defeat the
machine, and a somewhat different kind of automaton, but our argument certainly owes
something to Rabin’s talk. Our d-JAG (without jumps) differs from Rabin’s automaton
in that our automaton itself has no location on the graph, but each of its pebbles is
allowed to move along edges under the direction of the finite state control. This
difference seems slight, but it is much clearer how to generalize the argument for this
machine to the case in which pebbles can jump (Theorem 4.13), which is the main result
of4.

In 3 we tackle the simpler problem of showing no d-JAG can determine whether
an arbitrary (directed) d-maze is threadable. The fact that the edges are directed (so
that a pebble cannot easily "back up") makes this result easier than the undirected case
in 4, but in fact we are able to prove a much better lower bound on the number of
states and pebbles required to determine threadability (Theorem 3.1). Under a
reasonable definition of storage (Definition 2.3) used by a d-JAG, Corollary 3.3 states
that a d-JAG requires storage c(logN)2/loglogN to determine threadability of
N-node d-mazes. This lower bound is close to Savitch’s upper bound of O(log N)
(which is also our upper bound for d-JAG’s given in Theorem 2.4). It might seem that
Corollary 3.3 comes close to establishing a space lower bound for Turing machines
which recognize the threadable d-mazes since the d-JAG’s in the corollary are allowed
to use a Turing machine work tape with space c(log n)2/loglog n. However, the
restriction on the way a d-JAG (as opposed to a Turing machine) accesses its input
d-maze seems crucial. In particular, a Turing machine has no trouble in backing a
"pebble" against a directed edge. When this ability is allowed in 4 (by restricting the
input mazes to be undirected) the bound on the number of states and pebbles required

638 STEPHEN A. COOK AND CHARLES W. RACKOFF

to determine threadability is weakened to the point where it cannot be translated into
an interesting general lower bound on work tape space for a Turing machine.

It is interesting to note that the kind of graphs used to defeat machines in 3 is
completely different from the kind in 4. The graphs, in 3 are long, skinny, directed
binary trees, with the start node at the root and the goal node hidden at one of the
leaves. If the d-JAG were allowed to back up along edges, it is easy to see that a simple
backtracking algorithm with two pebbles would suffice to search all binary trees. Hence
no tree with undirected edges could defeat a d-JAG. The graphs in section 4 are
completely homogeneous (transitive), and have a property which prevents a d-JAG
from counting by moving pebbles. If a pebble is moved in any single direction
repeatedly, it quickly winds up where it started from.

2. An Upper Bound for d-JAG’s.
DEFINITION 2.1. A d-Jumping Automaton for Graphs (d-JAG) J is a system

consisting of the following: A finite set of states with a distinguished start state q0 and
accepting state qa, a positive integer P and a set of P objects called pebbles, which are
numbered 1 through P, and a (deterministic) transition function which controls the
behavior of J as described below. The input to J is a d-maze =(G, s, g). An
instantaneous description (id) of J on input is specified by a state q and an assignment
of a node of G to each of the P pebbles. The next move of J for such an instantaneous
description is specified by the transition function , and depends on (a) the state q, and
(b) the coincidence partition 5e of the pebbles defined by two pebbles being in the same
block of if they lie on the same node. A move consists of assuming a new state after
doing one of the following: (a) Move some specified pebble along a specified edge
j {1, 2,. , d}. (If there is no edge labeled j leading out of the node on which pebble
lies, this move has no effect.) (b) Jump a specified pebble to the node occupied by
some specified pebble/’, leaving pebble j alone. Any sequence (finite or infinite) of id’s
of J on an input which results from consecutive legal moves of J is called a
computation of J with input . The initial id of J with input has state q0, pebble 1 on
the goal node g, and all other pebbles on the start node s. We say J accepts fg if some
computation of J with input which starts with the initial id ends in the accepting state
qa.

We could modify the above definition to allow the move to depend on which
pebbles occupy node s and which occupy node g, and allow as possible moves "jump
pebble to node s" and "jump pebble to node g". However, such a modified
automaton with P pebbles can be obviously simulated by the present d-JAG with P + 2
pebbles, where pebble P + 1 sits permanently on node s and pebble P + 2 is initially
jumped to pebble 1 on node g, where it sits permanently.

Another possible modification is to allow the machine to know whether any pebble
is on a "leaf"; that is, a node with no edges leading out. Again, this more powerful

machine can be simulated by a d-JAG with 2P pebbles. Each pebble of the leaf
detecting machine is simulated by two pebbles which stay together. At each move, the
two pebbles can determine if they are scanning a leaf by moving one along each out edge
in turn, and checking whether the two still coincide. If for some edge they do not
coincide the node is not a leaf, and the moved pebble is jumped back to its partner. (In
fact, P + 1 pebbles suffice for the simulation.)

DEFINITION 2.2. A d-JAG is validforN if it accepts an arbitrary d-maze of N or
fewer nodes if and only if is threadable.

It follows from results below that for d_->2, no d-JAG J is valid for all N. To
heuristically relate the number of pebbles and states of J to space on a Turing machine,

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 639

we provide the following:
DEFINITION 2.3. The storage S used by a d-JAG with P pebbles and Q states on an

input with N nodes is

S P log N + log Q.

(All logarithms in this paper have base 2.)
Perhaps the best way to motivate this definition of storage is to introduce a new

device, called a Turing d-JAG, which accesses its input graph like a d-JAG but does its
computation like a Turing machine. A Turing d-JAG T has a finite state control which
controls a read-write work tape like a Turing machine, and in addition T has a special
command tape and a query tape. To move pebble along edge j T writes M - * on its
command tape, and to jump pebble to pebble j T writes J ?)- on its command tape.
(Here and) are the binary notations for and].) T can discover whether pebbles and
j coincide by writing/)- on its query tape, whereupon the next state will depend on
whether the answer is yes or no. The storage ST-(N) used by T is defined to be the
maximum over all N-node input d-mazes c of P log N + L, where P is the number of
distinct pebbles queried during the computation with input cg, and L is the number of
distinct work tape squares scanned during the computation. Then for each N, there is an
ordinary d-JAG Jv whose storage according to Definition 2.3 is O(ST-(N)) which
correctly simulates T on all N-node input graphs. (The states of JN are pairs consisting
of a state of T together with any possible tape configuration of T with an N-node input).
On the other hand, an ordinary off-line Turing machine M can simulate T in storage
L(n) ST-(n) simply by keeping track of the current node being visited by each pebble i,
1 -< =< P. (Each node can be identified by a string of length at most log n.)

The reverse simulations cannot always be carried out. But the above argument
does show that the storage lower bound of c(log N)2/log log N given in Corollary 3.3.
also applies to Turing d-JAG’s, as well as to ordinary Turing machines which simulate
Turing d-JAG algorithms in the manner indicated. Conversely, Theorem 2.4 below
shows that d-JAG’s can do as well at recognizing threadability as the best known Turing
machine algorithm when storage is defined as in 2.3. In fact, the d-JAG algorithm given
in the proof of the theorem is sufficiently uniform that it could be realized by a single
Turing d-JAG with the same storage (log N)2, but we will omit this argument.

THEOREM 2.4. For each N there is a d-JAG JN valid for N with 0 (log N) pebbles
and O(N4) states. Thus has storage O((log N)2).

The proof is motivated by Savitch’s algorithm [2] which simulates a nondeter-
ministic L(n) space bounded Turing machine by a deterministic (L(n))2 space bounded
machine. This algorithm shows how the threadable d-mazes can be recognized deter-
ministically in space (log n)2. The idea is to define a recursive procedure Path (x, y, k)
which determines whether there is a path of length k or less from node x to node y. This
is done by calling, for each node z, Path (x, z, k/2) and Path (z, y, k/2) and returning yes
if the both answers are yes for some z.

A d-JAG cannot cycle through all z as above, because it can only reach nodes
accessible from either s or g. However, a d-JAG can succeed with a modified algorithm.
Naively, the idea is to argue by induction on k that some d-JAG with k + 2 pebbles can
successively place pebble 1 on all nodes within a distance 2k from the node s, no matter
what the input d-maze. For k 0 this can be done by the instructions" jump pebble 1 to
pebble 2, move pebble 1 along edge 1, jump pebble 1 to pebble 2, move pebble 1 along
edge 2, jump pebble 1 to pebble 2, , move pebble 1 along edge d. The induction step
would be as follows: Assume Jk is a d-JAG with k + 2 pebbles satisfying the induction
hypothesis. To construct Jk+l it is necessary to have a new pebble r k + 3, and three

640 STEPHEN A. COOK AND CHARLES W. RACKOFF

slightly modified copies of Jk" call them J, J, and J. J is the same as Jk, except each
time pebble 1 scans a new node, all pebbles (including pebble r) except pebble 2, are
jumped to pebble 1 and control is passed to the initial state of J,. Machine J acts like
Jk, except it bases its operations at pebble r instead of pebble 2 at node s, and thus moves
pebble 1 to all nodes within a distance 2k from the node scanned by pebble r. AfterJ is
finished, all pebbles except pebble r are jumped back to pebble 2 on node s, and control
is passed to the initial state of J3k. MachineJ simulates Jk until pebbles 1 and r coincide
(at which point all pebbles should be restored to where they were then J took over),
and control is now passed to J, which resumes pushing pebble 1 to new nodes. Hence
pebble r eventually reaches all nodes within a distance 2k from node s, and pebble 1
reaches all nodes within a distance 2k from pebble r, and hence all nodes within a
distance 2k/l from s.

The above argument works when every node of the input d-maze has at most one
path leading to it from s. However, if there were multiple paths to some node, then for
some k, J would cause pebble 1 (and hence pebble r) to visit that node twice, but j3
would always restore the pebbles to the configuration of the first visit, and hence Jk/l
would loop.

To overcome this difficulty, the induction hypothesis must be strengthened to
assume Jk has a distinguished state qd with the property that no node is ever visited
twice by pebble 1 when J is in state qd, and further every node at a distance 2 from s is
visited by pebble 1 exactly once with J in state qa. We further assume J has 3k + 3
pebbles, that all nodes within a distance 2k from s are visited by pebble 1 at least once,
and that J enters a distinguished state qr after completing its computation. More
generally, we want the d-JAG J (i, qa, qr) to have all these properties except the start
node s is replaced in the above specifications by the node scanned by some given pebble
-> 3k + 3. We assume Jg(i, qa, q) starts with pebbles lto 3k + 2 at pebble i, and pebble

is never moved during the computation.
The construction of Jo(i, q,, q) with pebbles 1, 2, and is straightforward and will

be left to the reader.
Assume J(i, qa, q) has been constructed to satisfy the induction hypothesis. We

construct Jk/l(i, qd, qr) from modified copies J (pli, qa, q), JSk p8 qSd, q of Jk.
Also, Jk+l has three new pebbles, r, r2, and r3 (which are numbered 3k + 3, 3 k + 4, and
3k + 5). The idea is that control starts with J, and each time q is entered, the pebbles
(including rl) are jumped to pebble 1, and control passes to J, which bases its operation
at r. Each time q is entered, r2 is jumped to pebble 1 to save that position, and copies
J andJ start the whole process from scratch, checking to see if the node scanned by r2
has been previously scanned by pebble 1 in state qd. If not, then J restores the pebbles
for J, qd is entered, andJ continues. If r2 has been scanned before in state qa, then J
restores the pebbles for J and J continues without assuming state qd first.

Here is the detailed construction of Jg+(i, q, qf). The instructions after each q
and q} tell what happens when these states are entered. Phrases in parentheses are
comments. The phrase "jump all pebbles" means jump pebbles 1 to 3k + 5. That is,
pebble is never moved.

Jk (i, qd, qf) (Start Jk routine at pebble i).
q" Jump all pebbles (including rl) to pebble 1. Pass control to initial state of

qf" Halt (final state of Jk+x).
2J (rl, q2d, q f (Base Jk routine at r).

q" Jump pebble r2 to pebble 1. Jump all pebbles except rl and r2 to pebble i.
Pass control to initial state of J.

2qf" Jump all pebbles except r to pebble i. Pass control to initial state of J.

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 641

J3(i, q3a, q} (Start checking whether r2 scanned before).
q]" If pebbles 1 and rl coincide (check completed), jump all pebbles except r2

to rl and pass control to the initial state of J. Otherwise, jump all pebbles
except rl and rz to pebble 1 and pass control to initial state of J.

q" Halt (Error).
J (r3, q4a, q} (Continue checking based at r3).

q]" If pebbles 1 and r2 coincide, jump all pebbles except r2 to r and pass
control to initial state of J. Otherwise, continue with J.

q" Jump all pebbles except r, r2, r3 to pebble i. Pass control to initial state of

JS(i, qSa, q) (Restore pebbles to continue with j3).
q" If pebbles 1 and r3 coincide, continue with J after q]. Otherwise,

continue with J,.
q" Halt (Error).

J6(rl, q6a, q) (r2 not scanned before: Restore pebbles to continue with J).
q]" If pebbles 1,and r2 coincide, enter state qd (of Jk+l) and then continue with
J after q]. Otherwise, continue with J.

q" Halt (Error).
jT (r, q7a, q7) (re scanned before: Restore pebbles to continue with j2).

q I" If pebbles 1 and rE coincide, continue with J, after q2a. Otherwise
continue with J.

q" Halt (Error).
js (i, q8a, q (Restore pebbles to continue with jl).

q]" If pebbles 1 and rl coincide, continue with J after q. Otherwise
continue with J,.

8
qr" Halt (Error).

Notice that if $(k) is the number of states in Jk, then S(k + 1)<=8S(k)+O(k), so
S(k) O(9). Further, since Jg(3k + 3, qd, qr) visits all nodes within a distance 2 from
s, a slight modification of J can detect whether or not an arbitrary input maze of 2 k

nodes or less is threadable. Since Jk has 3k + 3 pebbles, andJ is valid for 2k, we can take
JN --J[log N] to satisfy Theorem 2.4. 71

Note that our d-JAG’s in the above theorem can be made to enter a reject state
when the input maze is not threadable, as well as entering the accept state q when the
input maze is threadable. Our definition of valid for N did not require a reject state,
since we wanted a weaker definition for stronger lower bound results.

3. A general lower bound tor d-JAG’s. The purpose of this section is to prove the
following result.

THEOREM 3.1. There is a constant c such that for every 2-JAG J with Ppebbles and
Q states there is a 2-graph G with fewer than (c pE(log P + log Q))Pnodes such that G is a
directed binary tree with edgesfrom each node to its sons, and when Jstarts with all pebbles
on the root, there is some leaf which no pebble ever visits during the computation.

COROLLARY 3.2. There is a constant c such that ifsome d-JAG with Ppebbles and
Q states is valid for N, then N <- (ClP(P / log Q))P.

COROLLARY. 3.3. Each d-JAG valid for N uses storage S >- cE(log N)E/log log N
for some constant c2 > 0 and all N >- 4.

Let us first prove 3.3. from 3.2. The inequality in 3.2 gives log N -<_ P log (ClPE(P /
log Q)), or

(3.4) P=>
log N

log Cl + 2 log P + log (P + log O)"

642 STEPHEN A. COOK AND CHARLES W. RACKOFF

If P _-> log N or log O >_- (log N)2, then 3.3. follows directly from the Definition 2.3 of S,
with c2 1. If P _-< log N and log O -< (log N)2, then 3.3 follows by substituting the right
side of 3.4 for P in 2.3.

The Corollary 3.2 is proved from Theorem 3.1 as follows. Given a d-JAG J with P
pebbles and O states, let J’ be a 2-JAG which simulates J as follows. First, all
instructions of the form "move pebble along edge j" are deleted in J’, for j > 2.
Second, J’, with all pebbles initially on one node, simulates J when all pebbles except
pebble 1 are on one node, and pebble 1 is on an inaccessible leaf (node with no
outedges). As long as at least one pebble remains on the leaf l, pebbles may be jumped
to and from leaf l, but, because the leaf is inaccessible, no edge move will land a pebble
on leaf l, and of course no edge move will remove a pebble from leaf I. The JAG J’
keeps track of which set of pebbles would be on the leaf in the computation of J, and
makes the move J would make. So J’ needs 2e Q states and P pebbles.

Let G be the 2-graph for J’ whose existence is asserted in the theorem, and let
q (G, s, g) be the 2-maze whose start node s is the root of G and whose goal node g is
the leaf which no pebble of J’ ever visits. Then J, with pebble 1 initially on g and the
other pebbles initially on s, makes a sequence of moves identical to the moves of J’ with
all pebbles initially on s. In particular, no pebble during the computation of J ever
moves along the edge e from the father of g to g. Thus, if ’ is the 2-maze which results
from <g by removing the edge e, then the computations of J on q and q’ are identical,
and yet is threadable but <g’ is not. Therefore J is not N-valid, where N is the number
of nodes in G. Corollary 3.2 follows.

To prove Theorem 3.1, let J be any 2-JAG with P pebbles and O states. To
construct the 2-graph G, we construct successively a sequence Go, G1, , Gp_l G
of 2 graphs, such that each Gk is a directed binary tree with root sk and a distiqguished
leaf gk. We define G to be the infinite binary tree constructed from copies of Gk as
follows (see Fig. 1). The root of Ok is a node gk, and the sons of gk are the Sk and s of two
copies of Gk. In general, the sons of each node of each copy of Gk in (k are the same as
in Gk, except each disti.,nguished node gk has as sons the roots of two new copies of Gk.

Aflruning Gk of Gk is a finite subtree of (k obtained by selecting certain copies of
gk in Gk and deleting all proper descendants of these

FIG.

The graphs Go, Gx, are successively more complex, and are designed to cause
successively more difficulty for the machine J to sen pebbles from the rootA s to the leaf
g of G. For example, Go has the property that if Go is any lruning of Go, then for any
initial configuration of the P pebbles on distinct nodes of Go and any initial state, no

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 643

pebble will ever move from So to go of a copy of Go, as long as no two pebbles come
together (either by an edge move or a jump). Each Gk has the same property (stated
precisely in 3.5 below), except a certain degree of interaction among the pebbles is
allowed. The amount of interaction (to be defined below as the number of empty
"blocks") is bounded by the index k.

In order to formulate the property which Gk must satisfy we need to define notions
concerning partitions of pebbles. (We will abuse the definition of partition slightly to
allow some blocks to be empty.) A partition {B1," , BI} of (pebbles) {1,. , P} into
blocks B1, , Bt is admissible at an id if any two pebbles on the same node are in the
same block. Let Co, C1,. be a computation of J and let {Bx..., BI} be a pebble
partition admissible at Co. The continuation of the blocks B1, , Bt at Ct with respect
to the computation is defined by induction on t. For 0, the continuation of each ni is

Bi. In general, if the move from Ct to Ct+l causes some pebble u to coincide with some
pebble v either by an edge move or a jump, then to obtain the continuation at Ct+l from
the continuation at C,, simply delete pebble u from its block and add it to the block of
pebble v, and keep all other blocks the same. If no pebble is caused to hit another by this
move, then the continuations at Ct and Ct+ are the same. Notice that at each step C of
the computation the continuations of blocks B,..., Bl always form an admissible
partition of {1, , P}, although some blocks may be empty. If a partition {BI, Bl}
has been specified at the beginning of a computation, and we refer to the block Bi at
some point in the computation, we shall always mean the continuation of Bi at that
point.

We shall construct Gk to have the following property.
3.5. Induction hypothesis H(k). Let Gk be any pruning of k, and consider any

initial configuration of the P pebbles on G, any admiss’ible partition of these pebbles
into blocks B, , BI, > P k, and any initial state. If all pebbles in some block Bi lie
initially on or above the node s of some copy of Gk in Gk, then no pebble in (the
continuation of) Bi will visit the g of that copy of G during the computation.with that
initial state and pebble configuration, as long as at least P- k of the blocks B remain
nonempty.

Basis" k 0. Let T be the complete infinite labeled directed binary tree with root
r. For each pebble and each state r, consider the computation of J which starts in state
r with pebble on the root r of T, and the other pebbles scattered on T in such a way
that no two pebbles meet before a jump takes place. Let us terminate the computation
as soon as any jump takes place. Then pebble describes a path r(i, r) down from node
r, which may be finite or infinite. Since there are P choices for and (2 choices for r,
there are at most PQ such paths. On the other hand, there are exactly 2d binary paths of
length d, so if d > log (PQ) there must be some path zr of length d which differs from the
initial segment of length d of each zr(i, o’) (although some r(i, r) could be a proper
initial segment of 7r).

To construct Go, let So be the initial node (root) of r, let go be the final node, and
add a second labeled edge to every node of zr except go, so that Go becomes a finite
labeled directed binary tree with root So, such that every node has either two or zero
edges leading out. Fig. 2 gives an example of zr and the corresponding Go.

To see that Go satisfies the induction hypothesis H(0), note that the condition that
P-k blocks remain nonempty (with k 0) ensures that no two pebbles will meet and
no jumps will take place during the relevant part of the computation. The hypothesis
H(0) simply states that no pebble can find its way from So to go, which is clear by our
construction of Go. Also note that if some pebble visits a leaf of Go, it must remain
trapped there. (Our definition of JAG does not allow J to detect when a pebble is on a
leaf, but see the remark in the paragraph before Definition 2.2).

644 STEPHEN A. COOK AND CHARLES W. RACKOFF

5o

/ 2

2

2

go

Go
F. 2

If we take d [log P] + [log O] + 1, then

(3.6) [Gol 2([log P] + [log Q])+3,

where]Gol is the number of nodes in Go.
Induction Step" H(k) H(k + 1).

Suppose Gk has been constructed to satisfy H(k).
LEMMA 3.7. Suppose in the statement 3.5 ofH(k) we weaken the assumption that at

leastP- k blocks remain nonempty to at leastP k 1 blocks remain nonempty. Then the
following weaker conclusion holds If all pebbles in some block Bi lie initially on or above
the node Sk ofsome copy of Gk in Gk, and if there is a first time tl at which some pebble f of
(the continuation of) Bi visits the node gk ofthat Gk, then all pebbles ofBi will lie in that Gk
at time tl.

Proof. Assume all hypotheses in the lemma. We claim that for each node u on the
path from Sk to gk there is a time t such th/t if B is the set of pebbles on u at time
then/" at time tl is in the continuation of By. The claim is proved by induction on the
distance of u from gk. If 6 0, then u gk and t tl. If 6 > 0, let/x be the successor of
u which is a distance - 1 from gk, SO t, exists by the induction hypothesis. Then t is
defined by the condition that t + 1 is the first time that/x is continuously occupied
between times and t,. Thus the move executed at time ty is to advance some pebble
along the edge from u to/x. Also B, at time t, is a subset of the continuation of By, and
since pebble/" at time tl is in the continuation of B,, it is also in the continuation of B.
This proves the clairia.

Now let to tsk and B Bsk. Note that B C, where C is the continuation of block
Bi at time to. If we split C into B and B’= C-B, then the continuation of B’ at time tl
must be empty, for otherwise there would be P- k nonempty blocks at time tl, and the
hypothesis H(k) applied to the computation from to to tl under the split partition at
time to would preclude the possibility of pebble/" reaching node g at time tl. But the
continuation of Bi at time tl is the union of the continuations of B and/3’ at time tl, and
so it is equal to the continuation of/3 at time tl. It is clear that this continuation lies
entirely on the indicated copy of G, since pebble/’ is the first pebble of Bi to reach g,
and any jumps of pebbles from/3i would cause these pebbles to leave the block.

By Lemma 3.7, a single block of pebbles describes a unique path down Gk for any
single computation, as long as at least P- k 1 blocks remain nonempty. To construct
G/1, we find a path in G distinct from all possible such paths, and turn it into a tree in a
way similar to the construction of Go. We think of (as the complete binary sper tree,
with super edges which are copies of G. Thus each block traces a superpath in Gk, which
includes precisely those super edges traversed completely from s to g by the block.

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 645

The length of the super path is the number of its super edges. We wish to get an upper
bound on the cardinality of F(d), the set of initial segments of length d of super paths
described by any block of pebbles in any pruning Gk of Gk in a computation with any
initial state and pebble configuration in G, assuming first that at least P-k-1
blocks remain nonempty during the computation, and second that no block traces a
super path of length exceeding 2d-1 during the computation. Note that for this
purpose, we can assume that the initial pebble partition is the coincidence partition,
since the path of any block in a coarser partition will coincide with the path of some
block in the coincidence partition (recall that a super edge does not count in the path of a
block unless it is traced completely from s to g).

Note that for each super edge E in the path of a block Bi, pebbles of Bi might visit
nodes in the four super edges adjacent to E (brother, father, and two sons) as well as
nodes in E itself. In fact, if the path has length l, then the number of potential super
edges which pebbles of Bi might visit during the computation is 2l + 3, counting the
super edge containing the node on which Bi lies initially. (If B initially lies on the node
s of a super edge, the number is 21 + 2). We call this set of super edges the extendedpath
Of Bi.

To specify a path in F(d), it suffices to specify the following:
(1) The initial state (O possibilities).
(2) For each pebble i, the node relative to a super edge (copy of Gk) on which

pebble lies (IGI’ possibilities).
(3) For each and/’, whether block Ui lies initially on the (future) extended path of

block B, and if so, the super edge on which Bi lies relative to the extended path
(see below) ((2(2d 1) + 4)e (4d + 2)e possibilities at most).

(4) For each i, the length of the path tracedby block Bi and whether some pebble
of Bi visits a node g which is a leaf of G ((4d)’ possibilities, including length
zero).

(5) The block which determines the path in question (P possibilities).
In (3), the information specified is an integer m between 0 and 4d + 1 where m 0

means B does not lie on the extended path, and m > 0 means B lies on edge Em of the
extended path, where we label the edges of the path traced by B. by E2, E4, ,/4d-2
in the order traced, and let E1 be the edge initially, visited by Bj (El is the father of E2,
unless B. is initially on s). Also .E21+1 is the brother of -’21, 1 _-< 2d 1, and/4d, ’4d+l
are respectively the left and right sons of ’4d-2.

To see that the above information is sufficient to determine the moves in the
computation, and hence the path of the block specified in (5), one can verify by induction
on that at each time in the computation the following information is known"

(a) The state.
(b) For each pebble i, the node relative to a super-edge (copy of Gk) on which

pebble lies.
(c) For each pair of pebbles and j, whether and j lie in the same super-edge.
(d) Which pebbles are in each block.
(e) The relative position of any two pebbles in the same block.
Notice (b) and (c) together specify the coincidence partition of the pebbles, and

hence (a), (b), and (c) specify the next move. That (a) and (b) are determined initially
follows from (1) and (2). To determine (c) initially, note that any two pebbles in the same
block initially scan the same square by assumption, and for two pebbles in different
blocks one can tell by (3) whether or not they lie initially on the same super-edge.
Trivially (d) and (e) are determined initially because the initial partition is the coin-
cidence partition.

646 STEPHEN A. COOK AND CHARLES W. RACKOFF

In general, at time + 1, (a), (b), and (e) are easily updated because the move at time
is known (by the induction hypothesis for (a), (b), and (c)), except some pebble may

lie at time on a node gk which is a leaf of tk, in which case of course pebble will
not move. However, it can be determined by the specification (4) whether pebble is on
a leaf gk, because the length of the path of the block of pebble to date is known by the
induction hypothesis applied to (a)-(d). The only difficulty in updating (c) at time + 1
comes when the move at time causes a pebble in a block B to move from the node gk

of some super-edge to a new super-edge E’. We know by (e) the existence and position
of any pebbles of block B which already lie on E’. If there are pebbles in a different
block B’ on E’, then initially B’ lay on the extended path of B (since it does at time + 1,
and there cannot be a time when the path of B’ joined that of B). Therefore by
specification (3), and the fact that we know the paths of all pebbles in B and B’ to date,
we can determine that certain pebbles of B’ are in fact on super-edge E’ at time + 1.
Finally, (d) can be updated at time + 1 because (b) and (c) are known at time + 1.

Thus an upper bound on the number of super paths in F(d) is the product of the
bounds given in (1)to (5), namely A=OlGkle(4d+2)e2(4d)eP, where IG l is the
number of nodes in Gk. To insure the existence of a super path II of length d which
differs from every member of F(d), we need only assume 2d > A, or d > log 2A. Hence
it suffices to assume

(3.8) d > log P + log O +P log [Gk] + (P2 + P) log (4d + 2).

Suppose now d is chosen so that (3.8) is satisfied, and H is a super path of length d as
above. Then ak+l is formed from H in the same way that Go was formed from H.
Namely, the initial node Sk of H becomes Sk+l of Gk/, the final gk becomes gk/l, and to
every other node gk we attach an out edge labeled opposite to the label on the existing
out edge, and attach a copy of Gk to this new edge (see Fig. 3).

Sk+l

Gk
Sk

gk
Sk

71" Gk +l

FIG. 3

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 647

Thus

(3.9) IG,+I 2dlG,l + 1.

To see that G+ satisfies the hypothesis H(k + 1), note that any pruning G+x of
(+ is also a pruning of (. We must show that as long as P k 1 P (k + 1) blocks
remain nonempty, no block can trace a super edge in G+. This is because right after
the first such super edge is traced, no block has yet traced a path of (of length
exceeding 2d- 1, so our assumption that H is not in F(d) would be violated.

It remains to estimate the number of nodes IGI of G. We shall show by induction
on k that for some constant c,

(3.10) IGk[-< (cp2(log P + log Q))k+l, for 0 <= k < P, PQ >= 2.

For k 0, this follows directly from (3.6). In general, the inequality (3.8) is satisfied
if we take

(3.11) d= [ap2(loge+log 0)1,

with a b log c, for some constant b independent of c ->_ 2, assuming (3.10) holds as an
induction hypothesis. Thus (3.10) with k + 1 substituted for k follows directly from
(3.9), (3.10), and (3.11), provided we take c => 3a.

Theorem 3.1 follows by setting k P-1 in inequality (3.10).

4. The undirected case. We are interested in showing that no 3-JAG is valid for the
set of undirected 3-mazes. Actually, we shall first show that for any P there is a d such
that no d-JAG with P pebbles accepts an arbitrary undirected d-maze iff it is
threadable, and then show how d can in fact be chosen to be 3.

Our approach is as follows. For integers m and d, we define below a 2d-graph G,,,d,
and compute an upper bound on how many nodes a given 2d-JAG J with P pebbles can
visit. For m and d chosen appropriately, the pebbles of J cannot visit very many nodes
of G,,,,d, and using this result we can easily construct a 2d- (undirected) maze on which J
acts incorrectly.

DEFINITION 4.1 Let zd,,, be the set of ordered d-tuples of integers from the set
Z, {0, 1, , m 1}. When we use the operation + (or-) between members of
we mean addition (or subtraction) componentwise, mode m. For 1<_-i_<-d, define
ei Z to be that element having all O’s except for 1 in place i. Define the undirected
2d-graph Gm,d to have node set Z d,n, and for every node x there is an arc labeled from x
to x 4- ei and an arc labeled d 4- from x to x ei, for 1 _-< _-< d.

Now let m and d be fixed positive integers (until stated otherwise) and let J be a
fixed d-JAG with Q states and P pebbles. We wish to obtain a good upper bound on
how many nodes the pebbles of J can visit when J is started (in an arbitrary way) on

Although technically J is defined as starting in a particular id (instantaneous
description) on G,,,d, it is easy to generalize the notion of computation by allowing J to
start in an arbitrary id Co (q, M) where q is a state and M (giving the position of the
pebbles) maps {1, 2,..., P} into Z.

DEFINITION 4.2. We denote by COMP (q, M) the sequence Co, C1, of id’s that
J goes through when it starts with Co. Define DISPLAY (Co) to be the sequence of state
and pebble-partition pairs that the finite state control of J "sees" when J starts
computing in id Co. That is, if

COMP (Co)-(qo, Mo), (ql, MI),’. then

DISPLAY (Co)= (qo, 9o), (qa, 9a),

648 STEPHEN A. COOK AND CHARLES W. RACKOFF

where 9i is the coincidence partition of {1, 2,. ,P} determined by Mi; two pebbles are
in the same block of 6ei iff they are mapped onto the same point by Mi. [Note that we are
using q0 and 5e0 to represent an arbitrary state and partition here, not necessarily the
initial ones.]

We now give an informal outline of how we compute an upper bound on the
number of nodes visited by J. Along with the COMP and DISPLAY sequences, we will
define the SUPERDISPLAY (henceforth abbreviated SD) sequence. At each step, the
SD will give the state of the machine and a partition of the pebbles, such that two
pebbles are in the same block of the partition if the information in the DISPLAY
sequence so far allows one to deduce their relative displacement (their difference as
members of Z). This partition will therefore be as coarse as or coarser than the
coincidence partition in the display (where one puts two pebbles in the same block only
if one can deduce that their relative displacement is 0). In addition, the SD will contain
the relative displacement of every pair of pebbles in each of its blocks.

Whenever a pebble from a block B in the SD at a certain time moves along an edge
and encounters a pebble from another block B2, the two blocks will be merged in the SD
for the next instant, since we now know the relative displacements of all the pebbles in
B1 U B2; we call this a coalition. If a pebble from B1 jumps to a member of B2, that
pebble leaves B1 and becomes part of B2 in the next SD; in the case that this leaves B1
empty, we also call this a coalition. In brief, a coalition occurs whenever the number of
blocks in the SD partition decreases. The upper bound will proceed by induction on the
number of coalitions. By definition, the number of coalitions occurring by time 0 is
P-n, where n is the number of blocks in the initial coincidence partition. To gain an
intuition behind this induction, note that as long as no coalition occurs (i.e. the pebbles
don’t interact at all) it is easy to compute an upper bound on the number of nodes
covered. (Note that the notion of coalition implicit in the definition of "continuation" in
3 is different from our definition here.)

Let Co be any id and let COALn (Co) be the first time at which there are P- n or
fewer blocks in the SD for the computation starting with Co; COALn (Co) oo if there is
no such time. That is, COALn (Co) is the time of the n-th coalition. If C and C’ are
arbitrary id’s, we say C n C’ itt COALn (C) COALn (C’)= and DISPLAY (C)
and DISPLAY (C’) are identical up to and including time t. If C--n C’, then their
DISPLAY sequences will in fact be equal up to (but excluding) the time when one of
them has an n + 1 coalition. It is easy to see that --n is an equivalence relation.

Let Rn be the number of --n equivalence classes. Let An be the maximum over all
id’s C of the number of distinct id’s occurring in COMP (C) up to (but excluding) the id
at the time COALn+ (C) (if it exists). We wish to compute an upper bound on Ap_.
More generally, we will get upper bounds on An and R, by induction on n"

(1) Ro <- O PP
since there are at most PP partitions on {1, 2,. , P}.

(2) An<=(I+P+mP!)R,, for 0=<n <=P.

Consider an initial piece of a computation with no n + 1 coalition. After at mostR steps
the --n class of the id repeats with periodicity at most Rn. This means that after at most
Rn steps the pebble movements repeat with a periodicity of at most Rn. If there were no
pebble jumps, the cyclic nature of G would yield that after at most R steps the id
repeats with a periodicity of at most turn. Even with pebble jumps, however, we can
conclude a periodicity in the id of at most mP!Rn, beginning after at most (1 +P)Rn
steps.

(3) R.+x <-Rn(A. PP + 1). (OPP) for O<_-n <P.

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 649

In order for C n+l C’ it is sufficient that C . C’ (Rn possibilities), that the displays at
the moment (if it exists) of the n + 1 coalition are the same (QPP) possibilities, and that
the moments of the n + 1 coalitions are the same (we will see that there are A.PP + 1
possibilities).

From this we can conclude that J visits at most (toO)c" nodes of Gm,d for some
constant c. Hence, if d > cP and m is large enough, J fails to visit all the nodes of Gm,d.

We leave as an interesting exercise to the reader to prove the fact that the above
result is the best possible in the following sense: If d 2P-1 then there is a d-JAG J with
no jumps with P pebbles such that for all m, if J starts on Gm,d with all pebbles on one
node, pebble 1 will eventually visit all nodes in the graph.

We now proceed with the formal development. Many details and proofs are
omitted, however, and the reader is urged to consult [7] for a more complete presen-
tation.

We first define the SUPERDISPLAY (SD) sequence carefully. Although the
definition is long, the intuition (as described above) is straightforward.

DEFINITION 4.3. Let Co (q0, Mo) be an id; let

and

COMP (Co) (qo, Mo), (q, Mx),

DISPLAY (Co)= (qo, 5o), (qx, x),

We define a sequence SD (Co)= (q0, (to, f0)), (ql, (’t’l, fl)), Each ri is a partition of
the pebbles, and for each fx,]z in a block of r, fi(h,]2) is defined and is a member of Z.
A consequence of our definition will be that f(h,])= M(h)-M(h).

Let ro- o and f0 (where defined) takes on the value (the 0-tuple in Z).
(r+x, fi+l) will be defined from (q, (r, f)) and +x. From (r, fi) we can deduce i,

and therefore determine from (q, (r, f)) the move J will make at step + 1.
Case 1. J jumps pebble/’x to pebble/’2 (assume fX Y j2). Then form ri+x by taking 1"1

out of the block of r it’s in, and putting it in the block containing/’2 (which may be the
same block), f+l has the same value as f (if any) on any pair of pebbles neither of which
is]’1. For an arbitrary pebble] in the same block as]’2 and fx, define f+1(]’1,]’)=
--fi+l(/,]’1)= fi (]’2,]’).

Case 2. J moves pebble 1"1 by distance e {e, e,..., ed,-ex,’’’,-ea}c_Zd

Firstly, define ri+x to be the same as r, and definef+ to have the same value (if any) as
f on any pair of pebbles neither of which is fX for arbitrary pebble f in the same block as
ix, define f’i+x (i, ix) -f+l (jl, j) fi(j, jl) + e. There are two subcases to consider to
define ri+x and fi+l from rl+x and

Case 2a. Pebble jx has "by surprise" hit another pebble j. That is, jx andf are not
in the same block of r, but are in the same block of 6e+x (for some pebble/2). Then form
r+x from r by merging the blocks of r containing jx and j2. Extend fl+x to f/x as
follows" if x and x2 are, respectively, in the same blocks of r as/’x and j2, then define
fi+l(Xl, X2)--" --fi+l(X2, X1)-" f+l (Xl,]’1) +fi+l q’2, X2).

Case 2b. Otherwise. Then define r+x r+x r and f+x
NOTATION 4.4. Say that COMP (q, M) (qo, Mo), (qx, Mx) ,

DISPLAY (q, M) (qo, 2fo), (qx, e),..., and SD (q, M) (qo, (to, fo)),
(qx, (rl, fl)), Then for 0, we define COMP (q, M) (q, M),
DISPLAY/(q, M) (q,, St/), SD, (q, M) (q,, (r,,

For n -> 0, let COALn, =-n, An, and Rn be defined as in the informal outline.
The next lemma says that if two id’s are =,, then they have the same display

sequence up to but excluding the moment when one of them has an n + 1 coalition.

650 STEPHEN A. COOK AND CHARLES W. RACKOFF

LEMMA 4.5. Say that (q, m) =-n (q’, M’). Let /" COALn (q, M)
COALn (q’, M’). Say that k COALn/x (q, M) -<_ COALn/I (q’, M’). Then for all i,
0 <= < k, we have DISPLAYi (q, M) DISPLAYi (q’, M’).

Proof. Certainly DISPLAYi (q, M) DISPLAYi (q’, M’) for all i, 0 _-< <- j, and
hence SDg (q, M) SDi (q’, M’) for all i, 0 -< -</’. Since for every i,/" < < k, neither of
the SD’s experience a coalition, SDg is determined by SD-x. So SD (q,M)=
SDg (q’, M’) and hence DISPLAYg (q, M) DISPLAY/(q’, M’)) for all i, j < < k.

The next lemma shows that a periodicity in pebble movements implies a periodicity
in the pebble positions.

LEMMA 4.6. Let a be a finite sequence of pebble moves of J. Say that in a given
computation, the sequence a is repeated consecutively times, and the mapping of the
pebbles after the s-th execution ofa is given byMsfor 0 <= s <- t. Then for every pebble there
exists an xi zd,,, such that for all s, P <= s <- t-P!, we have Ms+e(i) Ms(i) + xi. Hence,
Me+,,e(i) Me(i) ifP + raP! <= t.

Proof outline. Let {1, 2,..., P} be a pebble. One first shows that there exists a
pebble/’, numbers kx,/tz, and displacements y x, yz Z,, such that for all s _-> 0

(1) M+(i)=M(i)+ y;
(2) Ms+k2(i) Ms(j)+ y2;

(3) O<=kx <kz <=P
(assuming that s + kl and s + k2 are both -< t.)

Hence, Ms/k2(i)=Ms/gl(i)+(y2-yx). So we can say that whenever P<=s<
s + k2- kl <- t, Ms+(-)(i) Ms(i) + (y2- yl). So Ms+e(i) Ms(i) + (y2- yl)"
Pt/(kz-kx) if P<-s<=s+Pt<-t. It suffices to let
Ml+,,l,,(i) Me(i) + m x Me(i). [

LZMMA 4.7.

An<-(I+P+mP!)R forO<=n<P.

Proof outline. Co, C1, , CI is a computation (or an initial part of a computation)
not containing an n + 1 coalition. Assume => (1 +P + mP!)Rn. For some 0=< < -<Rn,
C --n Cj. A subtle point which must be checked here is that neither the computation
C, C+x,’", CI nor the computation Q, Q+x,’", Cl contains an n + 1 coalition.
Lemma 4.5 tells us therefore that DISPLAY/k (Co) DISPLAY./k (Co) for all k => 0,
/" + k <- I. So if c is the sequence of pebble moves made from time to time], then a is
repeated over and over until the end of the computation. Lemma 4.6 tells us that after at
most P + raP! occurrences of a, the pebble position starts repeating; the periodicity of
DISPLAY implies that the state sequence repeats with each a, so the id starts repeating
after at most P + raP! occurrences of a. The number of id’s from the beginning up to the
end of an occurrence of a is <-/" <- Rn. The number of id’s before time is <= <- Rn. So
the number of different id’s in the computation is<-Rn+(P+mP!)Rn
(I+P+mP!)Rn.

LEMMA 4.8.

Rn+l <=Rn (An PP + 1). (OPP) for O<=n <P.

Proof. In order that (q, M) ’n+l (q’, M’), it is sufficient, by Lemma 4.5, that
(1) (q, M) --n (q’, M’);
(2) COAL,+I (q,M)=COAL,,+I (q’,M’)=f;
(3) if/" < oc, then

DISPLAY (q, M) DISPLAY (q’, M’).

SPACE LOWER BOUNDS FOR MAZE THREADABILITY 651

Therefore Rn+l <= R, (x + 1) (OPP) where x is the number of possible finite values for
j. If an initial part of a computation doesn’t contain an n + 1 coalition, then the id starts
repeating after at most An steps, and so the id-SD pair starts repeating after at most
AnPP steps. So an n + 1 coalition cannot ever occur afterwards if the sequence has
length more than AnPP.

THEOREM 4.9. There is a constant c such thatfor all P, m, d, O N, ifJ is a d-JAG
with P pebbles and 0 states operating on G,,d (with its pebbles in an arbitrary starting
configuration) then at most (toO)cP nodes of G,,d are visited by pebbles of J.

Proof. In the informal outline it is argued that Ro <- QPP. This and Lemmas 4.7 and
4.8 imply that Ap-1 <- (mQ)eP for some constant e. This is the largest number of distinct
id’s in a computation, so the largest number of nodes visited by pebbles<=P(mO)e" <=
(toO)" for some constant c.

DEFINITION 4.10. For integers d, m, define the d-graph G’,d to be the graph
consisting of two unconnected copies of G,,d.

COROLLARY 4.11. There is a constant c such that for all P, m, d, Q N, if J is a
d-JAG with P pebbles and Q states operating on G’,d (with its pebbles in an arbitrary
starting configuration), then at most (mQ) nodes of G,d are visited by pebbles of J.

Proof. This is not actually a corollary, but the proof of this statement is virtually
identical to that of Theorem 4.9. l-1

THEOREM 4.12. For everyP there is a d such that no d-JAG with Ppebbles accepts an
arbitrary undirected d-maze c iff q is threadable.

Proof. Let P be fixed; choose d such that d > cP where c is the constant of Corollary
4.11. Let J be a 2d-JAG with P pebbles and Q states. Choose m larger than Q", so that
(mQ)P<md.

Now consider J on the undirected 2d-maze 3’= (G’,,, s, g) where s and g are in
different components of Gm,d Assume J doesn’lt accept (q’. Corollary 4.11 tells us that
when J runs on d’, there must be at least one node of each copy of G,,a which is never
visited by a pebble. It is easy to see that by redirecting some arcs that J never uses from
one copy to the other, one can obtain a threadable, undirected 2d-maze " that J fails to
accept.

THEOREM 4.13. There is no 3-JAG Jsuch that ifJ is given an arbitrary undirected
3-maze fg, J accepts if and only if fg is threadable.

Proof outline. Let J be a 3-JAG with P pebbles, and assume that J accepts an
arbitrary undirected 3-maze iff it is threadable. We can now show that for every d, there
is a d-JAG Jd with P pebbles which accepts an arbitrary undirected d-maze iff it is
threadable, contradicting Theorem 4.12. For simplicity, we shall only consider the case
d 4, but it should be clear how to generalize this.

Our 4-JAG J4 will run on a 4-maze 3 by simulating the action of J on a 3-maze
which is a "homomorphicish" version of 3. More particularly, if 3 (G, s, g), let
3’= (G’, s, g), where G’ is defined as follows.

G’For every node x of g, G’ has nodes x, xl, x2, x3, x4, xs, x6. has arcs:

O

2

Xl X4

652 STEPHEN A. COOK AND CHARLES W. RACKOFF

In addition, if G has an arc labeled from x to y, and an arc labeled j from y to x, then
G’ has arcs

’ is threadable <=> is threadable, and it is easy to see how J4 on simulates J on

We now state without proof a quantitative version of Theorem 4.13; the proof can
be deduced in a straightforward way by an examination of the steps in the proof of
Theorem 4.13.

THEOREM 4.14. For some constant c the following is true. Let J be a 3-JAG with P
pebbles and O states. Then there is an undirected 3-maze c with OcP nodes such that J
accepts : c is not threadable.

Theorem 4.14 does not yield a nice quantitative lower bound on storage as does
Corollary 3.3 for the directed case. The following Fact shows that this is not possible.

Fact. For every d > 0 there is a constant c such that for everyN there is a d-JAG JN
such that

(1) JN accepts an undirected N-node d-maze iff it is threadable, and
(2) Ju uses storage -< c log N.
In fact, Ju has only two pebbles and performs no jumps.
The proof involves showing the existence of a string Su {1, 2,..., d}* which

(when viewed as a sequence of edges to follow) covers every connected undirected
N-node d-graph, and which only has length polynomial in N (see [8]).

REFERINCES

[1] S. Y. KURODA, Classes of languages and linear bounded automata, Information and Control, 7 (1964),
pp. 207-223.

[2] W.J. SAVITCH, Relationships Between Nondeterministic andDeterministic Tape Complexities, J. Comput.
System Sci. 4 (1970), pp. 177-192.

[3], Maze Recognizing Automata and Nondeterministic Tape Complexities, Ibid., 7 (1973), pp.
389-403.

[4] M. BLUM AND W. J. SAKODA, On the Capability ofFinite Automata in 2 and 3 Dimensional Space, Proc.
18th Annual Symposium on Foundations of Computer Science, 1977, pp. 147-161.

[5] R. E. TARJAN, Reference machines require non-linear time to maintain disjoint sets, Proc. of the Ninth
Annual ACM Symposium on Theory of Computing, May 1977, 18-29.

[6] M. O. RA3IN, Maze threading automata, Seminar Talk presented at the University of California at

Berkeley, Oct. 1967.
[7] S. A. COOK AND C. RACKOFF, Space lower bounds]:or maze threadability on restricted machines,

University of Toronto, Dept. of Computer Science Technical Report 117, March 1978.
[8] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LovAsz AND C. W. RACKOFF, Random walks,

universal traversal sequences, and the complexity of maze problems, Proc. 20th Annual Symposium
on Foundations of Computer Science, 1979, pp. 218-223.

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0903-0016 $01.00/0

PREDICTORS OF CONTEXT-FREE GRAMMARS*

KUO-CHUNG TAIt

Abstract. A predictor of a context-free grammar G is a substring of a sentence in L(G) which determines
unambiguously the contents of the parse stack immediately before (in top-down parsing) or after (in
bottom-up parsing) symbols of the predictor are processed. Two types of predictors are defined, one for
bottom-up parsers and the other for top-down parsers. Algorithms for finding predictors are given and the
possible applications of predictors are discussed.

Key words. Context-free grammars, parsers, error recovery

1. Introduction. For a context-free grammar G, a predictor x of G is a terminal
string which can predict, during the bottom-up (top-down) parsing of any string

x in L(G), what the contents of the parse stack should be immediately before
(after) symbols in x are parsed.

In this paper, two types of predictors of context-free grammars are defined,
prefix-predictors for bottom-up parsers and suffix-predictors for top-down parsers.
Properties of predictors are explored and algorithms for finding predictors are given.

The notion of predictors of context-free grammars can be applied to many
problems including

(1) parallel compilation,
(2) complexity of context-free grammars, and
(3) error recovery in syntax analysis.

For syntactic error recovery, the concept of predictors formalizes the heuristic ideas of
"important symbols" given in previous error recovery techniques. Moreover, the
theory of predictors provides a basis for the evaluation of previous error recovery
techniques and for the development of new tectiniques.

2. Terminology. A context-free (CF) grammar G is a quadruple (Vu, Vr, P, S),
where VN is a finite nonempty set of symbols called nonterminals, VT is a finite set of
symbols distinct from those in Vu called terminals, P is a finite set of pairs called
productions, and S is a distinguished symbol in Vu called the start symbol. Each
production is written A a and has a left part A in VN and a right part a in V*, where
V VN U VT. V* denotes the set of all strings composed of symbols in V, including the
empty string e. An e-production is a production of the form A e. G is said to be e-free
if either there is no e-production in P, or there is exactly one e-production S e and S
does not appear in the right part of any production in P.

The capital letters A, B,..., F, S denote nonterminals; X, Y, Z denote nonter-
minals or terminals; lowercase letters a, b, c, ..., h denote terminals; u, v, ..., z
denote strings in V, and lowercase Greek letters c,/3, y,. , o" denote strings in V*.
lul denotes the length of (number of symbols in) the string u; therefore lel 0.
denotes the empty set.

If Aa is a production and flAy is a string in V*, then flAyflay or
flAy flay if G is clear. The transitive closure of :=> is denoted by =,+, and the
reflexive transitive closure of =, is denoted by =,.. A derivation of length n is a sequence
of strings Ceo, al,’",an, where n->0, such that ao:=>al =>... =’an; it is written
so 3. an., A rightmost derivation is a derivation in which the rightmost nonterminal of
each string is replaced to form the next; it is written a0=rm* an. Similarly, a leftmost

* Received by the editors March 20, 1979 and in revised form September 12, 1979.- Department of Computer Science, North Carolina State University, Raleigh, NC 27650. This research
was supported in part by the National Science Foundation under Grant MCS77-24582.

653

654 :UO-CHVY TAI

derivation is written aot=, an. A string a is called a sentential form of G if S=* a. A
sentential form a is called a left-sentential (right-sentential) form if S @m* (:,) a. A
sentence is a sentential form containing only terminal symbols. The language L(G)
generated by G is the set of sentences, i.e., L(G)= {w in VT* [S::+w}.

A CF grammar G is said to be cycle-free if there is no derivation of the form
A ::+ A for any A in VN. A nonterminal A is said to be recursive if A+ fiAT for
some fl and , in V*. If fl e, then A is said to be left-recursive. If 7 e, then A is
right-recursive. If fl e 7, then A is self-embedding. A symbol X in V (X S) is said
to be useless if there does not exist a derivation of the form S, uXw , uvw, where
u, v and w are in V. G is said to be proper if it is cycle-free, is e-free, and has no useless
symbols. A string a is said to be a phrase of a sentential form flat if S* fiAT
A string a is said to be the last phrase of a derivation fl ::>+ , if the derivation is
B * 6Ao" 6acr 3’. A string cr is called a viable prefix if S * flAw flaw and o- is
a prefix of/3a; thus, r does not contain any symbol to the right of the last phrase of
S =>+ flaw.

A configuration 8f a shift-reduce parser for a CFG is pair (a,x), where
represents the pushdown stack (or parse stack) whose top is on the right, and x
represents the unparsed portion of the input. For LR parsers, a is a sequence of states
(not symbols in V), but each sequence of states corresponds to a unique string in V*.
Without loss of generality, it is assumed that a is a string in V*. A move by a
shift-reduce parser from (a, x) to (a’, x’) is denoted by (a, x) (a’, x’). In shift-reduce
parsing there are two types of moves (a, ax)k-(aa, x) (called a shift) and
(aft, x) (aB, x) (called a reduce) where B -> fl is a production. The transitive closure of
b- is denoted by -+, and the reflexive transitive closure of is denoted by ,.

All grammars considered in this paper are assumed to be context-free with no
useless symbols.

3. Prefix-predictors for bottom-up parsers.
DEFINITION. Le x be a string in V and a be a string in V*. a is called a canonical

prefix of G for x if there exists w in V such that S+ axw with a not containing the
last phrase of the rightmost derivation.

Consider the grammar G 1 with productions

SAB,

A aA [a,

B ->cbc.

Then L(G1)= {a"cbcln >0}. The parse tree of aaacbc in L(G1) is

S

B

c b c

PREDICTORS OF CONTEXT-FREE GRAMMARS 655

Ac is a canonical prefix of G 1 for b, but aaac, aaAc and aAc are not. Both A and Acb
are canonical prefixes of G 1 for c.

DEFINITION. The set of canonical prefixes of G for x in V is defined by
CP(x) {a[a is a canonical prefix of G for x}.

DEFINITION. Let x be a string in V. x is called a prefix-predictor of G if
IfP(x)l- 1, i.e., there exists exactly one canonical prefix of G for x.

In G1 b is a prefix-predictor because CPI(b)={Ac}. Both a and c are not
prefix-predictors of G1 since CPI(a) {a n[n => 0} and CPa(c) {A, Acb}. However,
cb is a prefix-predictor of G1 because CP(cb)= {A}.

Note that for any y in V such that S =>+... y..., [ce(y)l-> 1. Let x be a
prefix-predictor of G with CP(x) {a}. Then for any uxw in
L(G), S+ axw 3, uxw with a not containing the last phrase of the rightmost
derivation from S to axw. Thus during a deterministic, no-backtrack bottom-up parsing
of uxw, immediately before symbols in x are parsed, the parse stack must be a or a
sequence of states corresponding to a (for LR parsers).

How to find prefix-predictors will be discussed in the next section. In the remainder
of this section, some properties of prefix-predictors are explored.

LEMMA 3.1. Let x be a prefix-predictor of G. If S :::>+ xy for some y in V%r,
then xy is also a prefix-predictor of G.

Proof. Suppose that xy is not a prefix-predictor. Then there exist two or more
canonical prefixes for xy. Since every canonical prefix for xy is also a canonical prefix for
x, there exist two or more canonical prefixes for x. It follows that x is not a prefix-
predictor.

LEMMA 3.2. Let x be a prefix-predictor of G and CP(x) {a}. Then x may appear
more than once in some sentence of" G if and only if a 3+ axw for some w in Vr.

Proof. If: trivial.
Only if: Let uxwxv be a sentence f G. Since x is a prefix-predictor,

$+axwxv.. uxwxv. For axwxv, there exists a string 8 such that
S 3+ igxv ,* axwxv with/3 notcontaining the last phrase of the rightmost derivation
from $ to xv. Since x has a unique canonical prefix, fl a. Therefore, a + axw.

Thus if a prefix-predictor appears more than once in some sentence of G, then G
has at least one left-recursive nonterminal. However, as shown in the next lemma, it
could happen that no prefix-predictors appear in any terminal string derived from a
recursive nonterminal.

LEMMA 3.3. Assume thatA 3+ Av with e and v in Vr. For any y in Vr such
that A 3+ y , y is not a prefix-predictor.

Proof. Since G has no useless symbols, there exist strings a, 3’ in V* and u, w in
such that S. aAw r+ ayyuw with aT not containing the last phrase of the rightmost
derivation from $ to ayyuw. Then ay is a canonical prefix for y. Since A+ flAy,
S r* aAw+ aBAvw r+ ayyuvw. Thus aBy is also a canonical prefix for y and
afly ay. Therefore, y is not a prefix-predictor.

LEMMA 3.4. Assume that G is e-free. If every terminal in Vr is a prefix-predictor,
then L(G) is a regular language.

Proof. If L(G)= {e}, then it is a regular language. If L(G) {e}, then for every
nonterminal B, B =>+... b... for some b in Vr, Since b is a prefix-predictor, by
Lemma 3.3 B is neither right-recursive nor self-embedding. Because all nonterminals
are not self-embedding, L(G) is regular.

4. Finding prefix-predictors. This section first shows how to determine, for given
strings a in V* and x .in Vr, whether a is a canonical prefix for x. Section 4.1

656 IUO-CIUNG TAI

presents an algorithm for finding prefix-predictors of length one. Section 4.2 discusses
how to find prefix-predictors of length greater than one.

The following two simple lemmas show the relations between "canonical prefixes"
and "viable prefixes."

LEMMA 4.1. Let ax be a viable prefix of G, where x is in Vr. Then a is a canonical
prefix o G for x.

Proof. Since ax is a viable prefix, there exists a string w in V* such that S r+ aXW

and ax does not contain any symbol to the right of the last phrase of the rightmost
derivation. Because]x 1>0, a does not contain the last phrase of the rightmost
derivation. Thus a is a canonical prefix for x.

LEMMA 4.2. Suppose thatx xx2 Xm is in VT, m > 0, and that a is a canonical
prefix of G]:or x. Then ax is a viable prefix, but axax2" x,, 2 <- n <- m, might not be a
viable prefix.

Proof. By assumption, there exists a string w in V* such that
not containing the last phrase of the rightmost derivation. Since aXl certainly does not
contain any symbol .to the right of the last phrase, aXl is a viable prefix. However, the
last phrase might be a suffix of cexa and thus axlxz...x,, 2 <= n <= m, might contain
symbols to the right of the last phrase. Hence, axxx2.., x, 2 <= n <-m, might not be a
viable prefix. For example, in G 1 aa is a canonical prefix for ac. aaa is a viable prefix of
G 1, but not aaac.

Thus "canonical prefixes" and "viable prefixes" are related but not equivalent.
The above two lemmas lead to the following theorem:

THOgZM 4.3. Let b be a terminal, a is a canonical prefix ofGfor b ifand only ifab
is a viable prefix of G.

Proof. It follows from Lemmas 4.1 and 4.2.
Note that the above theorem does not hold for a terminal string of length greater

than one.
THEOREM 4.4. Leta be a string in V* andx a string in Vr. a is a canonicalprefixfor

x ifand only if there exists a viable prefix such that either ax or =+ ax with a not
containing the last phrase of the rightmost derivation.

Proof. If: If/3 ax, then ax is a viable prefix and thus a is a canonical prefix for x.
If/3 :=+ ax, then there exists a string w in V- such that S 3. 3w 3+ axw with a not
containing the last phrase of the rightmost derivation from S to axw. Therefore, a is a
canonical prefix for x.

Only if" Similar to the "if" part.
To determine whether there exists a rightmost derivation from a viable prefix/3 to

ax with a not containing the last phrase of the rightmost derivation is very complicated.
An alternative is to perform reductions on ax based on the reverse of rightmost
derivations.

To make reductions based on the reverse of rightmost derivations, we use the finite
state machine corresponding to the LR(0) parser for G, called the characteristic finite
state machine (CFSM) of G [2]. State So in the CFSM is designated as the start state.
Each state s in the CFSM, s So, has a unique accessing symbol A(s). A path p in the
CFSM is a sequence of state sl, s2, , sm such that for each i, 1 <- _-< m 1, si has a
transition to Si+l under A(si+l). An alternate notation for p Sx, s2, , s, is Is1 :a],
where a A(s2)... A(s,,). For a path p Sx, s2,’’’, s,,, we define TOP(p)= s,, and
say that p accesses s,, and passes sl, s2," , and s,,. The concatenation of two paths
[s a and Is’ :/3], where TOP(Is: a]) s’, is written Is: a][s’ :/3 and denotes Is: aft]. A
cycle in a path p- Sx, s2,’’’, s,, is a subsequence of p, say si, si+l,’", si, such that
1 _-< </" <_- m, s si and si Sk for < k <.

PREDICTORS OF CONTEXT-FREE GRAMMARS 657

LEMMA 4.5./3 is a viable prefix ofG ifand only if [So"/3 is a path in the CFSMofG.
Proof. Trivial.
If G is LR(0), then the CFSM of G is deterministic. Otherwise, the CFSM of G is

nondeterministic because it may take two or more different actions in some states. The
CFSM of G can be used to nondeterministically parse sentences in L(G) from left to
right, based on LR(0) (or canonical) parsing [2]. A canonical parse from configuration
(a, x) to configuration (/, y) using the CFSM is denoted by (a, x) a* (/’ Y)"

LEMMA 4.6. Leta be a viable prefix and x be a string in V. If (a, x)
is a viable prefix such that either cex or + cex with ce not containing any symbol to
the right of the last phrase of the rightmost derivation.

Proof. This is due to the construction of the CFSM.
THEOREM 4.7. Let a be a string in V* andx xx2 x, be a string in V’, m > O.

ce is a canonical prefix for x if and only if ax is a viable prefix and
(aX1, X2’’" Xm) c ([’ E) for some [3 in V+.

Proof. If: By Lemma 4.6,/3 is a viable prefix such that either/3 ax or/3 ::+ ax
with a not containing tha last phrase of the rightmost derivation. Then by Theorem 4.4,
a is a canonical prefix for x.

Only if" Since a is a canonical prefix for x, by Lemma 4.2 ax is a viable prefix. By
Theorem 4.4, there exists a viable prefix /3 such that either /3 =ax or ::>+ax
with a not containing the last phrase of the rightmost derivation. Thus
(OXl, X2" Xm) ca* ([’ E).

Thus whether, a is a canonical prefix for x XlX2 x,,, m > 0, can be determined
as follows"

(1) If [s0"aXl] is not a path in the CFSM of G, then a is not a canonical prefix
for x.

(2) If [So’aX] is a path in the CFSM of G"
(2.1) if m 1, then a is a canonical prefix for x;
(2.2) if m > 1, then derive canonical parses of (axe, x2" x,) based on the CFSM

of G. If (OXl, X2" Xm) can be reduced to a (/3, e) by some canonical parse, then a is a
canonical prefix for x. Otherwise, c is not a canonical prefix for x. (This step takes a
finite amount of time if G is proper.)

4.1. Finding prefix-predictors of length one. Let b be a terminal. By Theorem 4.3,
a is a canonical prefix of G for b if and only if [So" ab is a path in the CFSM of G. Thus, b
is a prefix-predictor of G if and only if there exists a unique path from So, say [so"/3],
such that /3 ends with b. The following theorem provides the basis for finding
prefix-predictors of length one.

THEOREM 4.1.1. Let b be a terminal, b is a prefix-predictor of G if and only if there
exists a state s in the CFSMofGsuch that (1) s is the only state withA (s) b, and (2) there
exists exactly one path from So to s.

Proof. It follows from the above discussion.
The remainder of this section shows how to construct an algorithm for finding

prefix-predictors of length one.
DEFINITION. A state s in the CFSM of G is called a singular state if there exists

exactly one path from So to s.
LEMMA 4.1.2. IfS is a singluar state, then each state passed by the path from So to s is

a singular state.

Proof. Trivial.
LEMMA 4.1.3. If S is not singular and there exists a path from s to s’, then s’ is not

singular.
Proof. Trivial.

658 KUO-CI-IUY6 TAI

Figure 1 shows the CFSM of G2. States in the CFSM, except S1, $6, $9, S12 and s5,

are singular states. Note that s6 is not singular because there is a path from s6 to itself.
Since there exist paths from s6 to s12 and ss, respectively, both s2 and sis are not
singular.

So /

S’-.S$

S .aAd

S .bAe

S

E .cEd

E .e

e

$3

S a.Ad
a

$2 $7

$8 S13

S aA d d]’1 S aAd

$9

Sl0 S14

---S-,ba.e e

SE.f

E c.Ed

E .cEd

E.e

Sll

S12 S15

FIG. 1. The CFSM of the grammar G2 with productions

S’S$, Af,

S aAd, E cEd,

S bAe, E - e.

S -, Ff,

LEMMA 4.1.4. Let b be a terminal, b is a prefix-predictor of G if and only if there
exists a singular state s in the CFSM of G such that s is the only state with A(s) b.

Proof. It follows directly from Theorem 4.1.1.
By the above lemma, G2 has three prefix-predictors of length one, a, b, and $.
ALGORITHM 4.1.5. Find prefix-predictors of length one of G.
(1) Construct the set M of singular states in the CFSM of G as follows.
(1.1) Initially, let M {So} with So "unmarked".
(1.2) For each unmarked state s in M, mark it by performing the following step:
For each immediate successor s’ of s, if s is the only immediate predecessor of s’,

then add s’ to M as an unmarked state.
(2) Construct the set N of prefix-predictors of length one of G as follows.
(2.1) Initially, let N .
(2.2) For each state s in M, if the accessing symbol of s, say b, is not the accessing

symbol of any other state in the CFSM of G, then add b to N.

PREDICTORS OF CONTEXT-FREE GRAMMARS 659

4.2. Finding prefix-predictors of length greater than one. Let x xlx2 x. be a
prefix-predictor of G, m > 1, and CP(x) {ce}. x has several properties different from
those of prefix-predictors of length one. First, cxl is a viable prefix, while cex might not
be a viable prefix. Second, [So: cxl] may pass nonsingular states. Third, [So: cexl] may
have cycles.

Consider the CFSM of G2 in Figure 1. Since CP2(f)={E, a, b}, f is not a
prefix-predictor of G2. But fd and fe are prefix-predictors of G2 because CP62(fd)
{a} and CP2(fe)= {b}. Note that afd is not a viable prefix and that [So: af] accesses
state s9 which is not singular.

In G2, the nonterminal E derives c%dn,for any n >_- 1. Since E is not left-recursive,
by Lemma 3.3 no substring of c ned, n ->_ 1, is a prefix-predictor of G2. However, dnf is
a prefix-predictor because CP2(d/)= {cE}. Note that [So:CE] has cycles if n > 1.

To find prefix-predictors of length rn of G, let us consider the set K6,, defined by

K,,, {(/3, Y)IY is in V and fl is a canonical prefix of G for y}.

Then x is a prefix-predictor of length rn of G if and only if there exists exactly one (fl, y)
in K,, with y x. However, if the CFSM of G has cycles, the length of fl in K,, may
be unbounded and thus K,, could be an infinite set. A simple solution is to find a value
called BOUND(G, m) satisfying the following property:

PROPERTY 4.2.1. For any y in V, m > 0, such that S :=), +. y .,
(1) if y is a prefix-predictor of G and CP(y) {a}, then la[<=BOUND(G, m);
(2) if y is not a prefix-predictor of G, then there exist at least two distinct canonical

prefixes of G for y with their lengths less than or equal to BOUND(G, m).
By defining

La,,, ={(/3, y)ly is in V,/ is a canonical prefix of G for y and [B[<_-BOUND(G, m)},

then x is a prefix-predictor of length rn of G if and only if La,,, contains exactly one
(/3, y) with y x. Thus the problem now is to find a value of BOUND(G, m) which
satisfies Property 4.2.1.

Let MAXPATH(G) be the maximum length of cycle-less paths in the CFSM of
G, MAXRP(G) be the maximum length of right parts of productions in G, and
NT(G) be the numb’er of nonterminals in G.

THEOREM 4.2.2. Let G be a proper CFgrammer. By letting

BOUND(G, m)= 2 MAXPATH(G) + (m + 1), # NT(G) (MAXRP(G)-1),

Property 4.2.1 is satisfied.
Proof. Let /3 be a canonical prefix of G for y in V, m > 0. We show in the

Appendix that if IBI > BOUND(G, m), there exist two distinct canonical prefixes of G
for y with their lengths less than or equal to BOUND(G, m). Therefore, Property 4.2.1
is satisfied.

Thus for rn > 1, prefix-predictors of length rn of a proper context-free grammar
can be found as follows.

(1) Let Ol ={(B, b)[[So:Bb] is a path in the CFSM of G, b is in Vr, and
BOUND(G, m)}.

(2) For 2, 3,. , and m, let Oi {(/3, ub)l(B, u) is in Oi-, b is in Vr, and there
exists a canonical parse (B, ub) a* (/’ b) (3b, e)}.

(3) Let N,, {xlO,, has exactly one (B, Y) with y x}. Then" N,, is the set of
prefix-predictors of length rn of G.

660 KUO-CHUNG TAI

5. Suffix-predictors for top-down parsers.
DEFINITION. Let y be a string in V and let/ be a string in V*. fl is called a

canonical suffix ofGfory if there exists a string u in V*T such that S+ uyfl with fl not
containing the last phrase of the leftmost derivation, lm

DEFINITION. The set of canonical suffixes of G for y in V is defined by

CS(y) {fl]fl is a canonical suffix of G for y}.

DEVINITION. Let y be a string in V. y is called a suffix-predictor of G if
Ics(y)l- 1, i.e., there exists exactly one canonical suffix of G for y.

Let y be a suffix-predictor of G with CSa(y)={fl}. Then for any uyw in
L(G), S l+ uyfl . uyw with/9 not containing the last phrase of the leftmost deriva-
tion from S to uy/. Thus during a deterministic, no-backtrack top-down parsing of uyw,
immediately after symbols in y are parsed, the parse stack must be

Let the reflection ofa string y y y, be yR y, y and let the reflection of
a grammar G (VN, VT, P, S) be G (Vv, VT, pR, S), where pR is P with all right
parts reversed. The following theorem says that suffix-predictors of G can be found by
using algorithms for finding prefix-predictors.

THeOReM 5.1. y is a suffix-predictor of G if and only if yg is a prefix-predictor of
GR"

Proof. It is sufficient to show that fl is a canonical suffix of G for y if and only if fl is
a canonical prefix of GR for yR.

If: Since fir is a canonical prefix of GR for yn, S+Rynw with fir not contain-

ing the last phrase of the rightmost derivation. Then S+ wnyfl with fl not containing
lm

the last phrase of the leftmost derivation. Thus fl is a canonical suffix of G for y.
Only if. Similar to the "if" part.
Some of the properties of prefix-predictors discussed in 3 can be transformed for

suffix-predictors.
LMMA 5.2. Let y be a suffix-predictor of G. If S+ xy .., then xy is also a

suffix-predictor.
Proof. Similar to the proof of Lemma 3.1. 71
LMMA 5.3. Let y be a suffix-predictor of G and CS(y) {fl}. Then y may appear

more than once in some sentence of G if and only if fl l+ uyfl for some u in V*T.
Proof. Similar to the proof of Lemma 3.2.
LMMA 5.4. Assume thatA+ uA3, with 3/ e and u in Vr. For any y in Vr such

that A+ y ..., y is not a suffix-predictor.
Proof. Similar to the proof of Lemma 3.3.
LMMA 5.5. Assume that G is e-free. Ifevery terminal in VT is a suffix-predictor, then

L(G) is a regular language.
Proof. Similar to the proof of Lemma 3.4.
Pai and Kieburtz [9] defined the strong phrase level uniqueness property for

syntactic error recovery in top-down parsing.
DNITON. A symbol Z in V has strong phrase level uniqueness (SPLU) if
(1) there is at most one production, say A --> a, which contains Z in its right part,
(2) Z occurs only once in the right part a,
(3) A does not have left or embedded recursion in G, i.e., there is no derivation of

the form A, flA,y, where 3/ e,
(4) A has SPLU in G(A), where G(A) is the grammar obtained from G by

deleting all productions for A.
THEOREM 5.6. If a terminal b has SPLU in G, then b is a suffix-predictor of G.

PREDICTORS OF CONTEXT-FREE GRAMMARS 661

Proof. Since b has SPLU in G, there exists a unique sequence of productions

where A(1) S, n > 0, and A(1), A(2), ., and A(n) are distinct. Furthermore, for each
A(), 1 < < n, there is no derivation of the form A(i) =>+ aA(i)/ with ,/ e. Thus
/(n)/3 (-1).../() is the only canonical suffix of G for b. It follows that b is a
suffix-predictor of G.

However, the reverse of the above theorem is not true. That is, there may exist
suffix-predictors of length one of G which do not have SPLU in G. Consider the
grammar G3 with production

S --> abcldbc.
b does not have SPLU in G3 because it appears in the right parts of two productions.
But b is a suffix-predictor of G because CSa3(b)= {c}.

6. Applications of predictors. A predictor generator for context-free grammars is
being implemented. Research is also underway on the applications of predictors to the
following problems.

Parallel compilation. Let x be a prefix-predictor with CPa(x) {ce} and let uxw be
a string in L(G). The bottom-up parsing of uxw can be performed by two processes in
parallel. One is to parse u with its parse stack empty, while the other is to parse xw with
c as its parse stack. Furthermore, the interface between these two processes for other
phases of compilation (e.g., semantic processing and code generation) can be formally
defined in terms of the attributes [6] of symbols in c. Thus if a string in L(G) has n
separated predictors, it can be divided into n + 1 segments such that these segments are
compiled in parallel or separately.

Complexity of context-free grammars. Recently the complexity problems of both
context-free grammar forms and context-free grammars have received much attention
[3], [4], [12]. The concept of predictors can be applied to define complexity measures
for context-free grammars.

Syntactic error recovery. Prefix-predictors (suffix-predictors) can be used for error
recovery in bottom-up (top-down) parsing as follows. After an error is detected,
symbols in the remaining input are discarded until a prefix-predictor (suffix-predictor),
say x, is found. Assume that CP(x) (CS(x)) {ce}. The current parse stack is replaced
with a (c R) before parsing is resumed. For top-down parsing, however, x must be
discarded from the input before parsing is resumed.

Although a number of error recovery techniques have been proposed, most of them
are ad hoc and heuristic. The theory of predictors provides a basis for comparing and
evaluating previous error recovery techniques [1], [5], [7], [8], [91, [10], [11] because
these techniques can be described in terms of different approximations to predictors.
Moreover, the notion of predictors can be extended to define "local" predictors which
determine how to recover from syntax errors by examining both the parse stack and the
remaining input. Several types of local predictors have been defined and are being
applied for practical error recovery.

66 2 KUO-CHUNG TAI

Appendix. Let fl be a canonical prefix of G for y in V, m >0, with 1/31>
BOUND(G,m) 2 MAXPATH(G)+(m + 1) # NT(G) (MAXRP(G)- 1).Below
we prove that there exist two distinct canonical prefixes of G for y with their
lengths less than or equal to BOUND(G, m). The following lemma is needed for the
proof.

LF.MMA A.1. Let c be a viable prefix of G. Suppose that the path [So:a] in the
CFSM of G has cycles, say [So a [So y][s 6][s or], where 8 e and c 3"&r. Then
[So: y][s:0.] is a path in the CSFM of G, y0. is a viable prefix of G, and
TOP([so c]) TOP([so 3,0"]).

Proof. Trivial. [q

Since fl is a canonical prefix for y, by Theorem 4.4 there exists a viable prefix 3, such
that 3, fly or 3, =/m+ fly with fl not containing the last phrase of the rightmost
derivation. Consider the following two cases"

(1) 3,=fly. Since ItI>2*MAXPATH(G), [So:fl] has at least two cycles. By
Lemma A.1,/3 can be shortened to produce two viable prefixes/3’ and/3" such that
[So:/3’] has no cycles, [So:/3"] has exactly one cycle, and TOP([so :/3]) TOP([so :/3’])
TOP([so:fl"]). Then /3’fl" and both I/3’1 and I/3"1 are less than or equal to
2 MAXPATH(G). Since both fl’y and/3"y are viable prefixes,/3’ and/3" are canonical
prefixes for y.

(2) y =>r+ BY with/3 not containing the last phrase of the rightmost derivation. Let
6 be the longest prefix of 3’ not replaced in the rightmost derivation. Thus 3, 0"
and fl= tr/for some 0" in V+ and r/in V*. It follows that 0" =>+ fly with 0" deriving
a prefix of y in the rightmost derivation. Since 1/31 [Br/] >
2 MAXPATH(G) + (m + 1) # NT(G) (MAXRP(G)- 1), either 16[>
2,MAXPATH(G) or [nI>(m+I),#NT(G),(MAXRP(G)-I) (or both).
Consider the following cases.

Case A.1. Itl>2, MAXPATH(G). By Lemma A.1, t can be shortened to
produce two viable prefixes 6’ and t" such that [So: t’] has no cycles, [So: 6"] has exactly
one cycle, and TOP ([So 6]) TOP ([So 6’]) TOP ([So 6"]). Then 6’ 6" and 16’1 and
16"1 are less than or equal to 2 MAXPATH(G).

Case A.2. Irtl>(m + 1) #NT(G) (MAXRP(G)- 1). Since 0"=>+ r/y with 0"1
deriving a prefix of y in the rightmost derivation, 0"=0"10"’ ’,,* 0"1y"-=-t-r/y’y" r/y,
where y’ e. We show below that the derivation 0" =?m+ r/y’ can be shortened to
produce two derivations 0"1 r=:>+ r/’y’ and 0"1 ::’+ r/"y’ such that r/’ r/" and both IV’[and
IV"[are less than or equal to (m + 1) #NT(G) (MAXRP(G)- 1).

The sequence of productions applied in the derivation 0"1 ::7+ fly’ is as follows:

A() --> r/()A(1)y ()

A() --> r/(2)A(2)y (2)

(A.1)

A(p-2) _..) rl(P-1)A(P-1)y(p-1)

A(p-l) - r/(P)y (P),

where A()
0"1, rt (1).. "rt

(p)
r/, y(P) y(1) y, and y(P) s (because 6rt is a canoni-

cal prefix for y’). Since [y’]-<m and y() e, at most m-1 of y(1), "", y(-) are
nonempty. Thus the sequence of productions in (1) can be divided into subsequences

PREDICTORS OF CONTEXT-FREE GRAMMARS 663

Q1, Q2," ", Qn, where n -< m and each subsequence is of the following form

A()
rt (q+l)A(q+l)

A(q+)
_

/(q+2)A (q+2)

(A.2)

n(r-2) ...> ,iT (r-1)A(r-1)

A(r-l) /(r)A (r)y(r)

where 0 _-< q < r -< p, y (r) # S, and y (q) # e if q > 0.
The subsequence shown in (A.2) can be applied to produce a derivation

A(q) = (q+,)A(q+,) = (q+l) (q+2)A(q+2) = = ’l
(q+l)

"’’’0 (r)A(r)Y (r)

Assume that in this subsequence a nonterminal appears twice in the left parts of
productions, say A(s)= A (t) where q-< s < < r. Then the subsequence shown in (A.2)
can be shortened by deleting the following sequence of productions

A(s) ...> q (s+l)A(S+l)

A (s+l) ---> r/(s+2)A(S+2)

A(t-l) ...> (t)A(t).,
The shortened subsequence can be applied to produce a derivation A(q) : r/(q+a)...

(s (q+l) (s) (t+l)A(t+l) (t+a) (s),0(t+l) (r)A(r) (r))A() z B y * T(q+l T "’’T y Since
(s+t) (t) (s)T (t+l) (r)

G is cycle-free, #e and therefore]rt(+) B <
(r)17("+) / [. If the shortened subsequence still has a nonterminal appearing twice in

the left parts of productions, the same process can be repeated. When the resulting
subsequence has no nonterminal appearing more than once in the left parts of

(r)productions, it can be applied to produce a derivation A() r+OA(r)y with 101<
NT(G) (MAXRP(G)- 1).

(i)[<Since r/ r/) .O(I:’),[O[>(m+I),#NT(G),(MAXRP(G)-I) and It/
MAXRP(G)-I for l<=i<=p, so p>(m+l), #NT(G). As mentioned earlier, the
sequence of p productions shown in (A. 1) is divided into n subsequences, n -< m. Then at
least one of subsequences O, Qe,... O, say Qt, consists of more than #NT(G)
productions. Thus in Ot at least one nonterminal appears more than once in the left
parts of productions. Suppose Ot is of the form shown in (A.2). Ot can be shortened to
generate two subsequences Q’t and Q’ (one of them may be equal to Qt) such that O’t
and 07 produce derivations A() =>+ O’A(r)y (r) and A(q) =+ O"A(r)y (r) with 10’1 < [0"[<
2 # NT(G) (MAXRP(G) 1).

Some of the subsequences 01,’" ", Or-a, 0+1,"" ", On may also have nonter-
minals appearing more than once in the left parts of productions. Let O’ be the
shortened Q, 1 =< =< n and # t, such that O has no nonterminals appearing more than
once in the left parts of productions (possibly O’= Oi) Then each O, 1 _-< -< n and
it, is of the form shown in (A.2) and produces a derivation of the form

664 KUO-CI-IUNG TAI

A(q)=:+ OA(r)y ’(r) with 10[< #NT(G)* (MAXRP(G)- 1). Therefore, the two
sequences Oi, i I I /1, O’ and O’t-, t, t-l, O t, O O’,,t+l,

produce derivations o1 =+ W’y’ and OOl =r+ q"y’ respectively with]W’] < I1"] <
(m + 1) # NT(G) (MAXRP(G)- 1). In other words, there exist two distinct strings
zt’ and q" such that both]7’1 and]q"] are less than (m+l). #NT(G).
(MAXRP(G)-1) and 00 =’m+W’y and 00m+q"y with 001 deriving a prefix of y in both
derivations.

From Cases (A.1) and (A.2), let y’, y", B’, and B" be defined as follows"
(a) ,/’ ,’r, ,,," 6"or, B’ "6 rt, and fl"= 6

if]6[> 2 MAXPATH(G)
and]rt[<- (m + 1) # NT(G) (MAXRP(G)- 1),

or

or

(b) /" /3’, 600, 6rt, and fl 6r/
if [6] _-< 2 * MAXPATH(G)
and]rt[> (m + 1) # NT(G) (MAXRP(G)- 1),

(c) "= 7" 6’or, B’= 6’rt’, and fl"= 6’rt"
if 161 > 2 * MAXPATH(G)
and [rt] > (m + 1) #NT(G) (MAXRP(G)- 1).

Then y’ and y" are viable prefixes of G and y’--m+ fl’y (y"-=m-t-/3"y) with/3’ (/3") not

containing the last phrase of the rightmost derivation. Therefore,/3’ and/3" are distinct
canonical prefixes of G for y with both [fl’] and [fl"l less than or equal to
BOUND(G, m). V1

REFERENCES

[1] J. CIESINGER, Generating error recovery in a compiler generating system, GI-4 Fachtagung fiber
Programmiersprachen, Springer-Verlag, New York, 1976, pp. 185-193.

[2] F. L. DEREMER, Simple LR(k) grammars, Comm. ACM, 14 (1971), pp. 453-460.
[3] S. GINSBURG AND N. LYNCH, Size complexity in context-free grammar forms, J. Assoc. Comput.

Mach., 23 (1976), pp. 582-598.
[4], Derivation complexity in context-free grammar forms, this Journal, 6 (1977), pp. 123-138.
[5] S. L. GRAHAM AND S. P. RHODES, Practical syntactic error recovery, Comm. ACM, 18 (1975), pp.

639-650.
[6] D. E. KNUTH, Semantics of context-free languages, Math. Systems Theory, 2 (1968), pp. 127-145.
[7] J. P. LEVY, Automatic correction ofsyntax errors in programming languages, Acta Informat. 4 (1975), pp.

271-292.
[8] M. D. MICKUNAS AND J. A. MODRY, Automatic error recovery]:or LR parsers, Comm. ACM, 21

(1978), pp. 459-465.
[9] A. PAI AND R. B. KIEBURTZ, Global context recovery: a new strategy for parser recovery from syntax

errors, SIGPLAN Notices 14 (1979), pp. 158-167.
[10] T. J. PENNELLO AND F. DEREMER, A forward move for LR error recovery, Conf. Rec. Fifth ACM

Symp. Principles of Programming Languages, 1978, pp. 241-254.
[11 K. C. TAI, Syntactic error correction in programming languages, IEEE Trans. Software Engineering, 4

(1978), pp. 414-425.
[12] D. WORKMAN, A measure of structural complexity for context-free grammars. Technical Report

CSD-TR-129, Computer Science Dept., Purdue Univ., 1975.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Indiastrial and Applied Mathematics

0097-5397/80/0904-0001 $01.00/0

COMPLETENESS WITH FINITE SYSTEMS OF INTERMEDIATE
ASSERTIONS FOR RECURSIVE PROGRAM SCHEMES*

KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

Abstract. It is proved that in the general case of arbitrary context-free schemes a program is (partially)
correct with respect to given initial and final assertions if and only if a suitable finite system of intermediate
assertions can be found. Assertions are allowed from the extended state space x . This result contrasts
with the results of [2], where it is proved that if assertions are taken from the original state space , then in the
general case an infinite system of intermediate assertions is needed. The extension of the state space allows a
unification in the relational framework of [2], of the (essence of the) results of [2], and of [4], [5] and [6], and
provides a semantic counterpart of the use of auxiliary variables.

Key words, partial correctness, intermediate assertions, relational framework, extended state space,
recursive program schemes

1. Introduction. De Bakker and Meertens proved in [2] that an infinite system of
intermediate assertions is needed to prove the completeness of the inductive assertion
method in the case of an arbitrary system of (mutually) recursive parameterless
procedures. On the other hand, Gorelick in [5] extended the results of [3] and obtained
a completeness result for a Hoare-like axiomatic system (see [7]) for a fragment of
ALGOL 60 in which (deterministic) systems of recursive procedures are allowed. Thus
any true asserted statement is provable. (Observe, however, that the axiomatic system
uses an oracle determining the truth of formulas from the underlying assertion
language.) From the proof we can extract all intermediate assertions about atomic
substatements of the original program. Since proofs are finite, we obtain a finite system
of intermediate assertions, thus apparently contradicting the result of [2]. Also [4] and
[6] avoid the necessity of an infinite number of assertions by using an extension of the
inductive assertion method.

The purpose of this paper is to investigate this issue in the relational framework of
[2] and to obtain, within that framework, a unification of the (essence of the) results of
I-2] and of [4], [5] and [6]. The solution of the apparent contradiction lies in the fact that
in [4], [5] and 16] auxiliary variables are used (to store the initial values of variables).
These auxiliary variables have no semantic counterpart in the relational framework of
[2]. Semantically, the use of auxiliary variables corresponds to the use of states which
have an additional coordinate (from a space 7’) inaccessible to a program. We shall call
the domain x of such states an extended state space.

We prove that if one allows intermediate assertions from the extended state space
x , then one can always find a finite system of intermediate assertions. More
precisely, a program is partially correct with respect to given initial and final assertions if
and only if a suitable finite system of assertions from the extended state space can be
found. Thus for the space 7///’ one can take the original state space . Theorem 4.4 of 1-2]
shows that for one could also take the set of all so-called index-triple sequences, so
that these two completeness results differ only in the choice of the extended state space.
Our choice is both more economical and easier to use in the concrete proofs.

* Received by the editors December 27, 1978, and in revised form October 19, 1979. This publication is
a revised form of the Mathematical Centre Report IW 84/77.

5" Faculty of Economics, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam, The Netherlands.
$ Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

665

666 KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

In [2] it is proved that in the case of regular declaration schemes (corresponding
to flow-chart programs) one can always find a finite system of intermediate assertions
taken from the original state space. In more syntactical terms this can be interpreted as a
statement that auxiliary variables are not needed for correctness proofs in the case of
flow-chart programs. They are needed in the general case of arbitrary systems of
(parameterless) procedure declarations.

In the relational framework any subset of the state space can be taken as an
assertion. This is not the case with a more syntactical approach in which assertions are
formulas from an assertion language. These two different approaches lead to different
types of completeness results. Thus one should be cautious in translating results from
one framework into the other because there can exist subsets of the state space which do
not correspond to (are not defined by) any formula from the assertion language. This
problem within the relational framework could be resolved by defining a language over
the state space in which assertions could be expressed. However, a natural question
then arises as to which formulas (subsets) should be accepted as assertions. This
problem has been studied in [1].

2. Preliminaries. As in [2] we shall use binary relations over the state space to
provide an interpretation for systems of mutually recursive procedures. More precisely,
given a set {P1,""", Pn} of procedure symbols, we define a language of "state-
ments" () as follows: let 4 ={L A1, A2," "} be a set of "elementary action"
symbols, ={tl, t2," "} a set of "Boolean expressions." 6e() is then the least set
containing 4 U 3 t_J that is closed under the operations ";" (sequencing) and "LI"
(nondeterministic choice).

By a declaration scheme we mean a set @ {P1 <:::$1,’’’, Pn <:::S,}, where for
1,..., n, Pi, Siff’().
In [2] a theory of partial correctness anal inductive assertions has been worked out

in a relational framework. The meaning of a program is viewed as a binary relation over
the state space, i.e., a set of pairs of initial and final states, whereas an assertion is viewed
as a subset of the state space, i.e., the set of states satisfying the assertion. We recall
some definitions from i-2] which are used below.

Let o//. be the domain of states. Letters R, R 1, denote binary relations over 7/’;
p, q, r subsets of o//.; x, y, z elements of 7/’.

R1; R2 {(x, y): lz[xRlz ^ zR2y]},
p+={(x,x):x6p},

p R {y ::lx[x p ^ xRy]},
/ {(x, y)" yRx},
f denotes the empty set.

Throughout the paper we use the convention from [2] that in any expression
involving programs and assertions built up by using ;, U or _c we suppress the sub-
script +

So, for example, if we write p;R _R; q we actually mean p+;R _R; q+, i.e.,
Vx, y[(x p ^ xRy) y s q], or (informally speaking) that the program R is partially
correct with respect to p and q. We shall need the following results proved in [2].

LEMMA 1.
(i) (R1; R2); R3 R1; (R2; R3) (= R1; R2; R3, from now on),
(ii) R1; (R2 I,.J R3) R1; R2 I,.J R1; R3,
(iii) (R1 tO R2); R3 R1; R3 tO R2; R3,
(iv) po(R1; R2) (poR1)oR2.
If X1, , X,, Y1, , Y, are subsets of o//. x 7/’, then by definition (X1, , X,) _-<

(Y1,’" ’, Y,) iffXi_ Y, for 1,..., n (-_< is a partial ordering).

COMPLETENESS WITH FINITE SYSTEMS 667

Let @ ={PIS,""", Vn Sn} be a declaration scheme. By an interpretation i
into a state space o//. we mean a mapping from oW() into relations over such that:

(a) for each A s, i(A) is a binary relation over ;
(b) i(I)= {(x, x): x };
(c) for each t , i(t) is a subset of V;
(d) for each P , i(P) is a binary relation over 7/’;
(e) i(S; Sz) i(S1); i($2);
(f) i(Sx (_J $2) i($1) [..J i(Sz);
(g) (i(PI),""", i(Pn)) is the -<_-least n-tuple such that

(i(PI),""", i(Pn))-" (i(S1),’’’, i(S)) holds.
The above definition is the usual denotational semantics of recursive program schemes.
Its justification and equivalence with operational semantics is an immediate
consequence of the results proved in [2].

Observe, for example, that if @ ={P(=:tx; t2}, then due to the convention
mentioned above i(P)= i(t)+; i(t2)+.

In the sequel we shall a.lways consider programs with respect to a given declaration
scheme. We shall freely identify statements and their interpretations, hoping that no
confusion will result from this.

3. Extending the state space. We now want to use the assertions from the
extended space 7# 7/’. In order to do this we have to extend (in an obvious way) several
operations from into . Let a, b denote subsets of 7/’ 72 used as assertions and
o-, z elements of used as a second coordinate of the extended state space. Let
R {((x, o-), (y, or))" xRy ^ o" } be the extension of a program R to the space .
The operations and / mentioned above retain their meaning when applied to subsets of
() (T’) and F 7/" respectively, so obviously Lemma 1 holds in the case of
the extended state space V . We shall use, in the sequel "mixed" expressions
involving assertions from 7/" and programs from 7/ 7/’. While doing so we shall
always mean their "extensions" to ()(), which can be obtained by
attaching the subscript / to assertions and the superscript to programs. For example, if
we write RI; a; R2, we actually mean RI a+; R2. The reader should convince himself
that the convention of omitting brackets (as indicated in Lemma 1) does not lead now to
any ambiguities, since (R 1; R2)’ R R2.

Observe that a; R _R; b means that a/; R ___R*; b/, i.e., that

/x, y, o’[((x, o’) a ^ xRy)--> (y, a’) b],

or that the program R is partially correct with respect to a and b.
We shall need the following definition:

a (R) {(x, o’)" :lz[rRr ^ (x, ’) a]}.

In the proofs below we shall use Scott induction to prove inclusions between
relations on V .

Scott induction. Let @ {P S(P1, , P,), ", P, S,(P1, , P,)} be a
declaration scheme. Let l(X,’’’, X) and g(Xa,..., X,) be two expressions built
up from assertions from 7/" V and programs from 7/" and formal (place-holding)
variables X,..., X, using and (A and let the following two conditions be satisfied:

(i) l(f,""", f)-c r(f,""",), and
(ii) for each R a, , R

_
7# ,

if /(R1,""" ,R,)_ $(R, ,R,)
then l(Sx(R, gn), Sn(gx, gn))

r(SI(R, Rn), Sn(RI, Rn)).

668 KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

Then 8’l(P1, ", P,,) 8’r (P1, ", en).
The proof is analogous to the proof of the version formulated in [2].

4. Completeness result. The general context-free declaration scheme is

(1) {ei Si,1 U Si,2 U U Si,Mi}

with M/some integer -> 1, and each Si,],] 1, , M/, of the form

Si,] A(i,], 0); P(i,], 1);... A(i,], Ki.i- 1); P(i,], Ki.i); A(i,], Ki.i),

where A(i,], k) M U Y3, P(i,], k) {P1,. ., Pn}, and Ki.i is an integer ->0 (if Ki.i 0,
then Si.i is simply A (i,], 0)).

In the above declaration scheme each P(i,], k) is some element of {P,..., Pn}.
Define a function h by: h(i,], k) iff P(i,], k) PI.

The general inductive assertion method calls for suitable intermediate assertions
preceding and succeeding each statement in the program. The theorem presented
below states soundness and completeness of a particular version of the method in which
intermediate assertion from the extended state space are used. The theorem shows that
the global correctness property p; P1---P1; q can always be established by finding
intermediate assertions of the special form a i, a (i,], k), b and b (i,], k).

THEOREM. Assume the declaration scheme (1). For any two assertions p, q
_

r,
p; P1 -P; q

iff there exist assertions a i, b
_

(i {1,..., n}) and relations Ria.k (i
{1,’’’, n}, j{1,...,M/} and k {1,..., Ki.i}) such that for all i{1,..., n} and
is{l,... Mi},

a; A(i,], 0)_ A(/,], 0); b

ai; A(i, j, O)_ A(i, j, 0); a(i, j, 1),
(2)

b(i, L k); a(i, L k)c__a(i, L k); a(i, L k + 1),

b(i, j, Ki,i); a(i, L Ki,i)_a(i, L Kia); b i,

if Kia O,

if Ka > O,

and
I(pxp)c__a ,

()
b(?/’xp)c_q xp.

Here by definition a(i, j, k)= ah(i’’k)(Rid,k) and b(i,], k)=bh(i’i’k)(Rik).
Pro@ To make the argument more readable we shall prove the theorem in the

case of the declaration P&A1; P; A2; P; A3 U A4. The proof for the case of the general
context-free declaration scheme is analogous and we leave it to the reader. We thus
prove the following.

Assume the declaration PA1; P; A2; P; A3JA4. For any two assertions p, q
_

p; P _P; q,

iff there exist assertions a, b
_

x Uand relations R1, R2
_
el 7/’such that

a; A1 A1; a (R1),

(4)
b(R); A2 _A2; a(Rz),

b(R2);A3_A3;b,

a A4
_
A4; b,

COMPLETENESS WITH FINITE SYSTEMS 669

and

(5)
I f-l (p x p) a,

b f’l (l/’x p
_
q x p.

If part. We first prove by Scott induction that

(6) a;P_P;b.

Assume that a X
__
X; b for some X c_ o//. x o//., i.e., that

Vx, y, o’[((x, tr) e a ^ xXy) (y, tr) b].

Thus for any relation R,

Vx, y, r, r[o’Rr ^ (x, r) a ^ xXy (y, r) e b],

i.e., according to our notation,

(7) a(R);X_X;b(R).

Now, due to the assumptions, Lemma 1 and (7),

a; (A 1; X; A2; X; A3)= (a;A x); X; A2; X; A3
_
A x; a(R1); X; A2; X; A3_

A; X; b(R1); A2; X; A3 Ax; X; A2; a (g2); X; Aac_A; X; b(R2); A3___
(A1; X; A2; X; A3); b.

Hence, by Lemma 1 and the assumptions,

a; (A1; X; A2; X; A3 k.J A4)
_

(A1; X; A2; X; A3 L.J A4); b.

Since obviously a;fl
_

fl; b, by Scott induction, (6) holds.
We are now ready to prove p; P P; q. Suppose that x p and xPy for some

x, y 6 . We have to show: y 6 q. By the assumptions (x, x) a. By (6), (y, x) b. Since
x p, by the assumptions (y, x) q p, so y 6 q.

Only ifpart. Put a =/, b =/ and let R1 Aa and R2 A1; P; A2. We are to prove
that (4) and (5) hold.

Let x, y, o- be arbitrary elements of
(i) We have to show: a A - A a; a (R x), i.e., (x,

a (R a), which is equivalent to ::l-[erR r ^ y, ’) a]. Suppose (x, tr) a and
xAxy. By the definition of a, tr x, so by the definition of R, trR y. Hence,
since (y, y) a, we get ::lr[trRxr ^ (y, r)6 a by putting r y.

(ii) We have to show: b(R1); A2 _A2; a(R2), i.e., ::lr[O’Rlr ^ (x, ’)b]andxA2y
implies :lra[rR2rl ^ (y, rl) a]. Suppose that for some r, trRl’, (x, r) b and
xA2y. By the definition of R1 and b, crAlr and rPx, so tr(A1; P; A2)y. By the
definition of R2,crR2y, so, since (y, y) a, we get ::i’l[trR2Zl ^ (y, rl) a] by
putting rl y.

(iii) We have to show: b(R2);A3_A3;b, i.e., :lr[trR2r^(x,r)b] and xA3y
implies (y, tr) b. Suppose that for some ’,trR2r,(x, r)b and xA3y. By the
definition of R2 and b, tr(A1; P; A2)r and rPx, so tr(A 1; P; A2; P; A3)y. Thus,
crPy, which means (y, 0-) b.

(iv) We have to show: a A4
_
A4; b, i.e., (x, tr) a and xA4y implies (y, o-) b.

Suppose (x, tr) a and xAay. Then tr x and xPy, i.e., (y, tr) b.
(v) Obviously I f’) (p p)

_
a.

(vi) We have to show" b 71 (//’ p)

q p, i.e., (x, y) b and y e p implies x q.

Suppose (x, y)b and y6p. Then yPx, and since p;P_P; q, we find xq.
This concludes the proof.

670 KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

The above proof is an analogue of the corresponding completeness proofs in [5] and [6].
However, the relational approach sheds some light on the role of the auxiliary variables
used in 1-5] to obtain so-called "most general formulas" and in [6], analogously, to
"freeze" the global variables upon entering a procedure call. It is clear from the above
proof that completeness is obtained by using the meaning of a procedure as an
assertion.

The proof also suggests an alternative, equivalent point of view at the way of
introducing the extended state space. Namely, the same result can be obtained by
proving first partial correctness of the program cr := x; P using assertions from its state
space. The condition I (p x p)_ a is then replaced by the equivalent requirement
p x V; o’:=x___cr:=x; a.

In such a way the extension of the state space is caused by a change in the original
program P. The desired global correctness property is then derived by deleting the
assignment r := x to the "auxiliary variable" r using the corresponding proof rule from
[8]. . app.i|afio. Having obtained a specific form of the completeness result we
shall illustrate its usefulness by the following example.

Let the state space 7/’ be the set of natural numbers A/’. Consider the following
declaration’

(8) P[n <= 100]; In := n +11]; P; PL.J[n > 100]; [n := n- 10],

where, of course, In 100] {x" x =< 100}, [n := n + 11] {(x, y)" y x + 11} and so on.
P is of course McCarthy’s well-known 91 function defined in a relational framework.
We want to prove that

(9) [n =< 100]; P
_
P; [n 91].

Observe that the above declaration is of the form P,(=A;P; A2;P; A3 L.J A4, where

A [n =< 100]; In := n + 11],

A:=L
A3=

A4 [rt > 100]; [n := n 10].

We can now use the theorem to prove (9). The easiest way to proceed is to define the
required relations and functions as in the proof of the theorem, taking for P In <= 100];
[n := 91] Ll[n > 100]; [n := n- 10], and to check that (4) and (5) hold.

Thus we define

a {(x, x)" x W},

b {(x, y)" (x 91 ^ y =< 100) v (x y 10 ^ y > 100)},

R1 {(x, y)" x -<_ 100 ^ y x + 11},

R:=[n <- 100]; [n := n + 11]; (In <- 100]; In := 91] (.J In > 100]; In := n 10])

={(x, y)" (90-<x-<_ 100 ^ y =x +1) v (x <90 ^ y =91)}.

We leave the task of checking that (4) and (5) indeed hold to the reader. Now, by the
theorem, (9) holds.

The above program together with the corresponding assertions can be represented
by the flow-chart (Fig. 1).

COMPLETENESS WITH FINITE SYSTEMS 671

o-<-100^n =o’+11
(=-a(R,))

n _-<100

o-(--- a)

(90--<’-<- 100 ^ n a + 1)
v (o’<90^ n =91)
(=-b(R,)=-a(R2))

n =91 ^o-=<100
(-- b(n2))

-(n =91 ^ o"-< 100) v (n o’- 10 ^ o" > 100)(- b)

--n =91

FIG.

Acknowledgments. We are grateful to Prof. A. Pnueli who refereed the paper and
suggested various improvements, in particular the present, stronger version of the
completeness result. We also thank Prof. J. W. de Bakker for critical comments on an
earlier version.

REFERENCES

[1] K. R. APT, J. A. BERGSTRA AND L. G. L. T. MEERTENS, Recursive assertions are not enoughmor are
they?, Theor. Comput. Sci., 8 (1979), pp. 73-87.

[2] J. W. DE BAKKER AND L. G. L. T. MEERTENS, On the completeness of the inductive assertion method,
J. Comput. System Sci., 11 (1975), pp. 323-357.

[3] S. A. COOK, Soundness and completeness of an axiom system for program verification, this Journal,
7 (1978), pp. 70-90.

[4] J. H. GALLIER, Semantics and correctness of nondeterministic flowchart programs with recursive pro-
cedures, Proc. 5th Coll. Automata, Languages and Programming, Lecture Notes in Computer
Science, No. 62, Springer-Verlag, 1978, pp. 251-267.

[5] G. A. GORELICK, A complete axiomatic system for proving assertions about recursive and nonrecursive
programs, Technical Report No. 75, University of Toronto (1975).

[6] D. HAREL, A. PNUELI AND J. STAVI, Completeness issues for inductive assertions and Hoare’s method,
Technical Report, Tel-Aviv University, 1976.

[7] C. A. R. HOAR, An axiomatic basis forprogramming language constructs, Comm. ACM, 12 (1969), pp.
576-580.

[8] S. OWICKI AND D. GRIES, An axiomatic proof technique for parallel programs I, Acta Informatica,
6 (1976), pp. 319-340.

SIAM J. COMPUT.
Vol. 9, No, 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0002 $01.00/0

A NEW PROOF OF THE LINEARITY OF THE BOYER-MOORE STRING
SEARCHING ALGORITHM*

I.,EO J. GUIBASf AND ANDREW M. ODLYZKO:

Abstract. The Boyer-Moore algorithm searches for all occurrences of a specified string, the pattern, in
another string, the text. We study the combinatorial structure of periodic strings and use these results to derive
a new proof of the linearity of the Boyer-Moore algorithm in the worst case. Our proof reduces the previously
best known bound of 7n to 4n, where n is the length of the text.

Key words. String searching, pattern matching, period, algorithmic analysis

1. Introduction. In this paper we analyze the worst case performance of the
Boyer-Moore string searching algorithm [2]. We work within the paradigm of
algorithmic analysis initiated by Knuth, that is, we develop a mathematical theory
dealing with the behavior of a specific (and practical) algorithm. Other algorithms
whose analysis has resulted in significant mathematical developments are the Union-
Find algorithm [10], QuickSort [9], Double Hashing [3], and others. For a more general
treatment of algorithmic analysis of combinatorial problems see [1], [5], [6].

The Boyer-Moore algorithm is the best currently known algorithm for finding an
(all) occurrence(s) of a pattern (a string) in a text (another string), or deciding that none
exist. We measure the cost of a string searching algorithm by the number of
comparisons performed between characters of the pattern and characters of the text. In
typical cases this algorithm exhibits sublinear performance, i.e., its cost equals only a
fraction of the characters of the text, as evinced by empirical data, as well as theoretical
analysis [2]. In fact, on the average, the algorithm performs better the longer the pattern
gets.

In a worst case analysis, however, the situation is different. We will see in the next
section that between successive attempts to match the pattern against the text, the
Boyer-Moore algorithm completely forgets any information it may have gathered. Thus
compared to its closest competitor, the Knuth-Morris-Pratt (KMP) algorithm [7],
Boyer-Moore stands in a peculiar relationship. While Boyer-Moore is clearly superior
on the average, the simple argument that proves that the cost of KMP is bounded by 2N
in the worst case, where N is the length of the text, no longer works. Since Boyer-Moore
"forgets", a proof of its linearity is nontrivial. It turns out that in order to prove
linearity we must restrict ourselves to the case where the pattern does not appear in the
text (see the discussion in [7]; Galil [11] has recently shown how to modify the
algorithm so as to remove this restriction). For that case, Knuth [7] showed by a
complicated argument that the number of comparisons performed by the algorithm is
never more than 7N. The complexity and terseness of Knuth’s argument, however, has
made his proof difficult to understand. He conjectured that a simpler proof could be
found leading to a better bound.

The main result of this paper is a new proof of the linearity of the Boyer-Moore
algorithm. We have paid close attention to details and to clarity of presentation. We
have also improved the worst case bound from 7N to 4N. In the process we have
developed considerable combinatorial machinery dealing with the occurrence of
periods in strings, much of it of interest in its own right. Undoubtedly the same or similar

* Received by the editors November 30, 1977, and in revised form September 24, 1979.
5- Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304.
Bell Telephone Laboratories, Murray Hill, New Jersey 07974.

672

LINEARITY OF THE BOYER-MOORE SEARCHING ALGORITHM 673

machinery will come in handy in the analysis of other questions concerning pattern
matching. We consider it probable that the true worst case bound for the algorithm is
2N.

2. The Boyer-Moore string searching algorithm. The string searching problem is
the following. Given an array text[l:N] representing the input text, and an array
pattern[l:M] representing the pattern being sought, find the first (e.g., leftmost)
occurrence of the pattern in the text, if one exists.

The Boyer-Moore algorithm solves this problem by repeatedly positioning the
pattern over the text and attempting to match it. For each positioning that arises, the
algorithm starts matching the pattern against the text from the right end of the pattern.
If no mismatch occurs, then the pattern has been found. Otherwise the algorithm
computes a shift, that is, an amount by which the pattern will be moved to the right
before a new match attempt is undertaken.

In the program below we keep two pointers, one (J) to the current character of the
pattern being examined, and the other (K) to the corresponding character of the text.
Thus at that instant characters J + 1 throughM of the pattern are aligned with positions
K + 1 through K-J +M of the text.

begin "Boyer-Moore"
KM;
while K _-< N do
begin comment position pattern pointer at right end;
JM;
while J > 0 and text[K] pattern [J] do

begin comment move left as long as they match;
J-J-1; K-K-1;
end;

if J 0 then
begin
match_found_at (K);
done "Boyer-Moore"
end

else comment mismatch! now shift and repeat;
K K +M J + s (text[K], J);

end;
match_not_found;
end "Boyer-Moore".

The crux of the algorithm lies in how the shift s(text[K], J) is computed. In order to
come as close as possible to maximizing the shift s, the algorithm uses two heuristics.
The match heuristic is based on the idea that when the pattern is moved right it has to (1)
match over all the characters previously matched, and (2) bring a different character
over the character of the text that caused the mismatch. Thus the match shift is defined
by

s.match (J) min{T T _-> 1 and (T _-> J or pattern [J T] pattern [J])

and ((T>=I or pattern[l- T]= pattern[l]) for J < I <-M)}.

Note that s.match is only a function of the pattern and J, the location of the current
mismatch. Secondly, the occurrence heuristic uses the fact that we must shift far enough

674 LEO J. GUIBAS AND ANDREW M. ODLYZKO

to the right to bring over CH text[K] (the character that caused the mismatch), the
first character of the pattern that will match it. Thus the occurrence shift is defined by

s.occ(CH) min {T-M +JIT M or (0 <- T <M and pattern[M- T] CH)}.

Note that s.occ depends only on the pattern and the mismatching character text[K].
Thus both shifts can be obtained from precomputed tables, based solely on the pattern
and the alphabet used. The match heuristic requires a table of length equal to the
pattern length, while the occurrence heuristic requires a table of size equal to the
alphabet size. Given these two shifts, the Boyer-Moore algorithm chooses the largest
one. Thus s is defined by

s(text[K] J) max {s.match (J), s.occ(text[K])}.

(Note that s.occ can be negative, but s.match is always at least 1.)
The key difference between the Boyer-Moore and KMP algorithms is that the

former matches the pattern in the reverse direction from the direction in which the
pattern is shifted. This typically allows larger shifts, as the information derived from a
partial match is further to the right. Otherwise the definition of s.match is exactly
analogous to that in KMP. The occurrence heuristic is most valuable when the alphabet
size is large. In fact there is a subtle interplay between the two heuristics that
considerably complicates the analysis of the algorithm. Although the choice of the
maximum of the two shifts is locally optimal, there are examples in which it can cause
worse performance in the long run than when consistently, using one of the two
heuristics alone [7].

In 3 we introduce most of our notation and prove a few basic lemmas about the
occurrence of periods in strings. In 4 we develop some fundamental properties of the
algorithm. 5 contains the key idea of the proof, that is the notion of making the shift of
some later match "responsible" for the current one. 6 discusses consequences of our
definition of responsibility, and finally 7 completes the accounting for the cost of the
algorithm.

3. Matches and periods. The study of the Boyer-Moore algorithm requires that we
devote some attention to the occurrence of periods in strings. Given a string x, we will
say that suffix y of x is a period of x, if x 37(y)k, where 37 is a suffix of y. Equivalently,
suffix y is a period of x, if a second copy of x placed under the original x, but shifted left
lyl places, matches the original. (We have chosen to align periods with the right end of x,
since the algorithm matches the pattern from the right; our strings begin to the right and
end to the left). For instance, "aaba" is a period of "baaabaaaba." For convenience of
notation, in what follows we will use small letters x, y, m, r, to stand either for strings or
for their lengths, as the context may require. If period (string) p is an exact multiple of
period (string) q, then q will be called a refinement of p.

Given a string x, we will denote by p (x) the shortest period of x, also called the basic
period of x. The combinatorial structure of the periods of strings has a rich theory, which
is investigated in detail in [4]. A corollary of this theory, that has been independently
known for quite some time [7], [8], is the following useful lemma.

LEMMA 3.1 (GCD Rule). Ifp and q are periods of x, and p + q <=x + gcd(p, q), then
gcd(p, q) is also a period of x. 71

An easy consequence of the GCD Rule is the following result.
LEMMA 3.2 (Common Refinement). Ifx yz, where in addition y is a suffix ofx and

z is a prefix of x, then there exists a smallest common refinement a ofx, y, z, such that for
some nonnegative integers i, j we have y a i, z a i, x a i+i. 71

LINEARITY OF THE BOYER-MOORE SEARCHING ALGORITHM 675

Proof. Both z and y are periods of x. Since z + y x _-< x + gcd(z, y), it follows from
the GCD rule that a gcd(z, y) is the desired refinement of x, y, z. 71

We now define some terminology relevant to the matches that arise during the
algorithm. The algorithm proceeds in stages. At any stage the pattern is matched from
the right until a mismatch is encountered. Let m denote the suffix of the pattern
examined during a given stage. Such an m will be called a match. We will really think of
the match m as an event. Associated with m are various attributes, such as the suffix m
(by abuse of language), and others discussed below. The leftmost character of m caused
the mismatch with the text. We use m’ to denote m with the leftmost character
removed. By the right half of m we will mean the suffix consisting of the rightmost
[m/2] characters of m. At any stage the algorithm performs a shift, denoted from now
on by s(m), as described in the previous section. In writing s(m) we indicate that the
shift is another attribute of the event m. In a similar vein we will write s.match (m) and
s.occ(m).

DEFINITION 3.1 (Major Match). A match m will be called a major match if
(1) p(m)>p(m’) (e.g, the mismatch of tn destroys the basic period of m’),

and
(2) m>2p(m’).
A match which is not major will be called minor. The following lemma asserts that a

major match has a long basic period.
LEMMA 3.3 (Two Periods). If m is a major match, then
(1) p(m) > 1/2m > p(m’),
(2) p(m)+p(m’)>-m.
Proof. Note that p(m) is also a period of m’. Since the mismatch of m destroys the

period of m’, we cannot have p(m’)lp(m). Therefore by the GCD rule

p(m) +p(m’) > m 1 + gcd(p(m), p(m’)) >- m.

Now p(m) > p(m’) implies

,).p(m) > gm > p(m [

In thinking of m as an event, we can also let it denote a consecutive set of positions
over the text, that is the set of positions where the match m occurred during the
execution of the algorithm. Similarly, p(m) will also denote the set of positions over the
text occupied by the rightmost occurrence of the period of match m. And s(m) will
denote the set of s(m) positions over the text, immediately to the right of m. For
example, in the next section we make the following assertion for matches m, r (r
occurring later than m): "p(r’) does not end under s(m)." The detailed meaning of this
is "the leftmost character of the rightmost occurrence of the basic period of r’, as it
occurs in r’, cannot be in any of the s(m) positions immediately to the right of match m."

We will use pictures to illustrate some of the situations that can arise. In these
pictures a heavy black line will always indicate a match. Certain characters will be used
with special meaning: "]" will denote the beginning of a match m; "(" will denote the
leftmost character of p(m’), and "l" the midpoint of m; "X" will denote the mismatch of
m; and ")" will denote the rightmost position of s(m), i.e., the first character of the
successor match to m. Fig. $3 illustrates how we imagine the execution of the algorithm.
Note that a match r, occurring later than match m, is drawn below m in the picture.
Language influenced by this graphical representation was implicit in the use of the word
"under," in the phrase discussed in the above paragraph. At the very bottom of the
picture we imagine the text, against which the pattern is matched.

676 LEO J. GUIBAS AND ANDREW M. ODLYZKO

match

X mismatch

x]
pattern

direction of shift

/"

direction of match

x,

x]

,,X r

text

FIG. $3. A window qver the text depicting the history o]’ the algorithm.

4. Properties of the algorithm. The following two lemmas are trivial consequences
of the definitions of the shifts considered by Boyer-Moore. They are listed here mostly
for reference.

LEMMA 4.1 (Shift _>-Period). For any match m we have

s(m)>=s.match(m)>=p(m). 71

LZMMA 4.2 (Match Successor). Let r denote the successor match to m. I]’r was chosen
via the match heuristic, then r does not mismatch under m’. V1 (See Fig. L4.2)

’X r

FIG. L4.2. The above situation cannot arise.

Lemmas 4.3 and 4.4 are more interesting. The first one indicates a significant
constraint on matches that completely overlap.

LZMMA 4.3 (Period under Shift). If match r occurs later than match m during the
execution of the algorithm, and furthermore r goes strictly further left than m, then p(r’)
does not end under s(m). [3 (See Fig. L4.3)

shift of m

period of r’
,]

FIG. L4.3. The above situation cannot arise.

LINEARITY OF THE BOYER-MOORE SEARCHING ALGORITHM 677

Pro@ After the mismatch at m, consider the shift that would position the rightmost
character of the pattern immediately to the left of p(r’). Call this shift t. We will obtain a
contradiction by showing that t, t<s(m), is a shift the algorithm could not have
rejected. A shift of satisfies the match heuristic since p(r’) is a period of r’, a suffix of the
pattern, which persists under m. Furthermore, since r goes strictly further left than m,
the character brought under the mismatch of rn by shift matches the text, and thus it is
different from the mismatching character of m. Therefore shift is also acceptable to the
occurrence heuristic. This completes the argument. 1

If we compelled the string searching algorithm to always use the match heuristic,
then a simplified version of the argument of this paper can be used to prove the same 4N
worst case bound. The presence of the occurrence heuristic complicates matters and
gives rise to the "lock up" phenomenon discussed in the next section. Lemma 4.4 is our
main tool in dealing with the complications introduced by the occurrence heuristic.

LEMMA 4.4 (S.OCC > s.match). Ifforsome match m, s.occ (m > s.match (m), then the
character in the text that causes m to mismatch does not appear anywhere in m.

The proof of the above lemma under our definition of the occurrence heuristic is
entirely trivial. Note that the assertion of the lemma remains true under a strengthened
form of the occurrence heuristic, in which we demand a shift that will bring over the
mismatching text character the first matching character of the pattern to the l.eft of the
current mismatch.

Pro@ Call Z the mismatching character of the text. It suffices to show that Z does
not appear in p(m). Consider {the leftmost p(m) characters of m}. Then is a cyclic
shift of p(m) and the leftmost character of is notZ. Since s.match(m) >-p(m), a copy of
the rightmost p(m)- 1 characters of must occur in the pattern, immediately to the left
of m. If Z was among them, then s.match(m) > s.occ(m), a contradiction. (An appro-
priate interpretation of this argument must be given when the above copy of has
partially fallen off the end of the pattern.)

5. The definition of responsibility. Note that the sum of all shifts made by the
algorithm is bounded by the length of the text. Thus if we could prove that the length of
each match is bounded by some constant multiple of the corresponding shift, we would
have proved the linearity of the algorithm. Unfortunately it is easy to see that such a
constant does not exist. Some form of global accounting is essential for a linearity proof.
Any local argument must face the difficulty that individual characters of the text may be
matched as many as l)(log M) times [7].

The idea of our proof is to let future shifts pay for the current match. The following
two definitions identify those future matches r, whose shift will be eligible to bear the
cost of the current match m.

DEFINITION 5.1 (Cover up). Match r, occurring later than match m, is said to cover
m, if r goes strictly further to the left than m. [3 (See Fig. D5.1)

FIG. D5.1. Cover up.

DEFINITION 5.2 (Lock up). Match r, occurring later than match m, is said to lock
with m, if the following four conditions hold"

(1) r does not extend to the left of m,

678 LEO J. GUIBAS AND ANDREW M. ODLYZKO

(2) m extends over the right half of r, and there exists a smallest refinement period
p of s.match (m) such that

(3) r covers p, and
(4) the part of r to the right of m is composed of an integral number of repetitions

of p. [3 (See Fig. D5.2)

m

x-__ -p-- _e_]

FIG. D5.2. Lock up.

[Observe that requirements (1) and (2) imply that s.match(m)<-m.]
Cover up and lock up are mutually exclusive. Part of the cost of a match m will be

borne by its own shift s(m), and part will be charged to the shift of some future match r.
The details of how this is to be done are given in the two definitions below.

DEFINITION 5.3 (Charge). If m is a match, the charge c(m) is defined to be the
rightmost two occurrences of p(m’) in m if m is a major match, and all of m otherwise.
We write d(m) for what is left after c(m) is taken out of m. Thus c(m)+d(m)= m. 71

DEFINITION 5.4 (Allocation of Responsibility). The cost of a match m will be borne
partially by the shift of m itself, and partially by the shift of some future match r. The
match r is defined to be the first match following m which either covers m or locks with
m. If no such r exists, then we will say that m goes on welfare. (We can usefully think of
welfare as referring to a fictitious match at the very end of the algorithm, whose shift is
the entire text).

We will say that m is charged to, or assigned to match r defined above, or that r is
responsible]’or m, and denote this relation by m -> r. The cost of m will then be allocated
as follows: d(m) will be borne by s(m), and c(m) will be borne by s(r).

We must next prove that the various shifts are sufficiently long to pay for the
portions of the various matches charged to them.

6. Analysis of responsibility. In this section we gather together a set of useful
lemmas regarding the notion of responsibility introduced in the previous section. Using
these lemmas, a complete accounting for the performance of the algorithm is presented
in the following section.

LEMMA 6.1 (First Responsible via Cover up). If, among all matches that have been
charged to r via cover up, m is the earliest one (in the history of the algorithm), then either
p(r’) covers the right half of m, or m is a major match and p(r’) covers p(m’) (See
Fig. L6.1)

midpoint

r period of r’

m

period of r’ "i

FIG. L6.1. First responsible via cover up.

LINEARITY OF THE BOYER-MOORE SEARCHING ALGORITHM 679

Proof. Suppose that p(r’) does not cover the right half of m. Let x denote the
portion of m covered by p(r’). Then we have x < m/2. Since r extends further left than
m and p(r’) is a period of r’, it follows that x is a period of m’. Thus we have
2p(m’)<=2x <m. Further, the leftmost character of m which mismatches must
obviously destroy period p(m’) and thus p(m)>p(m’) and m is major. Finally p(r’)
obviously covers p(m’). [-1

The next lemma is a very important one. It states that matches charged to the same
match cannot overlap too much.

LEMMA 6.2. (Right Halves Disjoint). If m and are two matches such that (1)
occurs alter m and, (2) m is charged to a match after t, then the right halves ofm and are
disjoint. (See Fig. L6.2)

m

x

FIG. L6.2. The above situation cannot arise.

Pro@ Suppose that m overlaps the right half of t. We will assume also that match
does not cover up match m. From this we will conclude that m locks up with t, thus
obtaining a contradiction. Requirement (2) of the lock up definition is satisfied by
assumption. Since we assume no cover up, requirement (1) is also met. Let q
s.match (m). Let u denote the shift required to go from m to t. Since m overlaps the right
half of t, we must have

l<=q<=u<m.

As a portion u of is to the right of m, must extend by at least q under m.

Recall that q is a period of m and, by the definition of the match heuristic, q persists
through suffix v of the pattern which is either the entire pattern, or satisfies v
m + q 1. We can easily check that in either case we have v _-> u + q. It follows that if we
start at the right end of moving left, then q will persist at least through the first q
characters of under m. But the rightmost q characters of m form q itself so, by the
transitivity of matching, the common refinement lemma applies. Thus there exists a
smallest refinement period p which exactly divides u. This is the period we need for the
lock up definition. Clearly covers the rightmost occurrence of p in m, and the part of
to the right of m consists of an integral number of repetitions of p.

As the reader might have expected from the definition in the previous section, a
lock up situation is very highly constrained. The following two lemmas shed further light
on how it can arise.

LEMMA 6.3 (Single Lock up). Given a match r, at most one match m can be charged
to it via lock up. If m was so charged to r, then m must be the earliest match charged to r
during the execution of the algorithm. (See Fig. L6.3)

FIG. L6.3. At most one match charged via lock up.

680 LEO J. GUIBAS AND ANDREW M. ODLYZKO

Proof. Assume we have at least one match assigned to r via lock up, else the lemma
is vacuously true. Let be the earliest match assigned to r via lock up. It is clear that no
match occurring earlier than can be assigned to r via cover up. This is so since such a
match is also covered by l, and occurs before r. Now suppose there was a second match
assigned to r via lock up. Let p be the period of referred to in the lock up definition.

Let u be the part of r to the right of I.
Since r covers the rightmost p in l, and locks up with r, it follows that => p.

Moreover, we have r-> 2p, and u is composed of an integral number of p’s. Since p is
minimal, it follows from the common refinement lemma that must start lined up with
one of the occurrences of p in u.

Note that
(1) does not extend to the left of l, or else would have been assigned to via

cover up;
(2) the right half of extends further left than that of r (if the endpoints on an

interval are moved left, the midpoint is too) and so extends over the right half
of t;

(3) covers the rightmost occurrence of p in l, since extends to the left of r; and
(4) the part of to the left of is composed of an integral number of repetitions of p.

Thus locks up with t, a contradiction.
This proves that among all matches assigned to r none can precede l, and those

following were assigned via cover up.
LEMMA 6.4 (Lock up Analysis). Suppose m r via lock up. Then
(1) r >= m + p, with p as in the lock up definition,
(2) r is a mafor match, and
(3) either r is the successor of m, or s(r)>= r. [(See Fig. L6.4)

m

FIG. L6.4. Lock up analysis; not successor of m.

Proof. Period p of rn persists for at least p 1 characters to the left of m, or else the
pattern matches the text at r, a contradiction. It follows that r => m +p and (1) is proved.

Note that p p(r’) since by the lock up definition r’. _>- 2p, and p cannot be refined.
Consider the successor match n of m. If s.occ(m)<=s.match(m), then m locks with n
and therefore we must have r n. By the definition of the match heuristic we then
conclude that r’ has period p, which is destroyed at the leftmost character of r. Thus
p(r) > p p(r’). Furthermore, r > r’=> 2p(r’), and so r is a major match.

Otherwise we must have s.occ(m) > s.match(m), and therefore a new character Z
was brought by s(m) under the mismatch of m. By Lemma 4.4 we know that Z does not
appear in p (or m). We claim that r mismatches under m’. If r n this follows. (If n
mismatches where m does, then we had s.occ(m)= s.match (m).) If r n, the Z was
shifted further right by the time we reached r, and r must mismatch upon or before
reaching Z. Thus it again follows that the mismatch of r destroys the period p of r’, and
so p(r) > p(r’). As above r > 2p 2p(r’) and r is major. This proves (2).

Assume now that r n. Note that since r is major,

p(r)+p>=r>=m+p,

LINEARITY OF THE BOYER-MOORE SEARCHING ALGORITHM 681

or

s(r)>-p(r)>=m.

Thus the shift of r will bring the Z discussed above to the right of m. But Z does not
appear in p (and therefore r’). The match heuristic must therefore recommend a shift
long enough to move the Z completely past the right end of r. The relation s(r)>= r
follows.

7. The final accounting. We are now ready to prove that each shift made by the
algorithm can pay for the matches that have been charged to it. Lemma 7.1 below is an
immediate consequence of Lemmas 4.3, 6.1, and 6.2. It states that for a match m,
twice the period of m’ can account for all matches charged to m via cover up.

LEMMA 7.1. (Long Period). Let K(m) denote the set of matches charged to m via
cover up. Then we have

E c(t)<=2p(m’). I-1
tK(m)

Proof. Let be the first match assigned to m via cover up. From Lemma 4.3 we
know that p(m’) comes at least as far left as the rightmost character of t. If p(m’) covers
the right half of t, then, since then right halves of all matches assigned to m are disjoint
by Lemma 6.2, the desired conclusion follows.

If, however, p(m’) does not cover the right half of t, then by Lemma 6.1, is a major
match and p(m’) covers p(t). Thus c(t) 2p(t) and the conclusion follows as above. 1

Using this result and Lemmas 6.3 and 6.4 dealing with lock up, we obtain the
following bounds.

THEOREM 7.1 (Detailed Accounting). LetN denote the length of the text. Then for
every match m we have

E c(t)<-2s(m)-d(m),

while for those matches on welfare we have

E c(t) <-2N. [
twelfare

Proof. Let be the first match assigned to m. If was assigned via cover up, then by
Lemma 6.3, all matches assigned to m were done so via cover up. If m is minor, then
d(m) 0, and the conclusion of the theorem follows from Lemma 7.1 and the fact that
s(m)>=p(m)>=p(m’). If m is major, however, then d(m) m -2p(m’). Further p(m)+
p(m’) >= m by Lemma 3.3, and so

2s(m)-d(m)>-2p(m)-m +2p(m’)>-_m -> 2p(m’),

and again the conclusion follows from Theorem 7.1.
Assume now that was assigned to m via lock up. Let p be the period of the lock up

definition. From Lemma 6.4 we know that m _-> l, and m is major. Therefore d(m)=
m- 2p(m’)= m- 2p. If m is the successor of l, then

d(m) + m 2p + <- 2(m -p) <= 2p(m) =< 2s (m),

and the conclusion is proved.
Suppose next that m is not the successor of I. We know that all other matches

besides were assigned to m via cover up and, by Lemma 7.1, their charges does not

682 LEO J. GUIBAS AND ANDREW M. ODLYZKO

exceed 2p(m’) 2p. As above

d(m)+l+2p=m+l<=2m.

But since m is not the successor of l, from Lemma 6.4 we conclude that s(m) >= m, and
we are done.

To complete the proof we must consider matches on welfare. Lemma 6.2 applies to
these, and therefore their right halves are disjoint. From this the second conclusion of
the theorem follows. q

We move d(m) to the left hand side in the inequality of Theorem 7.1, then sum
over all matches m, including those on welfare. For each match m, the left hand side will
contain c(m) and d(m) exactly once. On the right hand side we will have twice the sum
of all shifts made by the algorithm, plus 2N. Thus:

THEOREM 7.2 (Boyer-Moore Linearity). The total numbero]character comparisons
made during an unsuccess]ul search by the Boyer-Moore algorithm over a text of length N
is bounded by 4N. Formally,

m<=4N. [-]
match

The analysis of the case where there are $ occurrences of the pattern in the text is
straightforward [7]. We end by noting that the above argument remains valid for a
number of suggested improvements to the algorithm [2]. In one improvement s.occ is
modified to stand for the shift necessary to bring over the mismatching text character a
matching pattern character which is to the le]t o] the current mismatch (as already
discussed in Section 4). In another the two heuristics are merged into one; that is we
shift so that all previously matched characters match again, and the new character over
the mismatch position does match. Both of these approaches require precomputed
tables of size equal to the product of the length of the pattern and the alphabet size.

REFERENCES

[1] ALFRED V. AHO, JOHN E. HOPCROFT AND JEFFREY,.D. ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] RO3ERT S. BOYER AND J. STR.OTHER MOOR.E, A fast string searching algorithm, Comm. ACM, 20
(1977), pp. 762-772.

[3] LEO J. GuI3As, The analysis of hashing algorithms, Xerox PARC Technical Report, CSL-76-3, July
1976,

[4] LEO J. GUIBAS AND ANDREW M. ODLYZKO, The occurrence of periods in strings, J. Combinatorial
Theor., Series A, to appear.

[5] DONALD E. KNUTH, Fundamental Algorithms, The Art of Computer Programming, Vol. 1, Addison-
Wesley, Reading, Mass., 1968; 2nd edition 1973.

[6], Sorting and Searching, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading,
Mass., 1972.

[7] DONALD E. KNUTH, JAMES H. MORRIS, JR.. AND VAUGHN B. PRATT, Fast pattern matching in
strings, this Journal, 6 (1977), pp. 323-350.

[8] R. C. LYNDON AND M. P. SCHUTZENBERGER, The equation at= bce in a free group, Michigan
Math. J., 9 (1962), pp. 289-298.

[9] ROBERT SEDGEWICK, Ouicksort, Stanford University, Computer Science Ph.D. Thesis, May 1975;
also report STAN-CS-75-492.

[10] ROBERT E. TARJAN, Efficiency of a good but not linear disfoint set union algorithm, J. Assoc. Comput.
Mach., 22 (1975), pp. 215-225.

[11] ZvI GALIL, On improving the worst case running time of the Boyer-Moore string matching algorithm,
unpublished manuscript, Computer Scienee Division, Tel-Aviv University, 1978.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0003 $01.00/0

COMPATIBLE ORDERINGS ON THE
METRIC THEORY OF TREES*

STEPHEN L. BLOOM AND RALPH TINDELL

Abstract. In many studies of computation which make use of rooted labeled trees a partial ordering is
usually imposed on the trees in the following way. A particular label, say +/- o, is distinguished and identified
with the atomic tree whose only vertex is a leaf labeled +/- 0. A tree f is then defined to be less than a tree g if g
can be obtained from f by attaching some new trees to leaves of f labeled +/- o.

This paper answers the following questions. What is the significance of the tree +/- o in this ordering? Can
other nonatomic and perhaps infinite trees +/- be used to define a partial ordering on the trees in the same way?
If so, what if anything distinguishes the partial ordering defined via the atomic tree _1_o?

Key words, partial orderings on trees, ordered and metric algebraic theories

1. Introduction. Rooted trees, both finite and infinite, have been used frequently
in studies of the theory of computation (for example, see [1], [2], [6], [7], [10], 121, [13],
[14]). In the trees described below each vertex has a finite outdegree, and each vertex of
outdegree k > 0 is labeled by an element of a set Fk; (The leaves of the tree are labeled
either by positive integers or by elements of Fo.) The elements of Fk are sometimes
thought of as names of either operations with k possible outcomes or functions of k
arguments. We will call the collection of these trees F Tr. A partial ordering is usually
imposed on F Tr in the following way. A particular element of Fo, say "+/-o," is
distinguished and identified with the atomic tree consisting of only a root labeled +/-o.
Then a tree f is defined to be less than the tree g, in symbols f _Xo g, if g can be obtained
from f by attaching some new trees to leaves of f labeled +/-o. (Usually, +/-o is read
"undefined" and f _+/-o g is read: "f is less defined than g.") Thus +/-o is the least tree in
this ordering.

The following questions, which arose while one of the authors was working on [5],
led to the present paper. What is the significance of the tree _1_ o in this partial ordering?
Can other nonatomic and perhaps infinite trees +/- be used to define a partial ordering__

on the trees in the same way? If so, what if anything distinguishes the partial ordering
defined via the atomic tree +/-o?

These questions and others are answered below. It is shown that the trees +/- which
can be used to define a partial ordering having +/- as least element are precisely the
"homogeneous" trees. (A tree f is homogeneous if for each vertex v of f, the tree of
descendants of v is isomorphic to f. Thus a finite homogeneous tree has only one vertex,
and in any infinite homogeneous tree, all vertices have the same label.) This fact has
some significance in view of the main result of [5], discussed in 5.

Furthermore, we will compare "one aspect of the partial-order structure on the trees
with the complete metric space structure on F Tr ([3], [5], [13-1, 16]). It is shown that for
each partial ordering _+/- obtained from a homogeneous tree +/-, any increasing o-chain
is also a Cauchy sequence. The limit of the Cauchy sequence is the least upper bound of
the o-chain, so that all of the orderings are "o-complete."

* Received by the editors Maroh 2, 1979, and in revised form September 17, 1979.

" Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, New Jersey
07030. The research of this author was partially supported by the National Science Foundation under grant
MCS 78-00882.

t Department of Pure and Applied Mathematics, Stevens Instit.ute of Technology, Hoboken, New Jersey
07030.

683

684 STEPHEN L. BLOOM AND RALPH TINDELL

An operation of composition is imposed on the trees in F Tr turning this structure
into an "algebraic theory" ([11], [8]). It is shown that composition preserves least upper
bounds of w-chains in each of the partial orderings _+/-, so that the theory (F Tr, m_+/-) is, in
the terminology of [1], an o-continuous theory.

(Although some facts about algebraic theories are proved below, the reader need
not be familiar with this notion. An attempt will be made to keep the paper self-
contained.)

Lastly, if 2 and 2’ are homogeneous trees whose vertices have different out-
degrees, then the structures (F Tr, _c+/-) and (F Tr, +/-,) are not isomorphic. Thus it
follows from 1 that the property which distinguishes the ordering ____Co is that only with
this ordering is F Tr "freely generated" in the class of o)-continuous theories.

Here is a short summary of the remaining sections. In 2, we identify the F-trees as
an algebraic theory, and show how these trees form a complete metric space. In 3, we
discuss partial orderings on the trees which are compatible with the algebraic theory
operations. We prove that if _1_ is least in some partial ordering compatible with
composition (as above) then _1_ is homogeneous, and conversely, for any homogeneous
tree _1_ one may define a partial ordering (by substitution) which is compatible with the
theory operations and in which +/- is least. In 4, we prove that the orderings __+/- are
o)-complete and o)-continuous, and identify least upper bounds as metric limits. In the
last section, we briefly review these facts in light of the main result of [5].

2. F Tr is a metric algebraic theory. We will first define precisely the notion of a
"F-tree 1--> p." Here, F is the disjoint union of the sets Fk, k => 0, and F is assumed
disjoint from [w], the set of positive integers. For a nonnegative integer p, [p] denotes
the set {1, 2,..., p}; [0] is the empty set. Lastly, [w]* is the set of all words on

DEFINITION 2.1 (See [1], [2], 10]). A F-tree f: 1 - p is a partial function f:
F U [p] such that:

(2.2) (i) the domain of f is a nonempty, prefix-closed subset of [to]* (so is
defined at least on the empty word A);

(ii) for u [o9]*, [to], if ufFk and k >0, then uif is defined iff [k];
(iii) if ufFoU[p] then uif is undefined for all [o].
The function f of Definition 2.1 "represents" in an obvious way the F-tree whose

vertices are those words in [o9]* in domain of f; if u is in the domain of f, i.e., u is a vertex
of the tree, then the label of u is the element uf e F U [p]. The "leaves" of f, i.e., those
vertices with no successors, are those words whose labels are in Fo U [p].

From now on, we will let v(f) denote the domain of the F-tree f.
We let F Tr,o denote the collection of all F-trees 1 - p, and for n _-> 0, let F Tr, be

the set of all n-tuples (f f,) with fi in Tr,. In particular when n 0, there is a
unique element 0p in F Tro,o. We will sometimes say "f: n - p is a F-tree" instead of
f F Tr,,p.

The integers in [p] are used to define the operation of composition.
DEFINITIO 2.3. Suppose f: 1 p and g (g, , g,): p q are F-trees. The

composition f. g:l q is the tree defined as follows. For any u, v, w [o]*,
(i) if u e v(f) and uf F, then u(f. g)= uf;

(ii) if uf=ie[p], then u(f. g) =,g;
(iii) if u wv, where wf= i, then u(f g)= vg;
(iv) otherwise, u (f. g) is undefined.

Note that here case (ii) is a special case of case (iii). Thus the domain of f. g, v(f. g), is
the union of v(f) with

p

U {wv: wf= and v e v(gi)}.
i=1

COMPATIBLE ORDERING ON THE METRIC THEORY OF TREES 685

DEFINITION 2.4. If f (fl, fn):n - p, and g :p - q are F-trees, then f. g is
defined to be the tree (fl" g,""", fn g). Each F-tree fi g was defined in 2.3.

We single out certain trees for special mention.
For each 3’ I’k, k 0, there is an atomic F-tree 3’: 1 - k defined only on the words

{h, 1, 2,..., k} as follows:
h’y= 3’,

i=i, i[k].

When k 0, " 1 0 is defined only on the empty word.
For each n > 0 and each In], the "distinguished" F-tree

(2.5) i: 1 n

is defined only on the empty word, and satisfies h i. (If we were fussy, we would add a
subscript to to indicate the target n.)

Let I,: n n be the F-tree (1, 2,..., n).
The reader may verify that the following equations hold in F Tr.

(i) f.(g.h)=(f.g).h, foranyf:np,g:pq, h:qr;
(ii) f. Io=I,.f=f, foranyf:np;(2.6) (iii) i. (f, ., f,) f, for any f,. ., f," 1 p, any e In];
(iv) (1.f, 2.f,...,n.f)=f, for anyf:np.

By virtue of satisfying (2.6), F Tr is an "algebraic theory." (Because only one minor
result will be proved here about certain (ordered) algebraic theories, we relegate the
definition of this concept to the appendix.)

Below we will make use of the fact that each set F Tr,.p is a complete metric space
(observed in [3], [5] and independently in [13] add [16]). Before defining the metric, we
make a useful definition.

DEFINITION 2.7. Let f, g be F-trees 1 p. A word u e [w]* is f-g critical if uf ug,
but for every proper prefix w of u, wf wg. (Here, uf ug if either both uf and ug are
defined and unequal, or u is in the domain of only one of the functions.)

Of course there are no f-g critical words when f g. Whenf g, we let p (f, g) be the
length [u[of a shortest f-g critical word u.

DEFINITION 2.8. Suppose f and g are F-trees 1 p.

d(f,g)={O ill=g;
2-(r’g otherwise.

If f (fl," , fn), g (gl," , g,) are F-trees n p, we define

d(f, g) max {d(fi, gi):i In]}.

PROPOSITION 2.9 [5]. For each n, p >- O, thefunction d ofDefinition 2.8 is a complete
metric on the sets FTr,,p. Furthermore,

d(f gl, f g2) Nd(gl, g2),

and

d (fl" g, rE" g) <-- d (fl, rE),

whenever the compositions f gi and fi g, 1, 2, are defined.
Other examples of algebraic theories T connected with the theory of computation

whose "horn sets" T,,p are complete metric spaces are discussed in [3] and [4].

686 STEPHEN L. BLOOM AND RALPH TINDELL

Note that the sequence of trees

in F Trl.p converges to a tree f iff for any integer m all except a finite number of the trees

fi agree with f on all words in [w]* of length _-< m.
In fact a slightly stronger assertion is true. If we denote the "tree of descendants of

the vertex u in f" by D,f, then D,f is the tree defined by the equation

wD= (uw), for all w [co]*.

In this notation, if the sequence of trees fl, f2 , converges to the tree f, then for any
vertex u in v(f), not only is u in v(f,), for all sufficiently large n, but in fact

(2.10) D.f lira D.f..

This fact will be used in 4.

3. Compatible orderings on I’ Tr. We begin with a definition.
DEFINITION 3.1. A compatible partial ordering on FTr is a family of partial

orderings
_
on the sets F Tr..p such that

(i) if fl
_

f2 in F Tr.. and ga
_

g2 in F Try,, then f ga _= re" g2 in F Tr..,
(ii) iffi

_
gi in F Tr.p, for each a[n], then (fl,... ,f.)

_
(g,..., g.) in F Tr...

The definition of a compatible partial ordering on an arbitrary algebraic theory T is
obtained by replacing F Tr by T everywhere in Definition 3.1.

We will be interested in compatible partial orderings
_
on F Tr such that each set

F Tr., has a _-least element. Because it is no more work to do so, we will prove a fact
about any such compatible partial ordering on an arbitrary algebraic theory.

Recall that a morphism f:AB in afiy category is an epimorphism if g h

whenever A B C A B C. One may easily show that a F-tree f: 1 - n is an

epimorphism in F Tr iff for each i In], [has a leaf labeled (i.e., uf for some
u v(/)).

DEFINITION 3.2. A morphism h: 1 p in an algebraic theory T is homogeneous if
whenever h can be written as the composition f. g of an epimorphism f: 1 + n and a

morphism g: n p in T, then g must be (h, h,. , h):n --> p.
One may show that in F Tr a homogeneous morphism 1 -> p is a tree which has only

one vertex, or else has an infinite number of vertices all of which have the same label in
F.

The following theorem explains why only homogeneous trees may be least
elements in a compatible ordering. Indeed, we prove a more general fact.

THEOREM 3.3. Suppose that
_

is a compatible ordering on an algebraic theory Tand
h:l p is the _-least element in T.p. Then h is homogeneous.

Proof. Suppose that h-f.g, where f:l n is an epimorphism. Since h
_

i.g,
for each i[n],(h,h,...,h)_g, by Definition 3.1 (ii). Then by 3.1 (i),
f. (h,..., h)m_f, g. But since h is least in Tl.p,

h_f .(h,...,h)f .g=h.

Thus f. (h, h,. , h) f" g, and since f is an epimorphism, g (h,. , h), proving h is

homogeneous.
In the remainder of this section, we will define for each homogeneous tree +/-" 1 - 0

in F Tr a compatible partial ordering

__
on F Tr such that for each p _-> 0, 2_ 0 is least

COMPATIBLE ORDERING ON THE METRIC THEORY OF TREES 687

in F Tr,o. This ordering may be roughly described by saying that f =__ g if g may be
obtained from f by replacing some "descendancy trees" of f equal to +/- by other trees.

DEFINITION 3.4. Let +/- 1 --> 0 be a homogeneous F-tree. For f, g: 1 p in F Tr, we
define f _=

_
g if

(i) D,f +/-. 0p, whenever u is an f-g critical vertex.
If f, g:n -> p, we define f

__
g if

(ii) i. f _=_ i. g, for each In].
Remark. Condition 3.4(i) is equivalent to the following Condition 3.40’) which we

will use in the arguments below.
3.4(i’). D,f +/-.0 whenever u v(f) and uf ug. Indeed it is clear that 3.4(i’)

implies 3.40). Conversely, suppose 3.40) holds, u v(f) and uf ug. Let w be the prefix
of u of least length such that wf wg. Then w is f-g critical, so that Df- +/-. 0p. But
then D,f- +/-.0p also, since 2. is homogeneous.

We will show that the relation =_ z defined in 3.4 is a compatible partial ordering in
several steps. First we need the following facts; we omit the very easy proofs.

LEMMA 3.5. Let f, g’, 1 - p in F Tr. Iff _+/- g and u v(f), then

Duff-+/- Dug.

LEMMA 3.6. Assume f, g" 1 p in F Tr. If u [o]* is an f-g critical vertex, then both
uf and ug are defined.

LEMMA 3.7. Assume f, g" 1 - p in F Tr and uf ug. Then u has a unique prefix
which is f-g critical.

We can now prove that _z is a partial ordering.
THZORZM 3.8. When +/-" 1 0 is homogeneous, the relation

_
+/- defined in Definition

3.4 is a (family of) partial orderings and, for each p >-O, 2. Op is the _+/--least F-tree
lp.

Proof. Since +/- and +/- 0p are homogeneous, it is clear that +/- 0 _. g for any tree
g" 1- p. Since _+/- is clearly reflexive, we need only show

_
is antisymmetric and

transitive.
Thus suppose that f, g" 1 p in F Tr and that f

_
z g and g c_+/- f. If there is a vertex u

with uf ug, then by Lemma 3.7 we may assume u is f-g critical. Hence by Lemma 3.6,
both uf and ug are defined. Then, by the definition of =_, Duf =Dug +/-" 0, a
contradiction. Thus f g. By 3.4(ii), if f and g are in F Tr,,p and f

__
g _=

_
f, i. f i. g,

for each In]. Hence f g.
Note that the above argument has shown that if f _+/- +/- 0, then f l 0,.
As for transitivity, suppose that f, g, h are F-trees 1 p and f _=_ g

__
h. Let u be a

vertex in v(f) such that uf uh. We must show Duf +/- 0. Either uf ug or not. If
not, Df +/-.0p since f _=+/- g. If so, then D,g 2_. 0. Thus, by Lemma 3.5, D,f
1 0 completing the proof of the transitivity of _.=_ on F Trx,p. The argument extends to
F Tr, in the obvious way. The proof of the theorem is complete.

Our next task is to show =__ is compatible with the theory operations, i.e., that
Conditions 3.1(i) and 3. l(ii) hold. Since we have incorporated 3. l(ii) into our definition
of _+/- (in 3.4(ii)), we need only verify that 3.1(i) holds.

THEOREM 3.9. The relation +/- is preserved by tree composition, so that _+/- is a
compatible ordering on F Tr.

Proof. We must show that if fl-c+/-fz in F Trn,p and gl---_ gz in F Trp,q, then
[1" gl _ca f2"g2 in F Trn,q. From Definition 2.5 and Condition 3.4(ii) we may assume
n 1. Now suppose that u is a vertex in v(/1. gl) such that U(fl" gl) u(f2" g2). We
must show Du(gl)= +/- 0q.

688 STEPHEN L. BLOOM AND RALPH TINDELL

Either
(a) Ufl e F, or
(b) u wv, with Wfx and v(i. gl)= u(fl. g).

In case (a), we must have Ufx uf2 (or else u(f. gx)= u(f2" g2)). But then, since

fX A_ f2, Vu(fX gx) (Vufx) gx (+/-" Op) gl +/-" Oq.
In case (b) if wf2 i, Dwfl +/-" 0p, an impossibility. Thus wv (f. g) v (i. g), and

Dv(i. gl) +/- 0q, since g _+/- ga. But then Dwv(f gx) D(i gl) +/- 0q, completing
the proof.

4. Properti4s o the orderings _=X. The first task of this section is to show that if
+/-:1- 0 is a homogeneous F-tree, and fx +/- f2 -+/-’", is an o-chain of F-trees in
F Trl,o, then the chain has a least upper bound. In fact, we will first show that the
sequence fl, f2, , is Cauchy and the metric limit f of the sequence (which exists since
F Trl,o is a complete metric space) is the least upper bound. We will prove the sequence
is Cauchy by using a series of lemmas.

For the remainder of this section +/-" 1 - 0 is a fixed homogeneous F-tree and

(4.1) fl +/- & --_1_ f3 Ez_t_

is a strictly increasing o-chain of trees in F Trx.,.
LEMMA 4.2. Suppose f

__
g _+/- h in F Trx.p. Then every g-h critical vertex u has a

prefix which is either f-g critical or f-h critical.

Proof. If uf ug, then u has an f-g critical prefix by Lemma 3.7. If uf ug, then
uf uh (since ug uh), so again by Lemma 3.7, u has an f-h critical prefix.

With respect to the w-chain (4.1), define a vertex u in [w]* to be i-critical if u is fi-fk
critical for some k > i, but no proper prefix of u is fi-f critical for any j > i. Now let pi be
the number defined by

(4.3) pi min {[u[’ u is/-critical}.

For each i, some/-critical vertex always exists since (4.1) is strictly increasing.
LFMMA 4.4. If < j, every f-f, critical vertex has a unique i-critical prefix.
COROLLAI 4.5. If < , every j-critical vertex has a unique i-critical prefix.
Proof. By Lemmas 4.2 and 4.4.
COROLLAg 4.6. For n >- i, any n-critical vertex of length pg is also i-critical.
CorOLLAr 4.7. If < j, p <--&.
LEMMA 4.8. For each >- 1, there is some n > such that p p (so that p < p,).
Proof. Let u 1, , Um be all of the/-critical vertices of length Oi. Assume that in fact

ui is f-f, critical, for j [m]. Now if n =max {nl," ,nm}, we will show that no vertex
u. is n-critical. Indeed, note that

(4.9) Du,f +/-" 0, D,,f,, for j e [rn],

since uj is fi-fnj critical. If u. v(fn), u. is not n-critical, so assume that ui v(fn). But now,
since fj _+/- f,, for each j [m], D,f, _+/- Dufn. Thus by (4.9), Df +/- Op, showing
that ui is not n-critical. It now follows from Corollary 4.6 that any n-critical vertex has
length greater than pi, completing the proof.

COROLLARY 4.10. The sequence (4.1) is a Cauchy sequence.
Proof. Recall from Definition 2.7 that p(f, g) is the length lul of a shortest f-g

critical vertex u. Since p(fi, fi)>=pi, for j>i, and since d(fi, f.)=2-(’’’, we have
d (fg, f.) <= 2-’, for all and j > i. But by Lemmas 4.7 and 4.8, lim pi eo, proving the
Corollary.

We now show that the metric limit f of the Cauchy sequence f is the least upper
bound of (4.1).

COMPATIBLE ORDERING ON THE METRIC THEORY OF TREES 689

THEOREM 4.11. Let f limn_. fn. Then f is the +/--least upper bound of (4.1).
Proof. First we show f is an upper bound. Suppose that u e v(fi) and ufi uf. For all

but a finite number of values of n, uf urn. If n is sufficiently larger than i, fi =- fn and
uf uf, and hence Duf _1_. 0o. Thus f is an upper bound to the sequence (4.1).

Now suppose that fi =_+/- g for all i, and let u e v(f) be a vertex such that uf ug.
Again, if n is large enough, uf urn, so that Dufn J_" 0p. But lim,_. Duf, Duf, by
(2.10), so that D,f 2_ 0p. Thus f

_
g, showing that f is the least upper bound of (4.1).

The following fact follows immediately.
COROLLARY 4.12. Suppose that gl =_ g2 =-+/- g3 -+/- is an co-chain in F Tr,,p, for

n > 1. Then the metric limit g lim,_.oo g, exists and is the least upper bound of the
sequence (g,).

Luckily, the w-continuity of composition follows easily from Corollary 4.12 (and
Proposition 2.9).

THEOREM 4.13. Let gl +/- g2 +/- and hi +/- h2 +/- be w-chains in F Tr..p
and F Trp.q respectively. If g sup (g.) and h sup (h.), then

g. h =sup (g. hn).

Proof. It follows from Theorem 3.9 that for each n, g h =_z gn+l hn+l, so the
sequence (g hn) is an co-chain. In order to show that g h is the least upper bound of
this sequence, we need only show that g h is its metric limit, by Corollary 4.12.

But d(g hn, g h) -< d (g h, g hn) + d (g h, g h), by the triangle inequality.
From Proposition 2.9 it follows that the right-hand side is less than d(g, g)+ d(h,, h),
which goes to zero by Corollary 4.12 again. This completes the proof.

Theorems 3.8, 3.9, 4.12, 4.13 show that for any homogeneous tree 2_ 1 - 0 in F Tr
there is an co-complete, co-continuous compatible partial ordering on F Tr with 2- least in
F Trl.o. One of the referees suggested that we answer the following

Question 4.14. Given a homogeneous morpliism 2- 1 - 0 in an algebraic theory T,
is there some co-complete, co-continuous compatible partial ordering on T having +/- as
the least morphism in Tl,o?

We answer this question negatively with the following example.
Example 4.15. Let S be the set consisting of the nonnegative integers N and two

additional points a b. Let f and g be the functions, S - $ defined by:

nf ng= n + l, n N

af=bf=a;

ag=bg=b.

Let T be the least subtheory of S" containing the morphisms f, g: 1 1 and the constants
0: 10, a: 1 0, b: 10 (a morphism n p in S" is a function S"Sn; the dis-
tinguished morphism i: 1 n is the ith projection S" S; a morphism 1 0 in $" may be
identified with an element of $). It is easily seen that 0:1 - 0 is homogeneous, since the
only epimorphism in T is the identity morphism I1" 1 1. If _= is an co-complete,
co-continuous compatible partial ordering having 0" 1 0 least in T1,0, then

0 f" 0 f2. 0 " fn 0"" 1.u.b. {fk O: k _-> 0}.

Since
_

is co-continuous, if a 1.u.b. {fk O" k >-_ O} then c f. a, so that a a" 1 - O.
However, for each k =>0, f. O= gk. O, SO that c =g.a also. But then a b, a
contradiction.

The last task of this section is to indicate (without proof) why the orderings

obtained from "different" homogeneous F-trees 3_" 1 - 0 are distinct.

690 STEPHEN L. BLOOM AND RALPH TINDELL

DEFINITION 4.16. An ordered theory isomorphism F: (F Tr, _+/-) - (F Tr, _+/-,),
where +/- and +/-’ are homogeneous trees 1 0, is a family of bijections F Trn,, - F Trn,,
(for each n, p _->0) such that iF =i, for each distinguished tree i: 1- n; (f. g)F
fF. gF, for all composable f and g; and such that f _+/- g iff fF _+/-, gF.

The degree of a homogeneous tree +/- 1
Using this terminology, we state the following.
THEOREM 4.17. For homogeneous trees +/-, +/-’:1-0 in F Tr, there is an ordered

theory isomorphism F:(F Tr, _+/-) - (F Tr, _x,) iff +/- and +/-’ have the same degree.
In [1] it was shown that if +/- has degree 0 (i.e., +/- is an atomic tree) (F Tr, t-_x) is

freely generated by F in the class of to-complete, to-continuous ordered theories. Thus
only the homogeneous trees of degree zero yield free theories, since free theories are
unique up to (ordered theory) isomorphism.

5. Order or metric. The association of a finite or infinite tree with a flowchart or
recursive program is well known. Suppose the tree f is associated with the program
scheme F with two exits (of Fig. 5.1). Then in order-theoretic semantics ([1], [2], [15]),
the tree f* associated with the program scheme indicated in Fig. 5.2 is the

_
x-least fixed

point in F Trl,1 of the operation

(5.3) f" (I1,),

where +/- 1 - 0 is a homogeneous tree of degree zero. Thus, this least fixed point is the
_cz_least upper bound of the sequence

(5.4) +/- 01, f" (I1, +/- 01), f" (]l,f’ (/’1, +/- 01)),"

In this theory the tree +/- is thought to represent "undefined" and the elements of the
sequence (5.4) are thought to represent better and better "approximations" of the
meaning of the scheme in Fig. 5.2.

FIG. 5.1 FIG. 5.2

Conceivably, one might wish to represent "undefined" by a nonhomogeneous tree.
Then, as shown in 3, there is no compatible ordering on F Tr such that "undefined" is
the least element, so that one is unable to define the "meaning" of the program scheme
Fig. 5.2 as the least upper bound of the sequence (5.4).

However in [5] it was shown that for any tree +/- :1 0 (homogeneous or not), the
sequence (5.4) is a Cauchy sequence and if its metric limit is denoted f*, then* is a fixed
point of the operation (5.3), so that

(5.5)

COMPATIBLE ORDERING ON THE METRIC THEORY OF TREES 691

In fact in [5] it was shown that all equations (such as (5.5)) which hold when f* is defined
as the least upper bound of the sequence (5.4) when 3_ is homogeneous of degree zero,
will also hold when f* is defined as the metric limit of (5.4), for any choice of 3_.

This fact suggests that, at least for the study of o-trees, metric limits are more
versatile than least upper bounds.

Acknowledgment. We wish to thank Calvin C. Elgot for helpful comments on an
earlier version of this paper.

Appendix: the definition of "algebraic theory." The notion "algebraic theory" was
introduced by Lawvere [11]. The definition given below was first used by Elgot [8].

An algebraic theory T is a category whose objects are the nonnegative integers. For
each n -> 0, there are n "distinguished morphisms" i:l n, In], with the following
property:

(*) for any family fi: 1 p, 6 In], of morphisms in T, there is a unique morphism
I

f: n - p in T such that fi 1 n p, for each In].
In the case n 0, the property (*) requires the existence of a unique morphism

0. ’0 p in T.
The set of morphisms n p in T is denoted Tn,..

REFERENCES

[1 E. G. WAGNER, J. B. WRIGHT AND J. B. THATCHER, Free continuous theories, IBM Research Report
RC-6906, December 1977.

[2], Rational algebraic theories and fixed point solutions, Proc. 17th IEEE Symp. on Found. of
Computing, Houston (1976), pp. 147-158.

[3] S. L. BLOOM, Iterative and Metric Algebraic Theories, publication of the Banach International Mathe-
matical Center, Warsaw, to appear.

[4] ., All solutions of a system of recursion equations in trees and other contraction theories, to appear.
[5] S. L. BLOOM, C. C. ELGOT AND J. B. WRIGHT, Vector iteration in pointed iterative theories, IBM

Research Report RC-7322, Sept. 1978, this Journal, to appear.
[6] B. COURCELLE, On recursive equations having a unique solution, IRIA Research Report 285, March

1978.
[7] B. COURCELLE AND M. NIVAT, Algebraic families of interpretations, in 17th Symp. Found. Computer

Science, Houston 1976.
[8] C. C. ELGOT, Monadic computation and iterative algebraic theories, Proc. Logic Collog., Bristol 1973,

North Holland, Amsterdam 1975.
[9] ., Structured Programming with and without GO-TO Statements, IEEE Trans. Software Eng. SE-2

No. (March 1976); Erratum and Corrigendum (Sept. 1976).
[10] C. C. ELGOT, S. L. BLOOM AND R. TINDELL, The algebraic structure ofrooted trees, J. Comput. System

Sci., 16, No. 3 (1978), pp. 362-399.
11 F.W. LAWVERE, Functional semantics ofalgebraic theories, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), pp.

869-872.
[12] M. NIVAT, On the interpretation of recursive polyadic program schemes, Symposia Mathematica, 15

(1975), pp. 255-281.
[13] M. NIVAT AND m. ARNOLD, Calculs infinis, interpretations metriques et plus grands points fixes, in

Colloque AFCET-SMF de Mathematiques Appliquees, Palaiseau (1978).
[14] B. ROSEN, Program equivalence and context-free graknmars, J. Comput. Systems Sci., 11 (1975), pp.

358-374.
[15] D. SCOTT, The lattice of flow diagrams, in E. Engeler (editor), Symp. on Semantics of Algorithmic

Languages, Springer-Verlag Lecture notes, No. 188 (1971).
[16] J. MYCIELSKI AND W. TAYLOR, A compactification of the algebra of terms, Algebra Universalis, 6

(1976), pp. 159-163.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0004 $01.00/0

APPROXIMATE SOLUTIONS FOR THE BILINEAR FORM
COMPUTATIONAL PROBLEM*

DARIO BINH, GRAZIA LOTTI$ AND FRANCESCO ROMANI

Abstract. A set of bilinear forms can be evaluated with a multiplicative complexity lower than the rank
of the associated tensor by allowing an arbitrarily small error. A topological interpretation of this fact is
presented together with the error analysis. A complexity measure is introduced which takes into account the
numerical stability of algorithms. Relations are established between the complexities of exact and approxi-
mate algorithms.

Key words, analysis of algorithms, approximate computations, computational complexity, numerical
mathematics

1. Introduction. The nonscalar complexity of a problem is commonly defined as
the minimal number of nonscalar multiplications required to solve it exactly by a
straight-line algorithm. Here "exactly" means that no error is introduced by the
algorithm. We call these Exactly Computing (EC) algorithms. In the computation with a
d-digit floating point arithmetic, an error depending on d is introduced in the result.

In computing bilinear forms the complexity measure is related to the rank of the
associated tensor. We show here that in some cases it is possible to decrease the number
of the required multiplications by allowing an arbitrarily small error. We call these
Arbitrary Precision Approximating (APA) algorithms. Thus we get algorithms of
complexity lower than the rank of the associated tensor which solve the problem with
the desired accuracy (superoptimal APA-algorithms). In 2 an example of a super-
optimal algorithm is given for a simple problem. In 3 a theoretical interpretation is
given related to several notions in topology. The concepts of border tensor, border
tensorial basis, and border rank are introduced corresponding to the analogous well
known concepts of tensor, tensorial basis, and tensorial rank. In 4 an analysis of the
error of APA-algorithms is made. In 5 relations between exact and approximate
algorithms are investigated.

2. Superoptimal algorithms. We introduce the concept of superoptimal APA-
algorithm with an example.

Let

(2.1) fl(_X, y) XlYl, fz(_X, y) x2y q- XlY2,

be bilinear forms where _x r (x, x2), yr (y, y2).
Some results in arithmetic complexity theory (see for example [9]) allow us to show

a lower bound of 3 multiplications when we compute (2.1). An optimal bilinear
EC-algorithm is given trivially by

(2.2)

Sl <’- X2Yl,

S24"XlY2,

$3 <’" S1 + $2,

S4---XlYl,

* Received by the editors January 24, 1979, and in revised form October 1, 1979.

" Istituto di Matematica, University of Pisa, Pisa, Italy.
Istituto di Scienze dell’Informazione, University of Pisa, Pisa, Italy.
Istituto di Elaborazione dell’Informazione del C.N.R., via S. Maria 46, 56100, Pisa, Italy.

692

BILINEAR FORM COMPUTATIONAL PROBLEM 693

where the variables s3, s4 contain the results. Consider now the following bilinear forms:

(2.3)

where e # 0.
We have

2 2l(x_, y)=xlyl+e xayz=fl(_X, y)+e xay2,

2(x_, y) x2y + x-, y2 f2(_x, y),

lim jl(_X, y) f (_x, y),
0

and

]2(_x, y)--&(_x, y),

so the bilinear forms (2.3) approximate the bilinear forms (2.1) with an arbitrarily small
error.

There exists a bilinear APA-algorithm for the evaluation of (2.1) which needs 2
nonscalar multiplications, namely

(2.4)

$1 (x+x2e)(y+yze),

s - (x- x2e)(ya- y2e),

$3 <’" S1 "]- $2,

1 1

where the variables s3, s4 contain the results.
Algorithm (2.4) allows us to approximate tle results of (2.2) with fewer multi-

plications than any EC-algorithm. We call such an algorithm a superoptimal algorithm.

3. Theoretical considerations. A set of bilinear forms over an infinite field F,
fs(_X, y), s 1, 2,..., p (_x n-vector, y m-vector), can be identified by a set of n m
matrices

ij },S"- 1,2,... ,p, aii F},

such that

(s)(3.1) f(_x, y)= Z xiaii Yj, s =1, 2,..., p.
i=1 /=1

This set of matrices can be viewed as an n m p third order tensor that is a three-
dimensional array {a I]}. A rank-t basis of & over F is a set of triads {_u) _vr _W,
r 1, 2,. , t}, such that

(3.2) N= _(r)(_(r)@w_(r),
r=l

(r) (r) (r) Fpwhere_u F,_v F ,_w and

(r) (r) (r) (r) (r) r)_u (v_ (w_ ={ui vi "w }, r=l,2,...,t.

The rank of/ is the minimal integer for which a rank-t basis of/ exists. As is well
known (see [5]) the number of nonscalar multiplications required to compute fs (_x, y) by
a bilinear noncommutative EC-algorithm equals the rank of the associated tensor/.

694 D. BINI, G. LOTTI AND F. ROMANI

The optimal EC-algorithm is obtained from (3.2) as follows"

xTA(S)y (x T_ (r))(_ (r)7"y)w(r)
r=l

Example. The tensor associated with problem (2.1) is

/=
0 0’ 1 0

The rank-3 basis corresponding to algorithm (2.2) is

{-u()}=(0 11)10 0 {-v()}=(1 01)01 0
{_w(r)}-- (0101)10

Let -be the set of all n x m x p tensors(--FnmP), and let -t be the class of rank-t
tensors. We have

q

q min {rim, mp, rip},

-t fq -t,= , C t’.

Let I1,11 be any norm on Fn"w, and let O-h be the boundary of -h in the topology induced
by the norm I1" I1o

PROPOSITION 3.1. If l -h f’) O-h, then there exists a family of tensors t-(e) such
that

lim II:(s)ll O,
-->0

/ +[(s)e -k Ys >0, k h.

Proof. For any neighborhood 0-//a of , ::lk h: 71 -k . Since q is finite,
some of - must intersect every neighborhood of , i.e., ::lk h: ,q,0-//, o-//a f-I - .
Hence Ve >0,=1/ -: II&-&[l<e. Taking :(e)=/-A, we have proved the
proposition.

Remark. In the preceding example,

N= O’ 1 0
e-3,

(10 01) (0 0 0 0)2, -2.+:(s)=
0 0 1 0

+
0 s 0 0

DEFINITIONS. Let t (-I O-t and 5e {q N 6 0-}. A rank-q border basis of N is
the family of bases of N + :(s) $-q. The border rank of N is tB min ow, and the optimal
border basis is the border basis of rank tB.

It is obvious that tn-< t. On the other hand, it can be easily proved that if the
matrices A(s), s 1, 2, , p, are linearly independent, then tn _-> p. Permuting the role
of indices, under analogous independence hypotheses it follows tn >-max (m, n, p).

DEFINITION. The rank-t tensor N is a border tensor if its border rank tn is less
than t.

A set of bilinear forms can be computed by superoptimal APA-algorithms when
the associated tensor N is a border tensor. The resulting complexity equals the border

BILINEAR FORM COMPUTATIONAL PROBLEM 695

rank of A. Namely, let _(r)(E)@_(r)()@w_(r)(6), r 1, 2," , tB, be a rank-tB basis of
+E(e), i.e.,

(3.3)
tB

(r)(/-"()-" E -u(r)(e)(r)(e)()_w
r=l

Then

(3.4)

fs(_X, y)--x_TA(S)y E (x-T_(r)(8))(_(r)a(8")Y)w(sr)(8)--x_TE(S)(E)Y,

E(e)--{E()(e)}--{el] (e)}.

Example. The APA-algorithm (2.4) is given by

{_u()(s)} (1 1),

{-W (r)(s)} 1 21
4. Error analysis. In the following we consider the e (s) (e) to be polynomials in e ofij

(r)(degree 6 with null constant terms. Moreover we suppose that in (3.3) the vectors _u e),
_v(r)(e), _w(r)(e) have as elements rational functions of e.

Suppose we want to compute (3.1) by the APA-algorithm (3.4) using d-digit
floating point arithmetic. The order of the error is estimated as a function of d. The
function e (d) which minimizes the order of the error is investigated too (e (d) 0 as d
tends to infinity).

In computing (3.4) there are two sources of errors, namely the error due to finite
arithmetic (roundoff error) and the error introduced by the approximation.

Let O(e -) be the largest infinite in the triads of the basis, i.e.,

max {z [ui(r)(E,)V(r)(8)w(r)(E)--O(E-z),i--] 1 ,2, m,

/’=1,2,..., n, s 1, 2,... ,p, r= 1, 2,..., tn}.

The error due to arithmetic is O(2-% -) [1].
On the other hand let O(e) be the slowest infinitesimal in :(e), i.e.,

cr min {z [eii O(F-" Z), 1, 2," , m,] 1, 2,. , n, s 1, 2,. p}.

PROPOSITION 4.1. [1] The errorproduced by an APA-algorithm, is O(2-d/), where
to 1 + q/r is a stability parameter depending on the border basis.

Proof. The error due to the approximation in the sth bilinear form is

_x rE(S)y O(s’).

Then the overall error is O(s + 2-%-); by choosing e(d) 2-/(+) the order of
the error is minimized. The error becomes O(2-/(+’)) O(2-/) where to 1 + p/r
is the stability parameter of the APA-algorithm.

696 D. BINI, G. LOTTI AND F. ROMANI

Remark. For EC-algorithms the error is O(2--d) and the stability parameter is
co 1 by definition.

For the algorithm (2.4), q 1, o- 2, and hence co . Then the error is 0(2-2d/3)
2-d/3with e

Consider now a noncommutative bilinear algorithm a with a nonscalar multi-
plicative complexity N. We introduce a complexity measure AC which takes into
account the stability-complexity relations.

Let da(s) be a function such that the relative error produced by the algorithm using
a da(s)-digit arithmetic is bounded by 2-s. It is easy to show that for EC- and
APA-algorithms d(s) cos + o(s).

Let re(x) be the complexity of x-digit binary multiplication in terms of bit
operations. Then the ratio m(d(s))/m(s) denotes the major cost of the algorithm a
versus the ideal one (i.e., the algorithm producing no errors).

The asymptotical complexity of a is defined as

m(da(s))
ACa lim N

s-.oo m(s)

In [4], under some regularity hypotheses on m (x), it is proved that AC Nco, where co

is the stability parameter of a.
Remark. AC is a finite number and can be used to compare the "infinite precision"

complexity of different algorithms. Namely,

Nam(da(s))AC= lim
ACb s.- Nbm(db(S))

For algorithm (2.2) we have N 3, co 1, AC 3, and for algorithm (2.4) N 2,
co , AC 3. Thus this superoptimal APA-algorithm gives a gain of on complexity
but a reduction of on the number of significant digits in the result, and the complexity
measure AC remains constant.

5. Relations between approximate and exact algorithms. The existence of border
bases for a given tensor/ allows us to bound the tensorial rank of .

PROPOSrriON 5.1. [2] Given a rank-tB border basis for l with a polynomial
correction _(e) o[degree 6, a rank-(1 + 6)tB tensorial basis for l exists.

Proof. Let
_

{ai} be the solution of the Vandermonde system

d

{ 1, i=0,E EjOg.i
i=o O, 1, 2,. ., 6,

for a given {ei} with the property ei ek, for j k; and let _u
tensorial basis for A +:(e). Then

(r) () () _/.)
(r) (E) () _W (r)(e) be a

Hence

E Olj E -(r)(i)(-(r)(ei)@w-(r)(i) E O/’(--(/’)) ="
/’=0 r=l i=0

Ogj(_l.l (r)(j)(
_
(r)(Ej) W_ (r)(Ej)), j=0,1,..’,8, r=l,2,...,t,

is a rank-(1 + 8)tn tensorial basis for .

BILINEAR FORM COMPUTATIONAL PROBLEM 697

COROLLARY. An APA-algorithm with polynomial correction of degree 6 and
multiplicative complexity tB produces an EC-algorithm of multiplicative complexity
(1 + 6)tB namely,

_X E Oj E (_X (r)(Ej))(; (Ej)y)W
j=0 r=l

The algorithms of this type are called Exactly Computing Derived (ECD) algorithms.
Remark. By slightly modifying the proof of Proposition 5.1 it is possible to obtain

a rank-(1 + 6’)tn tensorial basis for/, where 6’ -<_ 6 is the number of linearly independent
polynomials in :(e).

In general, for APA-algorithms we have AC cotn, and for ECD-algorithms
AC=(l+6)tn. In the computation of n n matrix multiplication using APA-
algorithms and the technique of recursive partitioning we have 0 O(log n), 6
O(log n) [2], [7]. A detailed discussion of the various kinds of matrix multiplication
algorithms and of their complexity measures can be found in [7].

6. Conclusion. The existence of a sequence of lower rank tensors converging to a
tensor of higher rank is a topological property useful in computational complexity
theory. It would be interesting to know something more about the topology of the
classes ’h.

The technique to derive exact algorithms from approximate ones, exposed in [2],
gives fruitful results when applied to problems whose associated tensors are tensorial
powers of given ones. This is the case of matrix multiplication. The use of border tensors
allowed one to reduce the complexity of this problem to O(n 2"7799) [3]. This bound has
been successively improved by Pan [6] and Sch6nhage [8] (O(n252)).

Acknowledgment. The authors wish to thank the referees for their helpful
comments.

REFERENCES

[1] D. BINI, Border tensorial rank of triangular Toeplitz matrices, Report B-78-26, I.E.I. Pisa (December
1978).

[2], Relations between exact and approximate bilinear algorithms. Applications. Calcolo, to appear.
[3] D. BINI, M. CAPOVANI, G. LOTTI AND F. ROMANI, O(n2"7799) complexity for n x n approximate matrix

multiplication, Information Processing Lett., 8 (1979), pp. 234-235.
[4] D. BINI, G. LOTTI AND F. ROMANI, Stability and complexity in the evaluation of a set of bilinear forms,

Report B-78-25, I.E.I. Pisa (November 1978).
[5] R.W. BROCKETT AND D. DOBKIN, On the optimal evaluation ofa set of bilinearforms, Linear Algebra

and Appl., 19 (1978), pp. 207-235.
[6] V. YA. PAN, Field extension and trilinear aggregating, uniting and canceling for the acceleration of matrix

multiplication, Proc. 20th Ann. Symp. on Foundation of Comp. Science, 1979, pp. 28-30.
[7] F. ROMANI, Complexity measures for matrix multiplication algorithms, Calcolo, to appear.
[8] A. SCHONHAGE, Partial and total matrix multiplication, Internal Report, University of Tiibingen

(January 1980).
[9] J. VAN LEEUWEN AND P. V.N EMDE BOAS, Some elementary proofs of lower bounds in complexity

theory, Linear Algebra and Appl., 19 (1978), pp. 63-80.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0005 $01.00/0

THE APPLICATION OF MULTIVARIATE POLYNOMIALS TO
INFERENCE RULES AND PARTIAL TESTS FOR UNSATISFIABILITY*

DAVID A. PLAISTED

Abstract. There are some relationships between unsatisfiability of sets of clauses, and properties of
polynomials in several variables. These polynomials can be used to obtain a polynomial time solution to a
certain problem involving sets of clauses. Using these polynomials, one can establish a correspondence
between unsatisfiable sets of clauses and a convex region of Euclidean space. Also, some inference rules based
on these polynomials may provide shorter proofs of inconsistency than are possible using other known
inference rules.

Key words, unsatisfiability, propositional calculus, polynomials in several variables, proof length, coNP,
inference rules, linear programming

Introduction. The question of whether there is an efficient algorithm to decide the
satisfiability of a set ot clauses in the propositional calculus has important relationships
to many problems in computer science [1], [5]. The related question, whether there is a
proof system containing short proofs of inconsistency of all inconsistent sets of clauses,
is also of interest. A survey of the known relationships among several proof systems has
been done [2]. The known results are mainly of two types, simulation results and lower
bounds. The simulation results show that one proof system can simulate another with
only a polynomial increase in proof length. The lower bounds show that certain proof
systems require proofs of more than polynomial size on specified sets of examples.
Among the proof systems considered so far are resolution 10], regular resolution 11],
resolution with extension [11], and Davis and Putnam’s method [3]. It is known that
regular resolution and Davis and Putnam’s method require more than polynomial size
proofs on certain sets of examples. The best known lower bound for these systems is
given by Galil [4]. The corresponding questions for resolution and resolution with
extension are still open.

We present some partial tests for unsatisfiability, based on linear programming and
some inference rules which use polynomials in several variables. These inference rules
may provide shorter proofs of inconsistency than resolution or other known inference
rules can provide. Of course, if all inconsistent sets of clauses have short proofs, then
NP CoNP. Another possibility is that short proofs exist relative to a slowly growing,
but infinite, set of axioms. We explore these possibilities. It turns out that polynomials
associated with inconsistent sets of clauses over n variables correspond to a region of
Euclidean space which is convex and is the intersection of 2 halfspaces. We present
polynomial time algorithms for several problems involving these polynomials, and
present a problem for which no polynomial time solution is known. This work contrasts
with earlier work of the author [9], in which the satisfiability problem is related to sparse
polynomials in one variable.

1. Polynomials in many variables.
DEFINITION 1. With a vector x in {0, 1} we associate an interpretation I(x) of the

variables xl, x2,’", x. in the usual way. That is, xi is true in I(x) if xi (the ith
component of x) is 1; xi is false in I(x) if xi is 0.

* Received by the editors May 31, 1979, and in final revised form February 4, 1980.
t Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois

61801. This research was supported in part bythe National Science Foundation under Grant MCS 77-22830.

698

INFERENCE RULES FOR UNSATISFIABILITY 699

DEFINITION 2. Suppose S is a set of clauses over the variables Xl, X2, Xn and f
is a function assigning a rational weight to each clause in S. Then Poly(S, f) is defined to
be the polynomial p over the variables Xl, x2, , xn having the following properties:

1. For all x{0, 1}n, p(x)=f(C1)+f(C2)/’. "+f(Ck), where {C1, C2, , Ck} is
the set of clauses of S that are false in I(x). We assume that the Ci are all distinct. Thus
p(x) is the weighted sum of the clauses of S that are false in the interpretation I(x).

2. The polynomial p is a sum of terms of the form rxilxiE"’xim, where i1,
i2," ", i,,, are all distinct and r is a rational number. Thus no variable occurs in p to a
power higher than the first power.

It is not difficult to show using properties of polynomials of several variables that
Poly(S, f) is uniquely defined, given S and fi Therefore p(x) 0 for all x {0, 1} iff all
coefficients of p are zero. Also, if S is a set of 3-literal clauses, then Poly(S,/’) can be
computed from $ and/" in a number of arithmetic operations that is linear in the size of
S. We represent the rational number ab by the ordered pair (a, b) for integers a and b.

Examples.

Poly({xl v x2 v x3}, 1)= (1-xl) * (1 x2) * (1-x3)

1 Xl x2- x3 + XlX2 / X2X3 / XIX3 XIX2X3

Poly({.fl v 2 v -3}, 1)- XlX2X3,

Poly(S, f)= Y. f(C) Poly({C}, 1).
cs

(We denote the constant function f(x)-c by c; thus 1 denotes the constant function
(x)-= .)

This construction gives an efficient algorithm for the following problem, first
treated in [7].

Problem P1. Given sets $1 and $2 of 3-literal clauses over xl,..., x,, to decide
whether for all interpretations I of x, , x, the number of clauses of $1 that are false
in I equals the number of clauses of $2 that are false in L

We solve this problem by computing Poly(S1, 1) and Poly(S2, 1). The sets $1 and
$2 satisfy the above condition iff Poly(S1, 1)= Poly(S2, 1). This test only requires a
number of arithmetic operations and comparisons that is linear in the size of $1 and $2.

We do not know whether problem P1 can be solved in polynomial time if the number of
literals per clause is unbounded.

We can also get an efficient, trivial algorithm for the following problem, using these
polynomials"

Problem P2. Given sets $1 and $2 of arbitrarily large negative clauses over
{x, , x,}, to decide whether for all interpretations I of x, x2, , xn, the number of
clauses of S 1 that are false in I equals the number of clauses of $2 that are false in L (A
clause is negative if all literals in the clause are negative. Thus ffl v .2 V .3 is a negative
clause.) This problem was posed in [7], in a different form.

Note that if $1 and $2 consist entirely of negative clauses, then Poly(S1, 1) and
Poly(S2, 1) can be obtained very easily, and the above condition is true iff Poly(S 1, 1)
Poly(S2, 1). However, it turns out that in this case Poly(S1, 1) Poly(S2, 1) iff $1 $2.

Thus the condition is true iff $1 $2. This problem is closely related to an NP-complete
problem mentioned in [8]. If the number of positive literals per clause is bounded, we
can compute Poly(S 1, 1) and Poly(S2, 1) in linear time and so obtain a fast algorithm for
this generalized problem. In fact, we can still get a linear algorithm if the number of xi
such that xi and Yi both appear in S 1 t2 $2 is bounded. This is because changing the sign

700 DAVID A. PLAISTED

of a propositional variable does not affect the property we are testing for. In particular,
we can still solve problem P2 efficiently if all the clauses are positive (that is, have only
positive literals).

THFOREM 1. The following problem, Problem P3, is NP-complete.
Problem P3. Given a polynomial p(xl, x2,’", xn) with rational coefficients, to

determine whether there exists x {0, 1}n such that p (x) 0.

Proof. This problem is clearly in NP. Also, a set S of 3-literal clauses over the
variables xa, X2, ,Xn is consistent iff =le{0, 1}" such that Poly(S, 1)(x)=0.
Furthermore, Poly(S, 1) can be computed from S in polynomial time.

This result is not very profound, but polynomials in several variables have a
convenient mathematical structure which helps to give us insight into the nature of the
satisfiability problem.

THEOREM 2. Suppose S 1 and S2 are sets of 3-literal clauses over x2, X2, Xn and
fa and f2 are weighting Junctions for $1 and $2, respectively. Suppose f(C) > 0 for all
C $1 and f2(C) > 0 for all C $2. Suppose Poly(S1, fl) Poly(S2, f2). Then $1 is
inconsistent iff $2 is.

This result suggests inference rules for unsatisfiability. Namely, if we know that S 1
as in the theorem is inconsistent, so is $2. However, there does not appear to be any
relationship between such sets S 1 and $2 in terms of proofs of inconsistency. Hence we
might hope to obtain short proofs of inconsistency using inference rules based on
Poly(S, f) for a set S of 3-literal clauses.

For example, the following sets S l, S2, and S3 of clauses satisfy Poly(Sl, 1)=
Poly(S2, 1) Poly(S3, 1) 1:

Sl" Xl V X2 V X3 -,1 V X2 V X3

Xl V X2 V 3 1V X2 V 3

X V)2 V X3 1 V 2 V X

Xl V -2 V 3 1 V -2 V 3,

Xl V X2 V X3 Xl V X2

1 V 2 V 3 X2 V -3

X3 V 1,

S3’ x

1 V X2

1 V ..2 V X3

1 v)2 V)3.

Thus if we know one of these sets to be inconsistent, we can easily show the others to be
inconsistent since their polynomials are all identical.

2. Linearity properties of the coetticients. Notice that the coefficients of
Poly(S1, f) for fixed Sl are linear combinations of the values f(C) for C Sl. Thus we
can get a polynomial time solution to the following problem.

Problem P4. Given sets S1 and $2 of 3-literal clauses over xl, , x,, and given a
weighting function fl for S l, to find a weighting function f2 for $2 such that
Poly(Sl, fl)= Poly(S2, f2), if such f2 exists.

INFERENCE RULES FOR UNSATISFIAB1LITY 701

We can solve this problem in polynomial time since each coefficient of Poly(S2, f2)
is a linear combination of the values f).(C) for C 6 $2. By Gaussian elimination, we can
obtain rational values for the quantities f2(C) so that Poly(S2, f2) Poly(S 1, fl), if such
values exist. This gives a polynomial time solution since the numerators and denomina-
tors do not grow in size too quickly.

The significance of this result is that if for all x {0, 1}n, Poly(S1,/1)(x) 0, and if
such f2 exists, then $2 is inconsistent. Further, if S 1 is inconsistent and fl(C) > 0 for all
C in S1, then Poly(S1, fl)(X)-0 for all {0, 1}.

Consider the following problem.
Problem P5. Given sets $1 and $2 of 3-literal clauses over x l, x2,’’’, xn, to find

weighting functions fl and f2 such that fa(C)>0 for all C $1 and such that
Poly($1, fx) Poly(S2, fa), if such fa and f2 exist. The significance of this problem is that
if $1 is inconsistent and if fl and f2 exist, then $2 is inconsistent also. We have the
following easy result:

THEOREM 3. Problem P5 can be solved in polynomial time by reducing it to linear
programming and applying Khachian’s algorithm [6]. We reduce P5 to the following
problem: Given an integer matrix A and an integer l, to determine whether there exists a
vector z such that Az 0 and such that z > 0 for 1, 2, , 1.

Consider the following problem.
Problem P6. Given sets $1 and $2 of 3-literal clauses and a weighting function fa

for $1, to determine if there exists a weighting function f2 for $2 such that every
coefficient of Poly(S2, f2)-Poly(S1, fx) is nonnegative. Note that if such an f2 exists,
and if Poly(S 1, fl)(X) > 0 for all x {0, 1}", then Poly(S2, f2)(x) > 0 for all x {0, 1}" filso,
and so $2 is inconsistent.

We can easily get the following result.
THEOREM 4. Problem P6 can be solved in polynomial time by reducing it to the

following problem: Given an integer matrix A and a rational vector b, to determine
whether there exists a rational vector z such that Az>= b. Here inequality is applied
componentwise. As in Problem PS, we use Khachian’s algorithm.

3. Isomorphism.
DEFINITION 3. Suppose S1 and $2 are sets of 3-literal clauses over X1, X2, Xn.

We say S 1 $2, if $2 can be obtained from S 1 by permuting variables and by changing
signs of variables.

It is clear that if S 1 $2, then S 1 is inconsistent iff $2 is. Also, it is not hard to show
that determining whether $1-- $2 is polynomially equivalent to graph isomorphism.
Similarly, given polynomials p and p2 over Xl, Xn, determining whether pl can be
obtained from p2 by permuting variables, is polynomially equivalent to graph iso-
morphism. We do not know whether this is still true if we also allow replacements of the
form x 1- x..

DEFINITION 4. Suppose PI and P2 are polynomials in the variables x, x2,..., x.
We say that px"p2 if p2 can be obtained from px by permuting variables and by
replacements of the form xi 1- xi. Note that this is an equivalence relation.

4. Denseness of nonzero values. The following results give us more insight into the
behavior of the functions Poly(S, f). In particular, the values of Poly(S, f)(x) on all x in
{0, 1} are determined by the values at a small set of such x, as we will show. Let be the
set of real numbers.

DEFINITION 5. Suppose x, y {0, 1}". We say x -<- y if for 1, 2, , n, Xi . Yi.
DFFINIrION 6. If X is an n-tuple of real numbers, then I[x[I is [Xil,

702 DAVID A. PLAISTED

THEOREM 5. Suppose S is a set of 3-literal clauses over x l, X2, Xn and]’ is a
weighting]’unction for S. Suppose Poly($, f) is not identically zero. Then there exists
x e {0, 1}" such that Ilxll <= 3 and such that Poly($, f)(x) 0.

Proof. Pick a nonzero term in Poly(S,]’) having the smallest number of variables.
Let x be chosen so that xi 1 if xi occurs in this term and xi 0 otherwise. Then
P oly(S, f)(x) 0 and [[x[[_-< 3.

()COROLLARY. Poly(S, f) is completely determined by the
3
+ + n + 1 values

Poly($, f)(x)[or Ilxll--< 3.
It follows that Poly($, f)---0 if Poly($, f)(x)= 0, for all x {0, 1}" with Ilxll_-< 3. In

fact, if Poly(S, f) is not identically zero, then for all y {0, 1}", there exists x {0, 1}"
such that Ilx- yll -< 3 and such that Poly($, f)(x) 0. Thus interpretations giving nonzero
values are "dense". It does not follow, however, that Poly(S, f)(x) -> 0 for all x {0, 1}"

iff P01y($, f)(x) > 0 for all x 6 {0, 1}" with [[xll < 3. For example, let S be the set of 2(n)
clauses over xl, Xz," , xn in which xi v xi v Xk and :i v :fi v Yk occur in S for all i, L k
with </< k. Define f. by f(C) 1 on clauses C of the form Yi v . v k, and f(C) 1
on clauses C of the form xi v xi v Xk. Suppose n->7. Then Poly(S, f)(x)>0 for all

x e {0, 1} with Ilxll -< 3, but Poly(S, f)(1, 1,..., 1)is
3

5. The unsatisfiable region of Euclidean space.
DEFINITION 7. Let M be the set of polynomials p with real coefficients over the

variables Xl,’’ ", x, such that p can be expressed as a sum of terms of one of the
following forms, for <] and/" < k:

agkXiXiXk,

biixixi
cixi

d.

In\In\
Note that such a polynomial is specified by)+)+n+l real coefficients. We

thus identify polynomials in M with points in N-dimensional Euclidean space, where

N=() +(.)+n+l. Usually we are interested in the set of rational coefficient

polynomials of M.
We would like to know which region of RN corresponds to polynomials p M such

that p(x)> 0 for all x {0, 1}". Such polynomials represent inconsistent sets of clauses.
Therefore we have the following definition.

DEFINITION 8. Let UNSATP be {p M: p(x)> 0 for all x {0, 1}}. We also use
UNSATP to refer to the corresponding subset of RN.

THEOREM 6. UNSATP is a convex polyhedral cone. That is, UNSATP is the
intersection of 2 halfspaces in . Also, if zUNSATP then azUNSATP for
all a > O.

Proof. Let w be an element of {0, 1}n. Suppose p is a polynomial in UNSATP. Then
p(w) is a sum of coefficients of p. Hence {p M" p(w)>0} is a halfspace of Nr.
Therefore UNSATP is the intersection of 2" halfspaces in NN. Since each halfspace is
convex, so is UNSATP. Also, if p(w)>0 then up(w)> 0 for all a > 0. Hence p
UNSATP implies ap UNSATP for all a > 0.

INFERENCE RULES FOR UNSATISFIABILITY 703

6. Inierence rules. We now show how the polynomials associated with sets of
clauses can be used to obtain more inference rules for unsatisfiability. That is, we obtain
inference rules that can be used to show that a set of clauses is unsatisfiable. It is
conceivable that the use of these rules, together with other inference rules such as
resolution, will make possible much shorter proofs than are possible without using these
rules. Therefore, this work is closely related to the NP vs. CoNP question.

We use GE(pl, P2) to abbreviate (Vx {0, 1}n)pl(x)_>-p2(x). Also, the polynomial
whose value is the constant k is written k. Thus GE(p, 1) means (’x {0, 1}n)p(x) -> 1.
Further, if f is a weighting function for a set S of clauses, then f_-> k abbreviates
(’C S)f(C) >- k. Similarly, f> k abbreviates (VC S)f(C) > k. Note that a set S of
clauses is inconsistent if[(::tf)GE(Poly(S, f), 1). We introduce inference rules involving
expressions of the form GE(p, q). For rules 1.6 and 1.8, assume that f(C) is an integer
for all C S.

TABLE
List of inference rules.

Group 1. Poly(S,)el + 2) Poly(S, fl) + Poly(S, 2)
2. Poly(S, kf)= k * Poly(S, f)
3. $1 N $2 Poly(S1 U $2, f) Poly(S1, f) + Poly(S2, f)
4. (S is inconsistent) iff (::1[) GE(Poly(S, f), 1)
5. (S is inconsistent) iff (Zlf) f_->0 ^ GE(Poly(S, f), 1)
6. f>0 =[(S is inconsistent) iff GE(Poly(S, f), 1)]
7. S1c S2 ^ f> O GE(Poly(S2, f), Poly(Sl, f))
8. fl > 0 ^ f2 2> 0 [GE(Poly(S,/1), 1) Ge(Poly(S, f2), 1)]
9. fl > 0 ^ f2 > 0 ^ Poly(S1, fa) Poly(S2, f2) S1 $2

10. $1 $2 = (SU $1 is inconsistent) iff (S t_J $2 is inconsistent)
Group2 1. GE(p,p)

2. GE(p, q) ^ GE(q, r) GE(p, r)
3. GE(px, ql) ^ GE(p2, q2) GE(pl + ql, P2 + q2)
4. GE(p, q) iff GE(-q,-p)
5. GE(ql, 0) ^ GE(q2, 0) ^ GE(pl, qa) ^ GE(p2, q2) GE(pl * P2, qx * q2)
6. k 0^ k20^ GE(pl, kx)^ GE(p2, k2) GE(pl * P2, kl * k2)
7. k > 0 = [GE(p, q) GE(kp, kq)]
8. GE(q, 1) [GE(pl, P2) GE(px * q, P2 * q)]
9. GE(xi, 0) for =< _-< n and GE(1 xi, 0) for =< =< n

10. GE(x, xk) for l<=i<=n,k>O
11. GE(x k, x) for =< =< n, k > 0

Group 3 1. S $2 = $2--- S
2. Pl P2
3. $1---$2 = [($1 is inconsistent) iff ($2 is inconsistent)]
4. pl---pz=k.pl.--k*p2
5. GE(px, k)^pl---p2GE(p2, k)
6. S1 $2 ^ f > 0 = [(f2)f2 > 0 ^ Poly(S1, fx) Poly(S2, f2)]

We now illustrate ways in which these rules can be used. Suppose S 1 is inconsist-
ent and S1 $2. Then by 1.6, GE(Poly(S1, 1), 1). Also, by 1.7, GE(Poly(S2, 1),
Poly(S1, 1)). Hence by 2.2, GE(Poly(S2, 1), 1). Hence by 1.6, $2 is inconsistent. Thus
we only need to worry about minimal inconsistent sets of clauses. These can be reduced
in number by 3.3. In addition, from 2.5, 2.7, and 2.9 it follows that GE(p, 0) is true if all
coecients of p are nonnegative. Also, it follows from 2.5, 2.7, and 2.9 that
GE(Poly(S, f), 0) for all S if f-> 0. Suppose S1 is a minimal inconsistent set of clauses,
and for some weighting function fl, Poly(S1, fa)= Poly(S2, f2)+p where f2>0 and
GE(p, 0) is known. Suppose $2 is known to be inconsistent. Then it follows by 1.6 that

704 DAVID A. PLAISTED

GE(Poly(S2, f2), 1), and by 2.3 that GE(Poly($1, fl), 1), and by 1.4 that $1 is inconsis-
tent. Hence we may be able to exhibit short proofs of inconsistency of minimal
inconsistent sets of clauses by methods other than isomorphism. Also, it could be that
distinct minimal inconsistent sets S1 and $2 of clauses will have the same polynomials
Poly(S1,/1) Poly(S2, fa), and in this way we may get short proofs of inconsistency.
Finally, the rules 2.10 and 2.11 can be used to eliminate powers of xi higher than the first
power after applying 2.5 or 2.6. The rules 2.5 or 2.6 will usually result in polynomials of
degree higher than 3, even after such reduction in exponents has been done.

The following limited results concern minimal inconsistent sets of clauses.
THEOREM 7. Suppose S1 and $2 are minimal inconsistent sets of clauses over

xl, x2, , Xk. That is, no proper subset of S1 or $2 is inconsistent. Suppose fl > 0 and
f2 > 0 and Poly(S1, fl) Poly(S2, f2). Then min {fl(C): C S1} min {f2(C): C $2}.

Proof. Let C1 S1 be a clause such that fl(C1) is minimal among {fl(C): C S1}.
Let C2 $2 be a clause such that f2(C2) is minimal among {f2(C): C $2}. Since S1 is
minimal inconsistent, SI-{C1} is consistent and so some interpretation makes all
clauses in S1 -{C1} true. Thus there exists x {0, 1} such that Poly(S 1, fl)(X) fl(C 1).
Hence Poly(S2, f)(x) f(C1) also. Since Poly(S2, f2)(x) is a sum of weights of clauses
in $2, f(C1)->_f2(C2). Similarly, f:(C2)->fl(C1).

THEOREM 8. Suppose S is a minimal inconsistent set of clauses over Xl, x2, , xn.
Suppose f is a weighting function. Then GE(Poly(S, f), 1) is true ifff> O.

Proof. If f> 0, GE(Poly(S, f), 1) follows because S is inconsistent. If for some
C S, f(C)<=O then GE(Poly(S, f), 1) is false, as follows: Since S is minimal incon-
sistent, there is an interpretation in which C is false and all other clauses of S are true.
Hence there exists x {0, 1} such that Poly(S, f)(x)=f(C). Since f(C)<=O, we cannot
have GE(Poly(S, f), 1).

There is still another technique that may be applied to show inconsistency. Let f be
a weighting function for S such that for no nonempty subset {C1, C2,. , Ck} of k
distinct elements of S does f(C1)+f(C2)+...+f(Ck)=O. Such weighting functions
can be obtained from instances of the knapsack problem that are known not to have a
solution. And such instances can be obtained by polynomial time reductions from
known inconsistent sets of clauses! In any event, if f is such a weighting function, and S
is inconsistent, then (/x {0, 1})Poly(S, f)(x) # 0. Hence if S1 is another set of clauses
and f is a weighting function for S1, and if Poly(Sl,f)=Poly(S,f), then S1 is
inconsistent also. Such a function f need not satisfy f => 0, and so we get a more general
method than that of rules 1.4, 1.5, and 1.6.

Finally, it would be interesting to know whether there is a "small" set An of axioms
from which the inconsistency of all inconsistent sets of 3-literal clauses over xa, , xn
can be shown by short proofs. These axioms would be of the form GE(Poly(S, f), 1) for
various S and f or of the form GE(p, 0) for various p. If so, unsatisfiability could be
decided in nondeterministic polynomial time relative to a "slowly utilized" oracle [7].
Along this line, how many distinct polynomials p are there in the set IP {Poly(S, 1): S
is a minimal inconsistent set of clauses over x, , x}? How many equivalence classes
are there in this set under the relationship pl---p2?

Not all of these equivalence classes are really necessary. Suppose we eliminate
from IP all equivalence classes of polynomials p satisfying the following condition"

There exist S1, $2, f, fz, q such that p Poly(S1, 1) and S1, $2 are minimal
inconsistent sets of clauses and Poly(S 1, fl) Poly(S2, fa) + q and f: > 0 and it is known
that GE(q, 0) is true.

If this condition is true, then given that $2 is known to be inconsistent we can
construct a short proof that S1 is inconsistent. Hence GE(Poly(S1, 1), 1) need not be

INFERENCE RULES FOR UNSATISFIABILITY 705

kept as an axiom. The polynomial q may have nonnegative coefficients, or be of the
form Poly(S, ’) 1 where S is known to be inconsistent and"> 0. Also, we can eliminate
from IP all equivalence classes of polynomials Poly(S, 1) such that S has a short
resolution proof of inconsistency. How many equivalence classes are then left in IP? If
this number is small, we might hope to get short proofs of inconsistency relative to a
small number of axioms.

Conclusions. Polynomials with several variables give insight into the structure of
unsatisfiable sets of clauses. The polynomials associated with sets of clauses seem to
have properties that do not have any relationship to the difficulty of proving inconsist-
ency of the sets of clauses. It is possible, therefore, that these polynomials will provide
methods of obtaining short proofs of inconsistency. It turns out that polynomials of
unsatisfiable sets of clauses correspondto a region of Euclidean space which is the
intersection of 2 halfspaces, for sets of clauses over n variables. Some inference rules
based on these polynomials can be used to show that a set of clauses is unsatisfiable.
Several problems associated with these polynomials have polynomial time solutions.

REFERENCES

[1] S. A. COOK, The complexity o]’ theorem proving procedures, Proceedings of Third Annual ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

[2] S. A. COOK AND R. RECKHOW, On the lengths ofproo]:s in the propositional calculus, Proceedings of
Sixth Annual ACM Symposium on Theory of Computing, 1974, pp. 135’-148.

[3] M. DAVIS AND n. PUTNAM, A computingprocedure]:or quantification theory, J. Assoc. Comput. Mach.,
7 (1960), pp. 201-215.

[4] Z. GALIL, On the complexity o]’ regular resolution and the Davis-Putnam procedure, Theoret. Comput.
Sci., 4 (1977), pp. 23-46.

[5] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[6] L. G. KHACHIAN, Polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR, 244 (1979),
pp. 1093-1096.

[7] D. PLAISTED, New NP-hard and NP-complete polynomial and integer divisibility problems, Proceedings
of the 18th Annual Symposium on Foundations of Computer Science, 1977, pp. 241-253.

[8],Some polynomial and integer divisibility problems are NP-hard, SIAM J. Comput., 7 (1978), pp.
458-464.

[9],Sparse complex polynomials and polynomial reducibility, J. Comput. System Sci., 14 (1977), pp.
210-221.

[10] J. A. ROBINSON, A machine oriented logic based on the resolution principle. J. Assoc. Comput. Mach., 12
(1965), pp. 23-41.

[11] G. S. TSEITIN, On the complexity of derivation in propositional calculus, in Studies in Constructive

Mathematics and Mathematical Logic, Part II, A. O. Slisenko, ed., (translated from Russian),
Consultants Bureau, New York, 1969, pp. 115-125.

SIAM J. COMPUT.
V ol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0006 $01.00/0

CONSTANT TIME GENERATION OF ROOTED TREES*

TERRY BEYER? AND SANDRA MITCHELL HEDETNIEMI$

Abstract. This paper generalizes a result of Ruskey [SIAM J. Comput., 7(1978), pp. 424-439] for
generating k-ary trees lexicographically to generating all rooted trees with n vertices. An algorithm is
presented which generates canonical representations of these trees in a well-defined order. As in other works,
the average number of steps per tree is constant.

Key words, rooted tree generation, lexicographic order, algorithm

1. Introduction. Interest has arisen recently in generating random trees, all binary
trees, and all k-ary trees. The present work has centered on rooted trees, that is, those
trees with a designated vertex as the root. The algorithm of Nijenhuis and Wilf [3]
provides a method for generating random trees, but it does not provide for a systematic
generation of all trees. Read [5] has formulated an algorithm to generate all trees on n
vertices. This algorithm unfortunately must process trees on n 1 vertices.

The generation of all binary trees by Zaks [10] and Ruskey and Hu [7] uses
"feasible" sequences which are altered so as to remain "feasible" and create the "next"
tree in lexicographic order. Both Zaks [11] and Ruskey [6] have generalized this
technique to k-ary trees. The feasible sequences which Zaks manipulates are related to
the degrees of the vertices in the tree ordered by a preorder traversal of the tree. The
sequences which Ruskey employs in his algorithm contain the level numbers of the
endvertices in the tree; where an endvertex is a vertex of degree 1 and the level of a
vertex is the number of vertices on the path from the root to an endvertex, counting both
the root and the endvertex in the sum. The algorithm for generating k-ary trees with n
leaves in lexicographic order is O(k) per sequence generated.

Trojanowski [9] has presented another algorithm for generating all k-ary trees
which manipulate tree permutations.

Zaks [10] has extended his result to the case of a general tree. His feasible
sequences contain n entries for a tree of n vertices, and the work in generating the next
sequence is O(1).

In this paper we generalize the work of Ruskey to the generation of all rooted trees
on n vertices. The feasible sequences used to generate the trees contain an entry of the
level number for all vertices in the tree. The average number of computational steps per
tree generated is shown to be uniformly bounded by a constant, independent of n.

2. Level representation of rooted, ordered trees. A tree T is rooted if there exists a
distinct vertex v designated the root. The remaining vertices are partitioned into disjoint
sets Tul, T,2," , T,k which are subtrees of v rooted at Ul, u2," , u,, respectively. A
rooted tree is said to be ordered if there exists a linear order imposed upon the subtrees.

Define the level of a vertex v, l, to be 1 if v is the root; or one greater than the level
of its parent, where v’s parent is the adjacent vertex on the path from v to the root. A
level sequence L(T)=[1112"’" 1,] for a given rooted, ordered tree with n vertices is
obtained by traversing T in preorder (cf. Knuth [2]), and recording the level of each
vertex as it is visited. T, the subtree of T rooted at vertex i, is described by a contiguous

* Received by the editors January 24, 1979, and in final revised form January 31, 1980.
t Computing Center and Department of Computer and Information Science, University of Oregon,

Eugene, Oregon, 97403.
$ Department of Computer and Information Science, Universtity of Oregon, Eugene, Oregon, 97403.

7O6

CONSTANT TIME GENERATION OF ROOTED TREES 707

sequence of L(T), denoted L(T/), which begins with li and ends just before the first
element, if any, which is less than or equal to li (cf. Fig. 1).

i

2

3

4 / 4

L(T) [i 3 3 2 3 4 4 3 2]

FIG. 1. An ordered, rooted tree T, with vertex levels shown, and its level sequence.

The level sequence provides a linear order of the subtrees (cf. Scoins [7]). Given
two ordered trees T1 and T2, T1 dominates T2, denoted T1 > T2, if L(T1) > L(T2) in the
lexicographic ordering of integer sequences. It follows from the definition that any two
trees having the same level sequence are isomorphic.

Two subtrees Ti and T. are said to be adjacent subtrees of T if vertices and / are
consecutive children of the same parent. (Note: L(Ti) and L(T/) are consecutive
subsequences of L(T).) If vertex is a child of the root of T, Ti is a principal subtree o[T.

3. Canonical representation of rooted trees. Given a rooted tree T, there exist
many non-isomorphic ordered trees corresponding to T (and hence many level
sequences). We use the following to ensure a canonical ordering of any rooted tree (i.e.
a specific ordering of the subtrees).

The canonical ordering of T will be that ordered tree T* which dominates all other
ordered trees T’ corresponding to T, i.e. L(T*)> L(T’) for all T’ corresponding to T.
We denote the canonical level sequence by L(T)*. Fig. 2 illustrates two trees T1 and T2

T
2

FIG. 2. Two ordered trees with T1 dominating Tz.

which correspond to the same underlying rooted tree T. Since these are the only distinct
trees corresponding to T, and since L(T)> L(T2), L(T)* [1 2 3 3 2], and T1 T*.

A level sequence L(T) of a rooted, ordered tree T is regular if every pair of
adjacent subtrees Ti and T., i< j, appear in decreasing order of dominance, i.e.
L(Ti) >=L(T.).

LEMMA 1. An ordered tree Tis the canonical ordering o[its underlying rooted tree TR,
if and only if, L(T) is regular.

Proof. Assume L(TR)* L(T) but L(T) is not regular. Then there exist adjacent
subtrees Ti and T. such that <j and L(Ti) < L(T/). Let T’ be the ordered tree obtained
by exchanging Ti and T.. Then L(T’)> L(T) which contradicts L(TR)* L(T).

708 TERRY BEYER AND SANDRA MITCHELL HEDETNIEMI

By induction we show that any rooted tree has at most one corresponding regular
sequence. For a tree with one vertex this follows immediately. Assume that all trees
with less than n vertices have at most one regular sequence. Let L(T) be a regular
sequence for a rooted tree with n vertices. L(T) consists of a 1 followed by
subsequences corresponding to the principal subtrees of T. Let T/be a principal subtree.
Subtracting 1 from each element in L(Ti) results in a level sequence L’(Ti) for the
rooted tree Ti. Since L(T) is regular, L’(T) is also regular. But by the inductive
hypothesis, L’(Ti) is the unique regular sequence for Ti. Furthermore, the relative order
of the subsequences is unique up to isomorphism since L(T) is regular. Therefore, L(T)
is the only regular sequence representing the rooted tree T.

LEMMA 2. IlL(T) is regular, and two consecutive elements have a value 2, then all
the remaining elements have a value 2.

Proof. Let li li+l 2 in the regular sequence L(T). Then li must represent a
principal subtree of T consisting of a single vertex. Since the principal subtrees appear
in lexicographic order, and since 2 is the least possible sequence for a subtree, all
following subtrees mtst be represented by 2’s.

4. Successor function. One conceivable method for generating all rooted trees on
n vertices would be to generate, in lexicographically decreasing order, the level
sequences for all ordered trees on n vertices and filter out those which are not regular.
We will now show, however, that it is possible to define a simple successor function
which allows us to pass directly from one regular sequence to the next.

Let L(T)- [/1/2 ln] be a level sequence containing an element greater than 2.
Let p be the position of the rightmost such element. Let q be the rightmost position
preceding p such that lq lp 1. Note that the vertex corresponding to lq is the parent of
the vertex corresponding to lp. Define the successor of L(T) to be the sequence
s(L(T))--[$1, $2"’" Sn], where

(i) Si--" li for i= 1, 2,..., p-l,

(ii) Si Si-(p-q) for p, , n.

The relationships between L(T) and s(L(T)) can be seen from the following lines:

L(T)=[I1 "lq"" lp-1 lp 2 2 2"’’

s(L(T))=[ll. lq l-I lq lp_ l,].

Tq T T
The subsequence labeled Tq represents a subtree of s(L(T)) which is repeated as

many times as possible, concluding with a partial repetition if necessary to reach a total
of n vertices.

Here are some examples of canonical representations and their successors.

L(T) s(L(T))

[123222] [122222]

[1234223 [12 3 3 3 3]

[12343222222] [123423423423]

[1234552222] [1234545454]

LEMMA 3. IlL(T) is regular and contains an element greater than 2, then s(L(T)) is
also regular.

CONSTANT TIME GENERATION OF ROOTED TREES 709

Proofi Let </’ be any two indices corresponding to adjacent subtrees Ti and T. in
s(L(T)). Let p denote the index of the rightmost value which is not 2, and let q denote
the index of the corresponding vertex’s parent. If q-< i, then T/ and T. are adjacent
subtrees in the sequence Tq, Tq, Tq," from which it follows that Ti >= r]. If < q and
L(T.) does not overlap position p, then Ti and T. are also adjacent subtrees in the
regular sequence L(T), and hence Ti _-> T.. In the remaining case, < q and T does
overlap position p. In this case, the subsequences representing Ti and T. are the same in
L(T) as in s(L(T)) up to position p. In that position the value for vertex p is one less in
s(L(T)) than it was in L(T). Hence we still have T/>_- T..

LEMMA 4. Let L(T) be a regular sequence of length n >-_2. If L(T) is of the form
[1 2 2... 2], then it is the lexicographically least sequence of length n. Otherwise,
s(L(T)) is defined and is the first regular sequence following L(T) in the lexicographic
ordering.

Proof. The fact that [1 2 2 2] is the least sequence is immediate. By Lemma 3,
s(L(T)) is regular. It remains to show that no regular sequence is lexicographically
between L(T) and s(L(T.)). Let L(T)=[ll...ln], s(L(r))=[sl...sn], L(T’)=
[ml m], and assume that L(T) > L(T’) > s(L(T)). Let p, q, and Tq be ag previously
defined. Since li Si for all 1 =< =< p, all three sequences are identical in the first p- 1
positions. If lp rap, then L(T’) L(T), since li 2 for -> p + 1, and since the only 1 in
L(T’) appears in position 1. But since L(T’) L,I’), lp rap. But s lo- 1. Hence,
since m s for all < p and L(T) > s(L(T)), we have mp sp. Thus the first position, r,
in which L(T’) and s(L(T)) differ, is such that r > p. But with respect to s(L(T)), this
must occur in one of the copies of Tq with another copy of Tq to its left. Thus in the
sequence [ml m,] there are two adjacent subtrees not in lexicographic order. That
is, L(T’) is not regular.

S. Generating algorithm. An algorithm to generate all rooted trees on N vertices
begins with the lexicographically greatest possible regular sequence, then passes from
one regular sequence to the next using the successor function until finally the lexico-
graphically least sequence has been generated.

We present in Fig. 3 a program to implement this algorithm written in FLECS 1], a
structured extension of Fortran. Variables L, N, and P correspond to the level
sequence, the number of vertices, and the position p in 4, respectively. The array
PREV is used to quickly find the values of q as given in 4. If value appears in array L
to the left of position P, then PREV(i) is the index of the rightmost such appearance;
otherwise, PREV(i)= 0. SAVE is used to efficiently update PREV when adjusting P.

6. Analysis of complexity. The average computational effort per tree generated is
bounded by a constant which is independent of N. That is, there is a constant K such
that given N _-> 1, the effort expended in generating all A(N) rooted trees on N vertices
is less than K A(N).

For N_->4, the number of rooted trees is greater than N. Hence the cost of
generating the first tree, which is linear in N, can be ignored. It remains to analyze the
total cost of generating the next tree over all A(N) invocations.

Since initially P N and finally P 1, P undergoes a total change in value ofN- 1.
But P is increased once for each execution of Line 31, and is decreased once for each
execution of Line 36, and is not altered elsewhere. Hence, it remains to show that the
total number of decrements is <=K A(N) for some constant K.

On entry to GENERATE-NEXT-TREE, L contains a regular sequence and P
indicates its rightmost non-2 element. By Lemma 2, there cannot be two consecutive 2’s
to the left of position P. Thus, if the condition in Line 26 is false, execution passes

710 TERRY BEYER AND SANDRA MITCHELL HEDETNIEMI

1 SUBROUTINE GENRT (N, L, PREV, SAVE)
2
3 INTEGER N, L(N), PREV(N), SAVE(N)
4 INTEGER P, DIFF, I
5
6 GENERATE-FIRST-TREE

CALL PROCESS (N, L)
8 WHILE (P .GT. i)
9 GENERATE-NEXT-TREE

i0 CALL PROCESS (N,L)
Ii FIN
12 RETURN
13
14 TO GENERATE-FIRST-TREE
15 DO (I+I,N) L(1) I
16 WHEN (N .LE. 2) P I
17 ELSE P N
18 IF (P .GT. i)
19 DO (I=I,P-I) PREV(1) I
20 DO (I=I,P-I) SAVE(l) 0
21 FIN
22 FIN
23
24 TO GNERATE-NEXT-TREE
25 L(P) L(P) i
26 IF (P .LT. N .AND. (L(P) .NE. 2 .OR.
27 DIFF P- PREV(L(P)
28 WHILE (P .LT. N)
29 SAVE(P) PREV(L(P)
30 PREV(L(P) P
31 P=P+I
32 L(P) e (P-DIFF)
33 FIN
34 FIN
35 WHILE (e(e) .EQ. 2)
36 P=P- i
37 PREV(L(P) SAVE (p)
38 FIN
39 FIN
40
41 END

L(P-I) .NE. 2)

FIG. 3. A program to generate rooted trees.

directly to Line 35 and no more than two iterations of the loop occur. If the condition in
Line 26 is true, then repeatedly a copy is made to the right of the subsequence from the
left of the subsequence of a subsequence which does not have two consecutive 2’s in it.
In this case, the loop in Lines 35-38 will be executed at most once. In either case, the
loop is executed at most two times per invocation. Thus, the number of decrements of P
is -<K A(N).

Although the proof shows that on the average no more than two times is the loop
executed per tree generated, a more complicated proof could be given which lowers this
bound. Empirically, we have found that the average number of executions decreases as
N increases. For N 7 the loops are executed .6 times per tree generated, and by
N 11 this number is down to .5.

A variant of Subroutine GENRT has been executed on a DEC-System-10
(KA-processor), and found to generate roughly million trees per minute.

7. Computation of A(N). It is significant to enquire exactly how many rooted trees
exist and therefore will be generated upon execution of Subroutine GENRT for a given
input value of N; i.e. what is A(N)?

In Knuth [2], the following recursive function of Otter [4] is presented for
calculating this number:

N A(N + 1)=A(1) S(N, 1)+ 2 A(2), S(N, 2)+... +N ,A(N), S(N, N),

CONSTANT TIME GENERATION OF ROOTED TREES 711

where"

S(N, K) E [A(N + 1 -J + K)].
<=j<=N/K

The S(N, K) terms can be calculated very simply using iterations where the step
size is dependent upon J and K. Table 1 presents the values A(N) for the first 10 values
of N. It also displays the number of trees of various height that are generated;
Subroutine GENRT, in fact, generates the trees according to height.

Although it is common in the literature (cf. [6]-[11]) to provide ranking and
unranking algorithms based on the lexicographic order, Table 1 illustrates that this
might be quite difficult. Unranking algorithms are often used to generate a random
tree. Since the process of generating trees is quite efficient, a suitable alternative would
be to simply stop the generative process at a randomly determined time.

TABLE 1.
A catalog o[rooted unordered trees having fewer than ten vertices.

Number of
Vertices A(N) Number of trees of DEPTH

2 3 4 5 6 7 8 9 10

2 0
3 2 0
4 4 0 2
5 9 0 4 3
6 20 0 6 8 4
7 48 0 10 18 13 5
8 115 0 14 38 36 19 6
9 286 0 21 46 ’113 61 26 7
10 719 0 29 147 225 180 94 34 8

7. Concluding remarks. The basic level sequence generation algorithm presented
in this paper has also been adapted to the generation of unrooted (free) trees. The
resulting algorithm also appears to have the constant time per tree property. An
implementation of this algorithm generates roughtly 1/4 million trees per minute on the
DEC-System-10 (KA-processor).

Read [5] has proposed a very general mechanism for generating classes of
combinatorial objects. In the case of rooted trees, the method presented in this paper
appears to be superior because of both its actual speed and its constant time per tree
property. Read’s method would not appear to have the constant time per tree property,
since it involves processing representations on n 1 vertices in order to get represen-
tations on n vertices.

Acknowledgments. We wish to thank Professors Steve Hedetniemi and Andrzej
Proskurowski for encouragement and stimulation.

REFERENCES

[1] T. BEYER, FLECS: User Manual, Computing Center, University of Oregon, Eugene OR, 1975.
[2] D. KNUTH, Fundamental Algorithms, Addison-Wesley, Reading MA, 1968.
[3] m. NIJENHUIS AND H. WILF, Combinatorial Algorithms, Academic Press, New York, 1975.
[4] R. OTTER, The number of trees, Ann. Math., 49 (1948), pp. 583-599.

712 TERRY BEYER AND SANDRA MITCHELL HEDETNIEMI

[5] R. READ, How to grow trees, in Combinatorial Structures and their Applications, Gordon and Breach,
New York, 1970.

[6] F. RUSKEV, Generating t-ary trees lexicographically, this Journal, 7 (1978), pp. 424-439.
[7] F. RUSKEV AND T. C. Hu, Generating binary trees lexicographically, this Journal, 6 (1977), pp.

745-758.
[8] H. SCOINS, Placing trees in lexicographic order, Machine Intelligence, 3 (1969), pp. 43-60.
[9] A. TROJANOWSKI, Ranking and listing algorithms]:or k-ary trees, this Journal, 7 (1978), pp.

492-509.
10] S. ZAKS, Lexicographic generation of ordered trees, Theoret. Comput. Sci., 10 (1980), pp. 63-82.
11] , Generating k-ary Trees Lexicographically, University of Illinois Tech. Rept. UICSCS-R 77-901,

Urbana IL, 1977.
12] S. ZAKS AND D. RICHARDS, Generating trees and other combinatorial objects lexicographically, this Journal,

8 (1979), pp. 73-81.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0007 $01.00/0

ON THE COMPLEXITY OF BILINEAR FORMS
WITH COMMUTATIVITY*

JOSEPH JA’JA’

Abstract. We consider the general problem of computing sets of bilinear forms in commuting indeter-
minates. We develop lower bound techniques which seem to be more powerful than those already known in
the literature. We show that duality theory as it is known for bilinear forms with noncommuting indeter-
minates does not hold in the commutative case; we prove that the multiplication of 2 x n by’n x 2 matrices
requires at least 27n/8] multiplications while it is possible to multiply 2 x 2 by 2 x n matrices using only 3n + 2
multiplications. Moreover we settle the question of whether commutativity can reduce the number of
multiplications by a factor of 1/2, by showing that this can never happen. We also show that, over algebraically
closed fields, the complexity of computing a pair of bilinear forms is the same whether or not commutativity is
allowed.

Key words, algebraic complexity, bilinear forms, matrix multiplication, tensor rank

1. Introduction. The problem of computing sets of bilinear forms has received
considerable attention in recent years (e.g., [2], [5], [6], [8], [9], [12], [13], [14], [15]).
This class includes many important problems such as the multiplication problems of
matrices and polynomials. In this paper, we shall investigate the multiplicative
complexity of a set of bilinear forms with commuting indeterminates as it relates to the
same problem with noncommuting indeterminates. We will establish the fact that
duality theory does not hold in the commutative case by showing that the multiplication
of 2 n by n 2 matrices requires at least [27n/8] multiplications over the integers,
while it is possible to multiply 2 2 by 2 n matrices (or n 2 by 2 2) using only 3n + 2
multiplications with integer coefficients [20], [21]. On the other hand, we show that,
over algebraically closed fields, the complexity of computing a pair of bilinear forms is
the same regardless of whether or not commutafivity is allowed. We feel that, in fact,
commutativity will have little effect in general whenever the constants are drawn from
an algebraically closed field. We also develop lower bound techniques which seem to be
more powerful than those already known for the commutative case [15]. Moreover, we
settle the question of whether commutativity can reduce the number of multiplications
required to compute a set of bilinear forms by a factor of by showing that this can never
happen.

2. Preliminaries. We will review quickly some of the formulations of bilinear
complexity known in the literature, as they will be used freely in later sections. The
general problem of computing a set of bilinear forms can be defined as follows. Let K
be a commutative ring (with a unit element) and let x =(xl, x2,’", xp)r and y
(yl, y2, , yq)r be two column vectors of indeterminates. We have to compute m => 1
bilinear forms

p q

Bi Y riikXiYk xTGiy, 1, 2," ", m, riik E K,
]=1 k=l

where Gi is a p q matrix with elements in K. Our model of computation consists of the
class of bilinear programs, where a bilinear program consists of a sequence of instruc-
tions of the form1 a. bi, 1 _-< j _-< l, E { +, -, x }, each f. is a new variable, and each ai or

bi is either (1) an ft, < i, or (2) an indeterminate or (3) a constant from K. All the active

* Received by the editors March 17, 1979, and in revised form September 10, 1979.

" Department of Computer Science, Pennsylvania State University, University Park, Pennsylvania
16802. This research was supported in part by the National Science Foundation under Grant MCS 78-06118.

713

714 JOSEPH JA’JA’

multiplications are multiplications between linear forms of x and y with coefficients
from K. It is well known that it is no loss of generality to consider this class of algorithms
rather than the more general class of straight-line programs [15], [22]. Based on these
facts, we introduce the following definition.

DEFINITION. Given a set of bilinear forms {Bi}im= over a commutative ring K, the
commutative complexity of the set {Bi}im=l is the smallest integer/x such that

B,= Y ,,])(x, y)fl(x, y), l <-i<=rn,
/--1

where ft(x, y) and f (x, y) are linear forms in x and y over K.
If we assume that the indeterminates do not commute, then we can restrict the

active multiplications to be of the type f(x) f’(y), where f(x) and f’(y) are linear forms in
x and y respectively.

DEFINITION. Given a set of bilinear forms {Bi}i% over a commutative ring K, the
noncommutative complexity (or simply, complexity) is the smallest integer 8 such that

(*) Bg= E flqf(x)f;(y), l<=i<=m,
i=l

where f/.(x) and f(y) are linear forms in x and y respectively.
From now on, we will use the notation 6{Bi} or 8{Gi} to mean the noncommutative

complexity of {Bi}7; 1, and/x{Bi} or/x{Gi} to mean the commutative complexity of the
same set. Since studies in bilinear complexity nearly always have dealt with the case of
noncommutative indeterminates only, we will try to extend the techniques already
known in this field to get results for the commutative case. We now recall these results
which will be needed later.

Let f/.(x)= (b/., x) and f.(y)= (c/., y)in (,); we have

Bi xTGiy Bq(b/., x}(c/., y} x T qb/.c y,
/.--I

i=l,2,...,m.

Since the above equality must hold for all values of the indeterminates x and y over K,
we conclude that

6

Gi= qb/.cf, i=1,2,""
/’=1

,m.

Therefore, 8 is equal to the smallest number of rank one matrices necessary to include
the Gi’s in their span [2], [6], [14].

Another interesting formulation given in [2] and [14] is obtained by introducing a
set of indeterminates {si}i%l to yield the trilinear form

p q

h(s,x, y)= E siBi . , E rqgsixiyg.
i=1 i=1 /.=1 k=l

It is easy to see that 8 is the smallest number such that

6

h(s, x, y)= Y’, <l, s><bl, X><Cl, y>,
/=1

and we now have a completely symmetric problem with respect to s, x and y; for
example, the above problem is equivalent to that of computing p bilinear forms

COMPLEXITY OF BILINEAR FORMS 715

associated with the m x q matrices

G (r,,,)i,, j , 2,..., p.

This property, referred to as duality in the literature, was also discovered independently
by Hopcroft and Musinski [8], Probert [16] and Strassen [17]. As an immediate
corollary, the complexity of multiplying an m x n matrix by an n x p matrix is the same
as that of multiplying an m x p matrix by a p x n matrix, for example, and we talk about
the (m, n, p) matrix multiplication problem. As we will see later, this property does not
hold in the commutative case.

Another definition, which we will find quite useful, is that of the characteristic matrix
G(s) Y= sG associated with the set B xrGiy, 1, 2,- , m, where the {s}=x
are, as before, a set of indeterminates. The corresponding commutative and noncom-
mutative complexities will be respectively denoted by 8{G(s)} and {G(s)}. Note that 8
is the smallest number such that

a(s) 2 (tj, s}bic, Bj E Km, b gp and cj Kq.
/=1

An interesting observation made in [2] and [4] is that 8 is invariant under the action
of the group 3 Gl(K, m) x GI(K, p) x Gl(K, q) in the following sense1: for any
(P, O, R) c, the trilinear form h(Ps, Ox, Ry) has the same length as that of h(s, x, y).
Of particular interest is the subgroup I of c, called the isotropy group, consisting of those
elements of which satisfy h(Ps, Ox, Ry)= h(s, x, y), and which could be used to
generate many optimal algorithms out of a single optimal algorithm. We will see how to
use this fact to establish good lower bounds (see also [7], [10]).

3. Lower bound techniques. Howell and Lafon [10] have shown how linear
independence arguments can be used to obtaifl a lower bound for the quaternion
product in the commutative case. Van Leeuwen and van Emde Boas [15] have stated a

general criterion for any set of bilinear forms; they applied this argument to several
specific problems and obtained (relatively) good lower bounds. In this section, we
combine the linear independence argument with other techniques, used in determining
lower bounds for the rank of a tensor [2], to obtain more powerful lower bound
techniques.

Let Bi xrGiy, 1 <- <- m, be a set of bilinear forms over a commutative ring K. The
commutative complexity of computing {Bi}i%l is the smallest integer x such that

B, 20lilfl(X, Y)f’/(X, y), i= 1, 2,"" ", m,
/=1

where Olilg fl(X, y) and fl(x, y) are two linear forms in x and y, say fl(X, y)=
(at, x)+(bl, y} and f(x, y)= (all, x)+(l, y). Hence,

Bi E Ol.il{(al, x)+(bl, Y)}{(t, x)+(l, y)},
I=1

i=l,2,...,m.

Expanding and substituting x rGiy for Bi, we get

xToiy E OZil{XT ~T T(al)T) "b
T T

alal x Jr- X y X (llb)y q" y (bl)T)y},
/=1

1, 2, , m,

GI(K, n) denotes the general linear group of nonsingular n x n matrices over K.

716 JOSEPH JA’JA’

’ Olilalal E Ceilblv. --0,
/=1 /=1

Gi 20lil{al) --I- iib
/=1

i=l,2,...,m.

We will use () to establish several of the results in this section.
We can also formulate the above problem in a matrix times a vector form [21] as

follows:

B1 FxTGI
y d(x)y.

Since the indeterminates commute, we equally have

Bi= rqgykx,= (rijkYk) X,,
]=1 k=l]=1 k=l

and the above multiplication problems ean be also viewed as a product of the form
d(y)x. We now recall an important notion to get lower bounds [21]. Let H(x) be a p x q
matrix, whose entries are functions of the vector x over a field . The rows
rl(x), , rp(x) are said to be linearly independent if whenever .i1Airi(X) E q, Ai ,
then Ai 0 Vi. Otherwise, the rows are calle.d linearly dependent. Define the row rank of
H(x) to be the maximum number of linearly independent rows of H(x). We can
similarly define the column rank of H(x). The following result is well known r21], [5].

LEMMA 3.1. Let {Bi}im=l be a set of bilinearforms over a field , and let (x) be as

defined above. Then the commutative complexity of computing {Bi}7’=1 satisfies

{Bg}_-> max (column rank (((x)), row rank (((x))).
The same is true for ((y).

Before establishing the next lower bound result, we give the following charac-
terization of/x{G(s)} which has been shown in [9], [10].

THEOREM 3.2 [9], [10]. Let G(s) be the characteristic matrix associated with a given
set ofp x q bilinearforms {Bi xTGiY}im=l over a ring K (of characteristic 2). Let N(s)
be a (p + q) x (p + q) matrix whose entries are linear in s and such that

N(s) + N(s)T [0 Go(S)]rG()

where 8{N(s)} is minimal among all (p + q) (p + q) matrices N(s) which satisfy the
above equation. Then 8{N(s)} =/z{G(s)}.

Proof. (a) Consider () again"

~r20lilalal "-20lilbl)--O,
/=1 /=1

Gi 20lil{al) at- lIb
/=1

i=l,2,...,m.

COMPLEXITY OF BILINEAR FORMS 717

Note that

i=1,2,... ,m.

Now, if we take H(s) Ei=I sini, where

(**) Hi ol.il[al] [lT
/=1 bl

then

i=1,2,...,m,

H(s)+H(s)T] T1 G<

Equation (**) implies that 6{H(s)} <=/x{G(s)} and hence 6{N(s)} <-/x{G(s)}.
(b) We now prove the reverse inequality. Let N(s) be any (p + q) (p + q)

characteristic matrix of minimal degree and which satisfies

It follows that

Ix T

0
N(s) + N(s)T G(s)T

YT]{N(s) + N(s)T} [x] __Ix T

Y
yr][0

O(s)
X

y]N(s) x =xTG(s)y
Y

if characteristic (R)# 2.
Consider any expansion for N(s) into rank one matrices, say

N(s)= <al, s>[alll[bl b],
/=1 a123

where all, hll E Kp and al2, hi2 Kq. Thus,

xTG(s)Y E <Ogl, S>(xTall -[- yTal2)(blX q- b2y)
/=1

and hence

/x {G (s)} =< 8{N(s)}.
We use the above characterization to establish a next lower bound result. The main

idea is the same as that of substitution arguments (see, e.g., [1]) or partitioning
techniques [2]. Suppose a set of bilinear forms is partitioned into two subsets, the first
indexed by {Sg}?= 1, the second by {tg}=l. Let the corresponding characteristic matrix be
given by G(s)+H(t). Without loss of generality, we assume the Hi’s to be linearly
independent.

718 JOSEPH JA’JA’

THEOREM 3.3. Let G(s) + H(t) be as given above. Then, over any ring K, we have

/x {G(s) + H(t)} => dim + min/z {G(s) + H(Rs)},
R

where R is a (dim t) (dim s’) matrix over K.
Proof. From Theorem 3.2, we have tx{G(s)+H(t)}=6{Nl(s)+N2(t)}, where

[0 G(s)+ H(t)]{NI(s)+N2(t)}+{Nx(s)+N2(t)}T=
G(s)T +H(t)T 0

and 6{Nx(s)+N2(t)} is minimal. Using the partitioning technique [2, Thm. 10], we
obtain

6{N(s) + N2(t)} >=dim +min 6{N(s) + N2(Rs)},

and thus
z{G(s)+H(t)}>=dim t+min tx{G(s)+H(Rs)}.]

R

The main lower bound result stated in [15] is an immediate corollary of Theorem
3.3 and Lemma 3.1.

We now establish a lower bound theorem which, for a small number of bilinear
forms, gives stronger lower bounds than those of the previous techniques.

THEOREM 3.4. Let G(s) be the characteristic matrix ofa set ofbilinearforms {Bi}n=l
over a ring K. Then

0 G(s)

Proof. We again consider (?)"

(,)

~T
tx

20ilalal--20ilblT’-O,
/=1 /=1

Gi-- 2 tXil{al + lb f}, 1, 2," , m.
/=1

Notice that

[ai 0]

__
Olil[al’+Ibf0 Gr = 0

i_1
tTil

o]b*la + bl"
"+- Ogil[l] [b

/=1 /l i=l,2,...,m.

It follows that 2/x rank one matrices include the [Gi 0]0 G/7" in their span. Therefore,

6
0 G(s) T 2.

COROLLARY. Suppose we partition a set of bilinear forms into two subsets indexed
respectively by s and t. Then

l
miRn 6[G(s) +H(Rs) 0

tz{G(s)+H(t)}>-dim t+- 0 G(s)T +H(Rs)T

where R is a (dim t) (dim s) matrix over K.

COMPLEXITY OF BILINEAR FORMS 719

It is well known that, for any characteristic matrix G(s), we have 6{G(s)} -<

2tz{G(s)} [21]. An open question is whether there exist bilinear forms for which
commutativity will reduce the number of multiplications by a precise factor of 1/2. Using
the above theorem, we will prove that this can never happen.

THEOREM 3.5. Let G(s) be any characteristic matrix whose row and column ranks
are r and c respectively. Then, we have

ix{G(s)}.>=1/2{6{G(s)I+max (r, c)} > 1/26{G(s)}.

Pro@ We know that

6[G(s) 0]>6{G(s)}+column rank {Gr(s)}=6{G(s)}+r.
0 Gr(s)

In [12], we proved that

and hence

6[G(s) 0] [Gr(s) 0]0 Gr(s =6
0 G(s)

[a(s)0 0] > 6{Gr (s)} + column rank {G(s)} 6{G(s)} + c.
G(s)

Using Theorem 3.4, we get

tx{G(s)}>1/2{6{G(s)}+ (r, c)} >16{G(s)}.2 [3

COROLLARY. There exist no sets of bilinearforms for which commutativity reduces
the optimal number of multiplications by 1/2.

Note that Theorem 3.5 gives

(s) lff t ff-(s)
[J" {mnnn } -’1.0 "1..tv } 31- n 2},

where M(’, is the characteristic matrix of the (n, n, n) matrix multiplication problem.
We will now give an example to show that our lower bound techniques will produce

stronger lower bounds than any of the previously known techniques.
Let n 2k, k 6 Z+. Consider the computation of the following pair of bilinear

forms,

B1 XlYl + x2Y2 +" + x,y,

B2 xy2 + x3Y4 +" + Xn-lYn.

This can be viewed as the following multiplication problem:

[;1 X2 X3 Xn-1 Xn] Yl

Xl 0 X3 0 0 Xn-1 Y2

Applying the techniques of [15], it is not possible to obtain anything better than
n + 1 as a lower bound. However, using our techniques, we will see how to obtain 3n/2
as a lower bound.

720 JOSEPH JA’JA’

THEOREM 3.6. The complexity of computing the two bilinear forms
Bl Xl ya + x2Y2 + + xnyn,

Be xlY2 + x3Y4 +" + Xn-lYn,

is precisely [3n/2], even if we use commutativity.
Proof. We will illustrate the case n 4 and the same proof carries for any n. Note

that the characteristic matrix is given by

G(s) Sl 0

[OSlS .0 0 $1

From Theorem 3.4, we have

[G(s).{a(s}_-__ 0
Rearranging columns, we get

$2

$1

0
0

H(s) =-
0
0

0
_0

o]1Gr(s) 6{H(s)}.

0 0 0 $1 0 0

0 0 0 0 0 0

$2 0 0 0 Sl 0

Sl 0 0 0 0 0

0 Sl 0 0 0 0
0 $2 0 0 0 $1

0 0 SI 0 0 0

0 0 $2 0 0 0

Applying Theorem 10 of [2] to the last four columns, we get

0

0

0

0

0
0

0

$1-

6{H(s)}>-4+6

where ai, i, ri, "ri E K.

-$2 -[- CglS1 a2S1 a3S1 a4S1

$1 0 0 0

lSl $2 "[-/2S1 /3S1 /4S1
0 Sx 0 0

0 0 sa 0

rlSl rzs1 s2 + r3sl r4s1

0 0 0 $1

T1S1 T2S1 T3S1 $2 -[- T4S1

Using proper row operations, we obtain

8{H(s)}>=4+6

-s2 0 0 0

s1 0 0 0

0 $2 0 0
0 s 0 0

0 0 s1 0
0 0 $2 0

0 0 0 s1

0 0 0 $2

=12.

Therefore, pc {G(s)} >- 1/26{H(s)} >- 6. It follows that/x{G(s)} 6.

COMPLEXITY OF BILINEAR FORMS 721

4. Nonvalidity of duality theory for matrix multiplication problems. As we have
mentioned in the Introduction, each set of bilinear forms is equivalent to five other sets
of bilinear forms obtained by permuting the indices of the corresponding trilinear form.
This property, which is known as duality in the literature, has been used to obtain new
algorithms (e.g., [8]) and to establish lower bounds. Brockett and Dobkin [2] have
exploited this property to get relatively good lower bounds for matrix multiplication in
spite of the fact that their techniques are essentially based on linear independence and
substitution arguments. In this section, we will establish the fact that duality theory does
not hold if the indeterminates commute. We consider, for this purpose, the (n, 2, 2)
matrix multiplication problems, i.e., the problems of multiplying n x 2 by 2 x 2, 2 x 2 by
2 x n and 2 x n by n x 2 matrices. We know that all of these problems are equivalent, in
the noncommutative case, and that each of the optimal algorithms requires precisely
[7n/2] multiplications [7]. It is also well known [20] that it is possible to multiply n x 2
by 2 x 2 matrices (or 2 x 2 by 2 x n) with 3n + 2 multiplications in the commutative case
with only integer constants. Waksman [19] reduced the number of multiplications by 1,
although his algorithm uses the constant 1/2. Surprisingly enough, none of these
algorithms generates a fast commutative algorithm for the multiplication of 2 x n by
n x 2 matrices. We will prove that this problem requires at least [27n/8] multiplications
whenever we use integer constants; this shows that this problem is harder than any of its
duals. In this section we describe Winograd’s algorithm and the modification introduced
by Waksman, and we establish our lower bound for the 2 x n by n x 2 matrix multi-
plication problem.

Let X and Y be the following two matrices:

LX21 X221 Y21 Y22 Y2n

Winograd’s algorithm to compute XY goes as follows. Compute

’1 X11X12 ’2 X21X22

Then we have

T]i Y liY2i,

(Xll %- Y2i)(X12 %- Yli),

(X21 + yZi)(X22 + YIi), i=l,2,...,n.

X11Yli %" X12Y2i (Xll %" Y2i)(X12 %" Yli)--
(--)

x21Yli %" x22Y2i (X21%" Yzi)(X22 %" Yli)-- 2--Ti, 1 <- <- n.

It is obvious that the above algorithm requires 3n + 2 multiplications.
We can reduce the number of multiplications by one as follows. Compute

(Xll %" Y2i)(Xe2 %" Yli),

(X21%" Y2i)(X22 %" Yli),

(Xll Y2i)(X12-- Yli), I <-- <-- n;

(X21- Y21)(X22 Yll).

Note the following:

’1 + ni--1/2{(Xll + Y2i)(X12 + Yli)+ (Xll- Y2i)(X12 Yli)},

2 + 1 1/2{(X21 + Y21)(X22 + Y11) + (X21 Y21)(X22-- Yll)}"

l <_i <_n,

722 JOSEPH JA’JA’

Now we can compute the remaining 2 "+" T/i by the equation

’2 q- T/i (’2 -{- T/l) -" (’1 -t" T/i) (’1 -+- T/l), 2,..., n.

Using the same equations (??) as before, the above algorithm requires 3n + 1 multi-
plications.

We prove that the above algorithms are essentially optimal up to 2 or 1
multiplication.

THEOREM 4.1. The problem of multiplying 2 x 2 by 2 x n matrices requires at least
3n multiplications in the commutative case, even if the constants come from a field.

Proof. It is easy to check that (one form of) the corresponding characteristic matrix
is given by

G(s)

Sn 0

Sn+l S2n

o
S1S2 Sn

Sn+l S2n

Applying Theorem 3.3 with (Sn+l,""", S2n), we get

tx{G(s)} >-- n + lx
$1S2

where a means a linear combination of S1, $2,""", Sn.
Since

$1S2

column rank

we obtain

2n,

Note that the same lower and upper bounds hold for the multiplication problem of
n x 2 by 2 x 2 matrices.

We now consider the problem of multiplying 2 x n by n x 2 matrices. Before
establishing a lower bound we need a couple of results. Let G(s) be the characteristic
matrix of the corresponding bilinear problem. It is straightforward to check that (one
form of) G(s) is given by

G(s)

$1 $2

$3 $4

S1 $2

$3 $4

0

S1 $2

IS3 $4

(n blocks).

COMPLEXITY OF BILINEAR FORMS 723

Recall that (A, B, C) Gl(2n) x G/(4) x Gl(2n) is an element of the isotropy group
of G(s) if AG(Bs)C G(s). We need the following theorem from [2].

THEOREM 4.2 [2]. (A, B, C) Ia ifand only il there exist nonsingular matrices P,
and R of dimensions n, 2 and 2 respectively, such that A P@ Q, C P@R and
=(O(R))-.
THEOREM 4.3. Let (A, B, C) Ia and let H(s) be the characteristic matrix

Let A’, B’ and C’ be given by

H(s)=[G(s) 0]0 G(s)r

0 CT B’=B and
0 AT.

Then (A’, B’, C’) IH.
Proo] We have AG(Bs)C G(s). Hence, CrGr(Bs)Ar=Gr(s). On the other

hand,

0 CrGr(Bs)A r H(s).

Therefore, (A’, B’, C’) In.
We need also to establish the following two facts whose proofs are immediate

from [12].
LZMMA 4.4. Over any field, we have

$1 $21

s2 01

$1 $2

=3k,

where k is the number o] blocks, and

$1

$2

6

0

S1

where again k is the number o" blocks.

0

S1 $2

S1 $2

=3k,

724 JOSEPH JA’JA’

We are ready for the following theorem.
THEOREM 4.5. Any commutative bilinear algorithm which computes the matrix

product of 2 n by n 2 requires at least [27n/8] multiplications over Z2 or Z.
Proof. The techniques we will use are similar to those introduced in [13]. We

prove that

8zz{n(s)} 8z2 [G(s) 0] > 27n
0 Gr(s) 4’

and, using Theorem 3.4, the result would follow.
Since s Z, all linear forms over Za are of the form /4= 0-isi, where 0- Zz

(i 1,..., 4). Thus, any decomposition of H(s) into rank one matrices

H(s) i (Ol’l, S)Dl
/=1

can be partitioned into different subsums, each subsum corresponding to one
linear form of s over Z2. Let y(0-1, 0-2, 0-3, 0-4) be the number of rank one matrices

4
associated with the linear form i--10-isi, 3,(0,0,0,0)=0. Note that z=

...4--o y(0-1, 0-2, 0-3, 0-4) Set s4 0 and s2 s3. Then at least 3,(0, 0, 0, 1) +
3,(0, 1, 1, 0)+ 3,(0, 1, 1, 1) terms vanish. Using Lemma 4.4, the resulting problem
requires 6n multiplications; thus

(1) z _-> 6n + y(0, 0, 0, 1)+ y(0, 1, 1, 0)+ y(0, 1, 1, 1).

Similarly, setting s2 0 and sl s4, we get

(2) z _-> 6n + y(0, 1, 0, 0)+ y(1, 0, 0, 1)+ 3,(1, 1, 0, 1).

On the other hand, if we set Sl 0 and then s3 0, we get the following

(3) r _->6n + y(1, 0, 0, 0),

(4) " >_-6n + 3,(0, 0, 1, 0).

From Theorems 4.2 and 4.3 it follows that there exists (P, B, O)e IH such that

B=
1

@
0 1 ’i’e’’

1 1 0 0

B-
0 1 0 0
1 1 1 1
0 1 0 1

Hence

S1"[-$2 $1

$2 S
S1 +$2+$3 +$4 $3

$2 At- $4 St4

This transformation generates a new algorithm given by

H(s) PH(Bs)O i (a’l, s’)PDlO.
/=1

COMPLEXITY OF BILINEAR FORMS 725

Note that if r(s) is a linear form in the original algorithm with a rank one matrices, r(Bs)
has also a (different) rank one matrices in the new algorithm.

Setting s2 s3 and s4 0 in the new algorithm, we get

(5) r>-_6n +,/(0, 1, 0, 1)+,/(1, 0, 1, 1)+,/(1, 1, 1, 0).

Setting s3 0 and then $1 --0, we get

(6) z>-6n +,/(1, 1, 1, 1),

(7) r _-> 6n + ,/(1, 1, 0, 0).

Similarly, we have

(8) r>-6n +,/(1, 0, 1, 1),

(9) r _-> 6n + ,/(0, 0, 1, 1).

Add up (1)-(9) to get

9z_->54n+z, that is, 8z_->54n.

Thus r _-> [27n/4]. Therefore, tx{G(s)}>-1/26{H(s)}>-27n/8.
5. The commutative complexity of pairs of bilinear forms. The complexity of

computing a pair of bilinear forms has been determined in [12], in the case where the
indeterminates do not commute. We prove that the complexity of computing a pair of
bilinear forms remains the same whether or not commutativity is assumed. In order to
establish this fact, we will recall some basic facts shown in [12].

Let G(s) be the characteristic matrix corresponding to a pair of bilinear forms
over a field . Then G(s) is equivalent to a canonical characteristic matrix of the

TLnk(S)

S1

following form

-L,(s)

and

L(s)

L(s)

L (s)

$2 S1

e+l

C(s)

E

S1 $2

S1 $2

C(s)= l <= <= t,
S1 $2

OlioS2 Olini-2S2 S1 -- Ogini-lS2

726 JOSEPH JA’JA’

where 0 < el <-- E2 ’ Er, 0 < TI T2" Tk are called the minimal indices
(r, k _-> 0), and such that the polynomials

pi(X) Ogio ogilX + + (--1)n’-lOgn,-lx hi--1 "]- X ni

are the nontrivial invariant polynomials of the corresponding pairs of matrices [12].
THEOREM 5.1 [12]. Let {ei}=x, {r/i}=x, {pq(x)}=x be as defined above for a pair of

bilinear forms {B l, B2} and let be a field which contains the roots of px(x) and
Card -->maxi,i.r {ei, r/i, deg pq(x)}. Then

k

6{Ba, B2} ei hI" rti + r + k + l,
i=1 i=l

where is the number Ofpr(X)’S which do not factor into distinct linear factors over .
The following theorem is the main result of this section.
THEOREM 5.2. Let G(s) be the characteristic matrix corresponding to a pair of

bilinear forms over a field which contains the roots of a p,(x) (as defined above) and
such that Card o is large enough. Then 8{G(s)} x{G(s)}.

Proof. Let H(s) be defined by

H(s)=[G(s) 0]0 O(s)T

Note that H(s) corresponds to a pair of bilinear forms such that its minimal indices are
the union of the minimal indices of G(s) and those of G(s) T. Note also that the invariant
polynomials of G(s) are the same as those of GT($). Therefore, the invariant poly-
nomials of H(s) are the same as those of G(s) repeated twice. Theorem 5.1 implies

k

8{H(s)} 2 ei + 2 r/i + 2r + 2k + 2l,
i=1 1=1

i.e., 6{H(s)} 28{G(s)}.
Theorem 3.4 implies that pc{G(s)}>-8{H(s)}= 6{G(s)} and, therefore, {G(s)}

{G(s)}. 1
The lower bounds for the case when the field has a small cardinality which have

been stated in [13] hold also for the commutative case. We consider one example.
Let Z2. Consider the following characteristic matrix, which corresponds to the

problem of multiplying a linear polynomial by an (n 1)-degree polynomial,

)’.s= s s

S1 $2

n+l

no

In [13], we have proved that 6z2{Ln(s)} n + [n/2]. We now prove a similar result for
xz2{L,(s)}. From Theorem 3.4, we know that

1 [L, (s)
.{L.(s)}>=-z o

COMPLEXITY OF BILINEAR FORMS 727

We use an argument similar to that used in the proof of Theorem 4.5.

Consider any algorithm for [Ls) 0]L.(s)

0] iT (at, s)Dt.
L,(s) 1=1

Since the only linear forms over Zz are Sl, sz and Sx + sz, the above decomposition
can be partitioned as follows:

Hn(S)-- E s1Ol1)+ , s2Ol2)+ }-’, (Sl+S2)Ol3).
/=1 /=1 /=1

Hence, r ax + a2 + a3.
Set Sl 0; ax terms disappear. However, the resulting problem requires at least 2n

multiplications. Thus

(10) "r>-2n +al.

Similarly

(11) z _-> 2n + a2, (s2 0),

(12) r_->2n +/3, (sx s2).

Summing up (10), (11) and (12), we get

3z 6n + r,

i.e., r >_- 3n.
It follows that tx{L,(s)}>-1/26z{H(s)}>-3n/2 and, therefore, lxz{L,(s)}=

n + [n/2] 6z{L,(s)}.
6, Acknowledgment, The author wishes to thank the referees for their careful

reading of the original manuscript and for their very constructive comments.

REFERENCES

[1] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[2] R.W. BROCKETT AND D. DO3KIN, On the optimal evaluation ofa set ofbilinearforms, Linear Algebra
and Appl., 19 (1978), pp. 207-235.

[3], On the number of multiplications required for matrix multiplication, this Journal, 5 (1976), pp.
624-628.

[4] H. F. DEGROOTE, On varieties of optimal algorithms for the computation of bilinear mappings. I. The

isotropy group of a bilinear mapping, Theoret. Comput. Sci., 7 (1978), pp. 1-24.
[5] C. M. FIDUCCIA, Fast matrix multiplication, Proceedings of the 3rd Annual Symposium on Theory of

Computing, Shaker Heights, Ohio, 1977, pp. 45-49.
[6], On obtaining upper bounds on the complexity of matrix multiplication, Complexity of Computer

Computations, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972.
[7] J. E. HOPCROFT AND L. KERR, On minimizing the number of multiplications necessary for matrix

rgultiplication, SIAM J. Appl. Math., 20 (1971), pp. 30-36.
[8] J. E. HOPCROFT AND J. MUSINSKI, Duality applied to the complexity ofmatrix multiplication and other

bilinear forms, this Journal, 2 (1973), pp. 159-173.
[9] T. D. HOWELL, Tensor rank and the complexity of bilinear forms, Ph.D. thesis, Cornell University,

Ithaca, NY, 1976.
[10] T. D. HOWELL AND J. C. LAFON, The complexity of the quaternion product, TR 75-245, Dept. of

Computer Science, Cornell University, Ithaca, NY, 1975.

728 JOSEPH JA’JA’

11 L. HYAFIL, The power ofcommutativity, Proceedings of the 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, 1977.

[12] J. JA’JA’, Optimal evaluation ofpairs of bilinear forms, this Journal, 8 (1979), pp. 443-462.
[13] ., Computation of bilinear forms over finite fields, Tech. Rep. CS-78-03, Dept. of Computer

Science, Pennsylvania State University, 1978.
[14] J. C. LAFON, Optimum computation of p bilinear forms, Linear Algebra and Appl., 10 (1975), pp.

225-260.
[15] J. VAN LEEUWEN AND P. VAN EMDE BOAS, Some elementary proofs of lower bounds in complexity

theory, Ibid., 19 (1978), pp. 63-80.
[16] R. L. PROBERT, On the complexity of symmetric computations, Canad. J. Information Processing and

Operational Res., 12 (1974), pp. 71-86.
[17] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 264 (1973), pp. 184-202.
[18], Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[19] A. WAKSMAN, On Winograd’s algorithm]’or inner products, IEEE Trans. Computers, 19 (1970), pp.

360-361.
[20] S. WINOGRAD, A new algorithm for inner products, Ibid., 17 (1968), pp. 693-694.
[21], On the number of multiplications necessary to compute certain functions, Comm. Pure Appl.

Math., 23 (1970), pp. 165-179.
[22], On the multiplication of 2 by 2 matrices, Linear Algebra and Appl., 4 (1971), pp. 381-388.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0008 $01.00/0

EQUALITY SETS AND COMPLEXITY CLASSES*

RONALD V. BOOKt AND FRANZ-JOSEF BRANDENBURGt

Abstract. If hi, h2 are two homomorphisms, then the equality set Eq (hi, h2) of h, h2 is Eq (h, h2)---
{wlh(w)- hE(W)}. In this paper it is shown how to characterize complexity classes of formal languages in
terms of equality sets of pairs of homomorphisms with bounded balance. In addition the complete twin shuffle
language is investigated, and it is shown that for alphabets with at least two letters, this language cannot be
represented as the equality set of a pair of homomorphisms unless both homomorphisms are erasing and have
linear bounded balance.

Key words, equality set, time bounds, space bounds, complexity classes, complete twin shuffle language,
balance of homomorphisms

Introduction. Characterizations and representations of classes of languages play an
important role in formal language theory. For example, if a class of languages can be
shown to be a basis for the class of recursively enumerable sets, then one knows
immediately that certain questions about the languages in that class are undecidable.
Also., characterization theorems are useful in showing that certain generators or hardest
sets exist. Recently there have been a number of new results regarding the decidability
or undecidability of certain combinatorial questions about formal languages, gram-
mars, L-systems, homomorphisms, and other types of mappings (e.g., [6]). These results
have motivated several studies that resulted in three related characterizations of the
class of recursively enumerable sets [3], [7], [11].

Let hi, h2 be homomorphisms with a common domain E*. Define the equality set
Eq (hi, h2) ofhl, h2 as Eq (hi, h2) {Wlhl(W) h2(w)}. ADGSM mappingg: ,E* A* is
a function computed by a deterministic generalized sequential machine with accepting
states. For any function f: Y_,* - ,V_,*, the fixed-point language Fp (f) of the function f is
defined to be Fp(f)-{wE*lf(w)=w}. For any language L, let MIN(L)-
{x L lthere are no nonempty y, z such that yz x and y L}.

PROPOSITION. Let L be a language. The following are equivalent:
(i) L is recursively enumerable
(ii) there exist two homomorphisms hi, h2 and a DGSM mapping g such that

g(Eq (hi, hE)) =L [11];
(iii) there exists a DGSM mappingg and a homomorphism h such that h (Fp (g)) L

[7];
(iv) there exist homomorphisrns ho, h, hE such that h0(MIN (Eq (h, hE))) L [3].
In each case the proof proceeds by showing that the set of accepting computations

of a Turing machine or the set of proper derivations of a phrase structure grammar can
be encoded in the appropriate way. The fact that certain questions are undecidable
follows immediately from the fact that the system under study forms a basis or a
sub-basis for the class of all recursively enumerable sets.

In this paper we approach equality sets as part of the study of complexity classes of
formal languages and exploit the equality mechanism in its simplest form. Using the

* Received by the editors March 1, 1979, and in revised form November 21, 1979. This research was
supported in part by the National Science Foundation under Grant MCS77-11360. Some of these results
were presented at the Sixth International Colloquium on Automata, Languages, arid Programming, July
1979, Graz, Austria. An extended abstract appears in the proceedings of that symposium.

" Department of Mathematics, University of California, Santa Barbara, California 93106.
Institut fiir Informatik, Universitit Bonn, Wegelerstrasse 6, 5300 Bonn, Federal Republic of

Germany. The work of this author was supported in part by the German Academic Exchange Service under
Grant No. 430/402/777/9.

729

730 EQUALITY SETS AND COMPLEXITY CLASSES

basic encoding strategy employed by Salomaa [11], we pay strict attention to the
amount of time and space used in the accepting computations of a Turing machine, and
we show that many classes such as NP, the Grzegorcyzk classes, and PSPACE can be
represented in terms of equality sets of pairs of homomorphisms. (The representation
theorem for machines is given as Theorem 2.1 and the characterizations of classes are
developed in 3.)

Culik [3] and Engelfriet and Rozenberg [7] have studied a specific equality set with
very interesting properties. Let 0, 1, 0, 1 be four symbols. Let g be the homomorphism
determined by defining g(0) and g(1) . Let L0.a {xaya Xnyn IX Xa Xn,
g(x)=ya’’’yn, X {0, 1}*}. The language L0,a is called the complete twin shuffle
language. For homomorphisms ha, h2 determined by defining ha(a)= h2(ti)= a and
ha(c7) h2(a) e for a {0, 1}, it is the case that L0,a Eq (ha, h2). It is shown in [3], [7]
that L0.a is a full semiAFL generator for the class of all recursively enumerable sets.

While Lo.a is the equality set for a pair of homomorphisms, it is the case that Lo,a
cannot be the equality set for a pair of homomorphisms if either is nonerasing (Lemma
4.1). On the other hand, we show that equality sets of pairs of nonerasing homomor-
phisms can be used to represent accepting computations of Turing machines (Theorem
4.6) and that this power is sufficient to enable us to represent complexity classes when
we use the notation of "balance" of homomorphisms.

The results presented in 2 and 3 are closely related to those in [3]-[5], [7].
However, by considering both the time and the space used by a Turing machine, our
representations for the language recognized by a Turing machine are very tight.
Further, these representations lead to characterizations of a wide variety of complexity
classes of formal languages specified by time-bounded or space-bounded machines.

1. Theories of automata, computability and formal languages. It is assumed that
the reader is familiar with the basic concepts from the theories of automata, compu-
tability and formal languages. We review some of the concepts that are most important
for this paper, discuss the notion of equality sets of homomorphisms, and establish
notation.

For a string w, wl denotes the length of w.
A homomorphism is a function h" Z*--> A* such that for all x, y ,E*, h(xy)=

h(x)h(y). A homomorphism is nonerasing if for all strings w, [wl > 0 implies Ih(w) > 0;
otherwise, h is erasing.

Let ha, h2 be homomorphisms. Define the equality set o) ha, h2 by Eq (hi, h2)=
{wlh(w)- hz(w)} A language L is an equality set if there exist two homomorphisms
hi, h2 such that L is the equality set of hi, h2.

Note that there are equality sets that are regular, or context-free and nonregular,
or non-context-free. For example, if La * and for each a s E, hi(a)= h2(a), then
Eq (hi, h2)= L1; if L2 {w s {a, b}*[the number of a’s in w equals the number of b’s
in w} and gl(a)=g2(b)=a and ga(b)=g2(a)=e, then Eq(gl, g2)=L2; if L3
{cb2a4b 8.. a2"-2b"-ld2" In >=2, n even} and ’1(a) =’a(d) a,)Ca(b)= b, ’a(c) c,
]’2(a) b 2,]’2(b) a 2, [s(c) cb 2,]’2(d) e, then Eq (jr1, ’2) L3. See [7] for more
discussion concerning equality sets.

It is clear that every equality set is recursive. In fact, every equality set can be
recognized in linear time by a two-way deterministic Turing machine with one work
tape. Also, every equality set can be recognized by a two-way deterministic Turing
machine that uses only log n work space.

Unless otherwise specified, a Turing machine will be a nondeterministic machine
with exactly one tape and exactly one read-write head. The language accepted by a

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 731

Turing machine M is denoted by L(M). A Turing machine may operate within some
time bound T or space bound S, where T and $ are functions of the length of the input
string. Both time and space bounds are assumed to be nondecreasing. With this model
of a Turing machine, the time and space bounds are bounded below by linear functions.

2. First result. In this section we develop our first result. This result is closely
related to the proposition stated in the Introduction.

Let L___ Z* be the language and let h" Z*- A* be a homomorphism. If f is a
function such that for some k >0 and for all but finitely many w eL, Iwl<=k (lhlw)l),
then we say that h is f-erasing on L.

THEOREM 2.1. LetMbe a Turing machine, let Tbe the function that measures M’s
running time and let S be the function that measures the space M uses. Then there exist
homomorphisms ho, h, h2 and a regular setR such that ho(Eq (h, h2) R) L(M) and
ho is T S-erasing on Eq (h, h2)(q R.

While Theorem 2.1 uses equality sets, regular sets and homomorphisms instead of
fixed points of DGSM mappings or minimal subsets of equality sets, the essential
difference between Theorem 2.1 and the proposition stated in the Introduction is the
attention paid to the time and space bounds and the amount of erasing allowed.

Before proving the result, we introduce some notation.
Let E be an alphabet and let x and y be strings of the same length over Y_., say

x a a and y b, b, where each a, b E. The pairing ofx and y is the string
[x, y] (aa, ba)(a2, b2)’ (a,, bn) in (E Y.)*. For strings x, y, the string [x, y] is said to
be the parallel encoding of the pair x, y. For properties of this encoding, see [14].

We wish to consider copies of the alphabet E. To do this we consider for each
symbol a E, a new symbol which we call the barred copy of a. Then we let
{ a Y-} be the barred copy of , so that f) &. For a string w a a,, each

ai 6 E, the barred copy of w is

Proofof Theorem 2.1. Let M (K, E, F, , qo, F) be a Turing machine, where K is
the set of states, is the input alphabet, F is the tape alphabet, Y_.

__
F, is the set of

instructions, qo K is the initial state, and F

K is the set of accepting states. Let B F

denote the blank symbol and let # be a new symbol, # K U F. We represent an
instantaneous description (ID) of M as a string xqy F*KF* and interpret this to mean
that q is the current state of M’s computation, xy is the current content of M’s tape, the
read-write head ofM is currently scanning the first symbol of y, and the blank symbol B
occurs only as the first or last symbol of xy. For any string w accepted by M, there exists
at least one sequence IDo, ID,..., ID, of instantaneous descriptions such that
IDo=qow, IDtF*FF*, and for each =0,..., t-1, IDi+a is a successor to IDi
according to the set 6 of M’s instructions. For each w accepted byM and each sequence
of instantaneous descriptions representing an accepting computation of M on w, we
wish to consider a string in the following form"

(*) [Bw#,ID0#][IDo#,IDa#][IDI#,ID2#]... [IDi#,ID,+I#]

liDt-2 #, IDt_l #][ID-1 #, ID #][ID, #, ID, #],

where for each i, at most one of IDi, ID/I contains an occurrence of the blank symbol.
Let A K U F U { # } U K U F U { # }. Let h and h2 be the homomorphisms from

(A x A)* to (K U F U { # })* determined by defining

hl(a,b)={ae
if a is not barred and a B,

otherwise;

732 EQUALITY SETS AND COMPLEXITY CLASSES

and

b if b is not barred and b # B,
h2(a, b)

otherwise.

Now consider any w accepted by M, any sequence of instantaneous descriptions
representing an accepting computation of M on w, and the corresponding string z
having the form of (.). From the definition of hi and h2, it is clear that hi(z)= h2(z)
IDo# ID1 # IDt-I# IDt # so that z Eq(hl, h2). Let ho" (A A)*. E* be the
homomorphism determined by defining ho(8, b)= a for all 8 E and all b A and
ho(c,b)=e for all cE and all bA. Clearly ho(z)=w, so we have L(M)
{h0(z) z Eq(h, h2)}.

We wish to obtain precisely L(M) and so we will construct a regular set R such that
Eq(hl, h2)(q R is the set of all strings of the form (.) that represent accepting compu-
tations of M. To do this we describe the accepting computations of a finite-state
machine D.

The finite-state machine D has input alphabet A A. D begins its computation on
an input string z by checking whether z begins with a prefix of the form [Bw #, qow #].
If z does begin with such a prefix, then D checks to see that z is made up by
concatenating strings of the form [u #, v #], where u is a candidate for an instan-
taneous description with at most one occurrence of the blank symbol B; i.e., u
F*KF* (_J K{B}F* [O F*K{B}, where v is also a candidate for an instantaneous descrip-
tion ofM with at most occurrence of B, and where v is a successor of u according to the
set 8 of instructions of M. It should be noted that the finite-state machineD is capable of
checking whether a string [u #, v # has the proper form since the pair of strings
(u #, v #) have been represented by means of the parallel encoding, and that the
difference between u and v, when they do represent successive instantaneous descrip-
tions, occurs in at most three adjacent symbols. Finally, the string z must end with a
suffix of the form [u #, u #] where u represents an accepting instantaneous description
of M.

Let R be the set of strings accepted by D. Since a string in Eq (h 1, h2) fq R is in R,
any portion of the form [IDi #, IDi+l # represents successive instantaneous descrip-
tions of M. The equality mechanism of (hi, h2) forces the first component of [IDi #,
ID/I #] to agree with the second component of [IDg_l #, IDa#] as long as occur-
rences of B are discounted. Hence, we claim that {ho(z)lz Eq (hi, h2) f3 R} is precisely
L(M).

If z is a string in Eq (h, h2)(q R and w ho(z), then z represents an accepting
computation of M on w. Since M runs in time T, z is the concatenation of at most
r(Iwl) + 1 strings of the form [u #, v #]. Since M uses at most S(Iw]) space during its
computation, each instantaneous description has length at most S([w 1). Thus, it is clear
that Iz[=< 2T([w[)S([w[). Since w ho(z), we see that h0 is r. S-erasing on Eq (hi, h2)fq
R. 71

Theorem 2.1 can be restated in terms of a DGSM mapping applied to an equality
set or a homomorphism applied to the fixed point of a DGSM mapping or a homomor-
phism applied to the minimal subset of an equality set. In each case the amount of
erasing performed is bounded by the product of time and space used by the Turing
machine. Formal statements parallel the proposition stated in the Introduction.

The proof of Theorem 2.1 shows that the set of accepting computations of an
arbitrary Turing machine can be represented as Eq (h 1, h2) R for some h1, h2, and R.
If the running time and the work space of the Turing machine are bounded by total

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 733

recursive functions, then a recursive set is accepted; otherwise, the running time and the
work space are bounded by partial recursive functions. Since each set of the form
Eq (ha, hE)f3 R is recursive, the class of all such sets forms a "basis" for the class of
recursively enumerable sets since each recursively enumerable set is the homomorphic
image of a set of the form Eq (hi, hE)(3 R. Thus all of the "usual" questions such as
finiteness or emptiness are undecidable for arbitrary languages of the form
Eq (hi, hE)fqR (see [12]). This will be true for the class of fixed points of DGSM
mappings etc., for exactly the same reason.

3. Complexity classes of formal languages. In this section we consider complexity
classes of formal languages. We establish characterizations of many such classes in
terms of equality sets of pairs of homomorphisms and some simple operations.

For a time bound T, let NTIME(T)= {L(M)IM is a nondeterministic multi-tape
Turing machine that runs in time T}. If is a set of time bounds, then let NTIME()
7- NTIME(T). Similarly, for a space bound S, let NSPACE(S)= {L(M)IM is a
nondeterministic Turing machine that uses space S}, and if is a set of space bounds,
then let NSPACE()= t..Js NSPACE(S). As special cases, let NP be the class of
languages accepted by nondeterministic Turing machines that run in polynomial time
and let PSPACE be the class of languages accepted by Turing machines that use
polynomial space.

Let be a set of functions that serve as time bounds. Such a class is said to be a
good set if it has the following properties"

(i) there exists a function in such that for all n >= O, t(n)>= n E"

(ii) is closed under composition.
Notice that each of the following sets of time bounds is good: the set of poly-

nomials; for each k => 3, the Grzegorzcyk class sok’, the set of primitive recursive
functions; the set of total recursive functions. We.will provide new characterizations of
classes of languages of the form NTIME() for good sets . To do so we must make
certain definitions.

Let be a set of functions. Let L_ E* be a language and let h" E* A* be a
mapping. The mapping h is -erasing on L if for some function f , h is f erasing on L.
A class of languages is closed under -erasing homornorphisms (DGSM mappings) if
for every L and every homomorphism (DGSM mapping) h that is YJ-erasing on L,
h(L) S.

Now we can establish our characterizations of classes of the form NTIME().
THEOREM 3.1. Let be a good set of time bounds. For every language L

NTIME(), there exist homomorphisms ho, hi, hE and a regular set R such that
h0(Eq (hi, hE)R)=L and ho is -erasing on Eq (hi, hE).

Proof. If L NTIME(), then there exists a single-tape Turing machine M and a
function T such that L(M) L and M runs in time T. Since M runs in time T, M
uses no more than T space. Thus by Theorem 2.1, there exist homomorphisms ho, hi, hE
and a regular set R such that h0(Eq (h 1, hE) I") R) L(M) L and ho is T2- erasing on Eq
(hi, hE)f’)R, where T(n) (T(n))2. Since T , there is a function / in such that for
all n _->0, f(n)_-> WE(n). Thus ho is -erasing on Eq (hi, hE)R. []

THEOREM 3.2. Let be a good set of time bounds. The class NTIME() is the
smallest class containing all equality languages and closed under -erasing homomor-
phisms and intersection with regular sets.

Proof. By the definition of a good set, the function f(n)- n E is majorized by a
function in . As noted above for any two homomorphisms h 1, hE the language Eq (h 1,

hE) can be recognized by a deterministic single-tape Turing machine in time n 2. Hence,

734 EQUALITY SETS AND COMPLEXITY CLASSES

every equality set is in NTIME(). Clearly NTIME() is closed under intersection
with regular sets. It is well known that is closed under composition if and only if
NTIME() is closed under Yd-erasing homomorphisms. Thus NTIME() is a class
containing all equality languages and closed under -erasing homomorphisms and
intersection with regular sets. The fact that NTIME() is the smallest such class now
follows from Theorem 3.1. [21

Theorems 3.1 and 3.2 provide representations for each of the following classes of
languages:

(a) NP;
(b) for each k _>- 3, the class s of languages accepted by Turing machines that run

within time bounds in the Grzegorcyzk class s
(c) the class of primitive recursive sets;
(d) the class of recursive sets.
Now we turn to a representation of PSPACE.
Let R be a binary relation on strings over an alphabet Z.
The relation R is length-preserving if for all x, y, when R(x, y) holds, then

Let R* be the transitive reflexive closure of R. If # is a symbol not in Z, then let
SE#(R)={x#y[x,yE* and R(x,y) holds}. If L_Z* and aE, let Ra(L)=
{(x, y)lx, y e (Z-{a})* and xay

A class of languages is weakly transitively closed [1] if the following condition
holds: Let L , let Y_. be a finite alphabet such that L c_ y_.*, and let a Z. If Ra (L) is
length-preserving, then SEa(R* (L)) .

THEOREM 3.3. The class PSPACE is the smallest weakly transitively closed class
containing all equality languages and closed under intersection with regular sets and
polynomial-erasing homomorphisms.

Theorem 3.3 follows from Theorem 2.1 and the techniques of [1]. It should be
noted that the representation given in Theorem 3.3 can be generalized to other classes
of languages specified by space-bounded machines. However, as soon as a set of
space bounds contains a function that majorizes 2 and is is closed under composition,
then NSPACE() NTIME() as long as the set is suitably well-behaved. Thus no
new information is gained from generalizing Theorem 3.3.

We have chosen to present our results in terms of equality sets. It should be noted
that if one chooses to discuss fixed-point languages for DGSM’s or minimal subsets of
equality sets, the analogous results follow easily since in each case a result similar to
Theorem 2.1 can be established by showing that the set of accepting computations of a
Turing machine can be represented appropriately.

4. Subclasses of the class of all equality sets. Here we investigate subclasses of the
class of all equality sets and we strengthen the representation theorems for complexity
classes given in 3.

In [7] a "hardest" equality set is introduced. For strings x, y E*, let shuffle(x, y)
{xlylx2y2" xny, Ix =xl x, y yx,..., yn}andletL= L{shuffle (w,)lw E*}.
Note that L. Eq (h, h2), where h(a) h2(d) a and hi(d) hz(a) e for a s Z. In
[7] it is shown that the class of all equality sets is the smallest class containing L0,1 and
closed under inverse homomorphism. This means that Theorems 2.1 and 3.1-3.3 can be
reformulated in terms of Lo, and closure under inverse homomorphism. In this form
Theorem 2.1 yields as corollary the fact that L0,1 is a full semi-AFL generator (and also
a cylinder generator) of the class of all recursively enumerable sets.

Let us point out a combinatorial property of sets of the form L. The proof of this
result is in the Appendix.

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 735

LEMMA 4.1. For any finite alphabet X with at least two elements, the language Lx
cannot be represented as the equality set oftwo homomorphisms ifeither homomorphism is
nonerasng; i.e., ifL Eq (hi, h2), then both hi and he are erasing.

In contrast to Lemma 4.1, notice that for homomorphisms hi, h2 from E* to {a}*,
where a is a single symbol, the set Eq (hi, h2) is a context-free language [11];in fact,
it is a deterministic one-counter language. Further, for every two homomorphisms
hi, ha mapping Y_,* to {a}*, there exist two nonerasing homomorphisms h’l,h’2
such that Eq(h,h)=Eq(hx, h2)mfor every bee define h(b)=hl(b)a and
h (b h2(b)a.

Let us return to Theorem 2.1 and its proof. The homomorphisms hi and h2 are
defined in such a way that they do perform erasing. Lemma 4.1 suggests that this must
be the case. However, we will show (Theorem 4.6) that a result similar to Theorem 2.1
can be obtained when one restricts attention to equality sets of pairs of nonerasing
homomorphisms. We proceed to develop the machinery necessary for the proof of this
result.

Consider two homomgrphisms h, h2 from E* to A* and a word x in E*. Then, the
balance ofx is defined by bal (x)- abs ([h(x)l-lh2(x)[), where for any integer i, abs (i)
is the absolute value of i.

Let f: N-N be a bounding function. Two homomorphisms h 1, h2 have f-bounded
balance on a language L if for every x in L and each prefix y of x, hal (y)-<f([x[).

If the pair (h 1, h2) has f-bounded balance on Eq (h, hE), then (h, hE) is said to have
f-bounded balance and Eq (h, hE) is called an equality set with f-bounded balance.

Let "(f) (EQ(f)) denote the family of equality sets Eq (h, hE) with f-bounded
balance (where hi, hE are nonerasing homomorphisms), and for a set of bounding
functions, let’()= Ur E"(f) and EQ()= Ur EQ(f).

For every x 6 E* and every two homomorphisms h, h on E*, bal (x) -< klx[where
k max {abs (Ihl(a)[- [hz(a)l)]a E}. Thus every pair of homomorphisms has linear-
bounded balance on every language in the domain of the homomorphisms. Also, notice
that for every f, Eq (f)c__"q(f), and if f and g are functions such that for all n -> 0,
f(n) <- g(n), thenE-’(f) __q-(g) and Eq (f) c__ Eq (g).

Now we briefly describe results on machines which correspond to equality sets with

f-bounded balance.
A Post machineM is a deterministic acceptor with a one-way, read-only input tape,

finite-state control, and one work tape. The work tape operates as a Post tape or a
queue, with two heads W and R" W is a write only head and R is read only. Both heads
are restricted to move only from left to right and M is restricted to operate in
quasi-realtime. Initially, the work tape ofM is empty and W and R scan the same cell.
M accepts in a final state when W and R scan the same cell. (For examples of Post
machines operating without time bounds, see [10], and for more complex Post
machines, see [2].)

If is a configuration of M, then the distance of , d(c), is defined by the number of
cells from R to W. Thus, if is an initial or an accepting configuration, then d(c)= O.

A Post machine M has f-bounded distance if for every x in L(M) there is an
accepting computation ofM on x such that for each configuration c in the computation
d(c)<-f(Ixl).

The following facts follow readily from the definitions.
LEMMA 4.2. For every equality set Eq (h, h) ith f-bounded balance, there exists

a Post machine M ith f-bounded distance such that L(M) Eq (h x, h).
LEMMA 4.3. (i) For eery Post machine M ith f-bounded distance, there is a

deterministic Turing machine M2 with a one-way input tape and one work tape with one

736 EQUALITY SETS AND COMPLEXITY CLASSES

head such that (a) M2 is f-space-bounded, (b) M2 operates in time knf(n) for some k >-_ 1,
and (c) L(M2) L(M).

(ii) For every Post machine M1 with f-bounded distance, there is a deterministic
single-tape Turing, machine M2 operating in time cnf(n) for some c >0 such that
L(M2) L(M).

It is known [3], [4], [11] that for every two homomorphisms hi, h2 the set
Eq (h 1, h2) is regular if and only if Eq (h 1, h2) has f-bounded balance for some function f
such that there exists k with the property that for all n >0, f(n) <- k. In [13] it is shown
that ifM is a deterministic Turing machine that reads its input in only one direction and
is/’-space bounded, then L(M) nonregular implies that lim inf (f(n)/log n)>0. Thus,
from Lemma 4.2 and Lemma 4.3(i), we obtain the following fact.

THEOREM 4.4. IlL is an equality set with f-bounded balance and L is not regular,
then lim inf (f(n)/log n) > 0.

Bounds on the balance can also be obtained for equality sets that are of the form
Lz.

THEOREM 4.5. F.or every alphabet Z containing at least two elements, if hi, h2 are
homomorphisms such that Eq (h, h2) Lz, then (h , h2) has f-bounded balance where f
is such that lim sup (f(n)/n) >0.

Proof. Let {0, 1}_Z. Since Eq (h, h2) =Lx and (h, h2) has f-bounded balance,
from Lemma 4.2 we see that there exists a Post machine M with/’-bounded distance
such that L(M)=Lz. Let COPY={w#Iw6{0,1}*}. Notice that COPY=
Lzf3{0, 1}*{0, 1}* so that COPY is also accepted by a Post machine with f-bounded
distance. From Lemma 4.3(ii) we see that this means that COPY is recognized by a
deterministic one-tape Turing machine operating in time cnf(n) for some c >0.
However, a single-tape Turing machine operating in time g cannot accept COPY unless
lim sup (g(n)/n 2) >0 (just as such a machine cannot accept {wwlw {0, 1}*} in less
time [8]). Thus lim sup (nf(n)/n2)>O so tMt lim sup (f(n)/n)>O.

Let us summarize what we have learned so far. Consider an alphabet Y, with at least
two elements and consider the set Lz. Let h and h2 be homomorphisms such that
Eq (h, h2) Lz. By Lemma 4.1 both h and h2 must be erasing. From Theorem 4.5 we
see that the pair (h, h2) has balance that is bounded below by a linear function. But
every pair of homomorphisms has balance that is bounded above by a linear function.
Thus the pair (h, h2) has balance that is bounded both above and below by linear
functions.

Now we turn to the task of representing complexity classes by using pairs of
nonerasing homomorphisms instead of the representation of Theorem 2.1 that used
erasing homomorphisms.

THEOREM 4.6. LetMbe a Turing machine, let Tbe the function that measures M’s
running time, and let $ be the function that measures how much spaceMuses. Then there
exist two nonerasing homomorphisms ce and , a homomorphism y, and a regular set R
such that y(Eq (ce,/3) f3 R) L(M), 3’ is g-erasing on Eq (a,) (q R, where g(n)
$(n)T(n), and (a,) has square-root-bounded balance on Eq (a,/3) f’) R.

Proof. We do not provide a formal proof but rather point to certain modifications
of the proof of Theorem 2.1 which arise from the condition that a and/3 are nonerasing.
It is advisable for the reader to review that proof at this time.

In the proof of Theorem 2.1 there are two situations where the homomorphisms
hi, h2 are erasing. First, when the Turing machine extends its work space and reads a
blank, and second at the beginning and at the end of the encoding of accepting
computations. To solve the first case we consider a new machine that uses all and only
the tape squares where its input originally appears, and for the second case we join an
appropriate head and tail to the encoding of accepting computations.

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 737

LetM be the given Turing machine and let E be the input alphabet of M. Consider
a new machine M’ that processes input strings of the form wd d where w E* and d
is a new symbol. We want M’ to simulate M’s computations on w by using all the tape
squares where wd... d originally appears and without using any additional work
space. If the function $ that measures how much space M uses is honest, then M’ can
determine that the number of d’s is correct before simulating M’s computations on w; if
not, M’ can nondeterministically "guess" the correct number of d’s and accept the input
only if that guess is correct. We restrict attention to M’.

In the proof of Theorem 2.1, we defined homomorphisms hi, h2 such that if
z Eq (ha, hz), then hi(z) hz(z) had the form IDo # ID1 # ID,_ # ID, # where
IDo, ID1, , IDt was a sequence of instantaneous descriptions making up an accept-
ing computation of M’, and z itself was of the form

(,) [Bw #, IDo #][IDo #, ID #]... [ID,_ #, ID, #][ID, #, ID, #].

While the homomorphisms h 1, h erased certain symbols, here we wish to consider only
nonerasing homomorphisms. The need to erase occurrences of the blank symbol B is
eliminated by considering the machine M’. Thus we need only deal with the erasing of
barred symbols.

Let A’= A U {d}. Let gl (g2) be the projection on the first (second) coordinate of
A’xA’. Then gl(z)=Bw#IDo#... #IDt# and gz(z)=IDo#...IDt#IDt#.
Thus z is not in Eq (gl, g2) but the strings g(z) and g(z) are "almost" the same. (In fact
there is no pair (jq, f2) of nonerasing homomorphisms such that z Eq (f, f2) since the
use of the equality set machinery to match consecutive pairs leaves the strings Bw # and
ID, # to be handled in some way.) We will modify the homomorphisms gl and g2 so that
a string of the form uzv will be in the equality set of the new pair of homomorphisms.

Let p, q, r, s, $, be six new symbols, and let the barred copies of p, q, r, s, $, be new
symbols. Let a and fl be the homomorphisms determined by defining

o(a, b)= { aP
if a is not barred,
if a is barred,

ce(p) a(p) =p, a(q) c(?/) q,

a(r) s, ce(F) ss,

a(s) r, a(g) rr,

c() , ($) r$, () , () s$;

1" b if b is not barred,
(a, b)

s if b is barred,

fl(P)=q, fl(/) qq,

fl q =P, fl gl PP,

(r) ()= r, fl(s) (g) s,

/3() =q, /3($)=$, /3()=p, /3($)=$.

For a string z of form (.), let n [[Bw #, ID0 #][so that n Iwl + 2. If n is even,
then consider strings of the form

(**) (t P P q2 t p3 ff q4 pn-3 ff qn-2 (t z r- fs "-3 g rn-4 F" f r s g Y $.

Notice that c(p/ q -2qzr-ZF sgf$) qp) q,-a 3 za(z)s ...r s r$ and
a(z)=pIDo# #IDt#. On the other hand, fl(p/7.., q"-2gtzr"-2F sgf$)

738 EQUALITY SETS AND COMPLEXITY CLASSES

Cqp2q3"’’pnfl(z)rn-’a’’’s2r$ and fl(z)=ID0# #IDt#s". Thus a(qpp...
n-2 n--2- n-1 3 2q qzr r sgf$) Cqp2 q p ID0#’" # IDt # s r s r$ (qpp
n-2 n-2q qzr r... sg$), and so for each string z of the form (.) with n even, the string

CglPP q’*-2glzr"-2F" sg$ is in Eq (a,/3). Similarly, for each string z of the form (.)
with n odd, the string

(***) P q gt q"-2 gt z r"-2 r ,
is in Eq(a, fl) and a(-pqgl...q"-zglzr"-zZ...rg,)=pqZp3...p"IDo#
IDt # s" s3r:Zs$.

Let 3’o" {(A’ A’) U {p, q, r, s, $, , p, q, r, s, g, }}* -+ (U {d})* be the homomor-
phism determined by defining To(a, b) a for all a e U{d} and all b e A’ and To(C) e
for all U {d} A’. If w e L(M’) and z is a string of form (.) encoding an accepting
computation of M’ on w, then there exist strings u and v such that uzv Eq (a, fl),
yo(UZV) w, and uzv is either of the form (**) or of the form (***). Thus, L(M’)c_
{yo(UZV)[uzv Eq (a,/3)}.

To obtain precise.!y L(M’), construct a finite-state machine D’ that checks whether
the input string uzv begins with or , checks the order of alternation of strings in
{p} * {p} U {q}* {} U {r} {} U {s}* {g}, behaves on z in a manner similar to the machine
D in the proof of Theorem 2.1, matches the parity of]zl with or , and checks that the
final symbol is the correct choice of $ or $. If R is the regular set of strings accepted by
D’, then it is clear that {yo(UZV)[UZV eEq (a, fl)IqR}=L(M’).

To obtain L(M) we compose the homomorphism which erases d and is the identity
on symbols in with To. Let 3’ be the resulting homomorphism so that {y(uzv)[uzv
Eq (a,/3) (’1R } L(M).

At this point the reader should notice that both of the homomorphisms a and/3 are
nonerasing and that y(Eq (a,/3) 1"3 R L(M). What remains is to show that the amount
of erasing that y performs on strings in Eq (a,/3) fq R is properly bounded and that the
pair (a, fl) of homomorphisms has n /2-bounded balance on Eq (a, fl)(3 R.

First consider the homomorphisms To and y. The homomorphism y0 erases certain
symbols and any string in Eq (a, fl)(3 R contains some occurrences of those symbols.
Let us consider how much erasing To must perform on strings in Eq (a, fl)V)R. Any
string in Eq (a, fl) 71R is of the form uzv where u {p, q, }*, v {r, s, }* and z is a
string of the form (.) encoding an accepting computation of M’. On an input string w, an
accepting computation ofM uses at most S (I w I) tape squares and runs for at most T(] w l)
steps. Thus y0 must erase at most S(Iwl)" T(Iwl) symbols in z. Further y must erase at
most S(Iwl)-lwl d’s, Both the strings u and v must be erased and the length of u as well
as that of v is bounded by S(n). (S(n) 1)/2, where n [wl + 2, since the length of any
one instantaneous description is bounded by S(n). Thus y must erase at most
S([wl). T(lwl)/(S(lwl)-lwl)/s(n).(S(n)-a)symbols from uzv in order to retrieve
the input string w accepted by M in the computation encoded in this way. Since
S(m) <- T(m) for all m, this means that y is g-erasing on Eq (a, fl)(’l R, where g(m)=
k. S(m). T(m) for some k _-> 1.

Now let us consider the question of bounded balance. For any string w in L(M) and
any string uzv in Eq(a, fl)R such that y(uzv)=w, it is the case that
k. S(]w]). S([w[)-< [uzv[<= c. S(Iwl). T([w[) for some k -> 1 and c => 1 that are indepen-
dent of wl (since the length of an instantaneous description in the corresponding
computation of M’ is bounded by S([w[)). Recall that both of the homomorphisms ce

and/3 are nonerasing. The structure of the string uzv and the definitions of a and/3 are
such that for any prefix y of uzv, bal (y) is bounded by the length of an instantaneous
description in the corresponding computation of M’, i.e., by S(Iwl). Since

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 739

S(lwl), S(Iwl)luzvl, this means that bal(y)<=(luzvl) ’/. Hence the pair (a,/3) has
1/2n -bounded balance on Eq (a,

As in Theorem 2.1, we have considered only single-tape Turing machines.
However, results similar to both Theorem 2.1 and also Theorem 4.6 can be obtained for
multi-tape Turing machines by using a parallel encoding.

Remark. Notice that in Theorem 4.6 the pair (a,/3) of homomorphisms have
1/2n -bounded balance. If Mis a Turing machine which operates within space S(n) and

has running time k s(n) for some k > 1, then the balance of (a,/3) on Eq (a,/3) is bounded
by f(n) c log n for some c > 0.

Clearly the representation technique of Theorem 4.6 can be extended in order to
represent complexity classes, and when doing so the balance bounds of pairs of
homomorphisms on equality sets and on intersections of equality sets and regular sets
must range between "log-bounded balance," i.e., (c log n)-bounded balance for some
c > 0, and "root-bounded balance," i.e., n l/2-bounded balance. Specifically, the next
results follow from Theorem 4.6, the above remark and the results in 3.

THEOREM 4.7. For every L accepted in real time by a nondeterministic multitape
Turing machine, there is a pair ofnonerasing homomorphisms (hi, h2) with root-bounded
balance, a regular setR and a homomorphism h, such thatL h (Eq (h 1, h2) (3 R), and h
is n3-erasing on Eq (hi, h2)(3 R.

In the last result the bound of n 3 on the amount of erasing allowed can be reduced
to n 2 when the version of Theorem 4.6 for multi-tape machines is used.

THEOREM 4.8. If is a good set of time bounds, then NTIME() is the smallest
class containing all equality sets of nonerasing homomorphisms with root-bounded
balance and closed under intersection with regular sets and under -erasing homomor-
phisms.

THEOREM 4.9. For every (deterministic) context-sensitive language L, there is a
regular set R, two nonerasing homomorphisms h 1, h2 which have log-bounded balance on
Eq (a,fl)ClR, and a homomorphism h such that L h(Eq (hl,h2)f)R) and h is exponential
erasing on Eq (hl,hz)fqR.

THEOREM 4.10. For every language L PSPACE, there is a pair of nonerasing
homomorphisms (hi, he) with log-bounded balance, a regular set R and a homomor-
phism h such that L h(Eq (hi, hz)fflR) and for some constants c > 1, k >0, h is
c -erasing on Eq (hi, h2) R.

Recall that Ly. is neither an equality set of a pair of nonerasing homomorphisms nor
an equality set with f-bounded balance for any function f with lim sup (f(n)/n) 0. On
the other hand, the class {L R L 6 Eq (log), R is regular} is a basis for the class of
recursively enumerable sets, as well as many complexity classes.

Note that results similar to those in this section can be obtained by considering
fixed-point languages and DGSM mappings.

Theorems 4.7-4.10 are similar to some results of Culik [4].
To see the relationship between the bounds on the balance and the bounds on the

amount of erasing allowed, consider the following facts.
(1) A language L is regular if and only if there exist a (nonerasing) homomorphism

h, an integer k, a language LoEq (k), and a regular set R such that h(LofqR)=L.
(2) A language L is in NP if and only if there exist a homomorphism h, a language

L0 Eq (root), and a regular set R such that h (L0 R) L and h is polynomial erasing
on Lo f3 R.

(3) A language L is in PSPACE if and only if there exist a homomorphism h, a
language Lo Eq (log), and a regular set R such that h (Lo ffl R) L and h is f-erasing on
Lo ffl R, where for some c > 1, k >= 1, and all n, f(n)= c

740 EQUALITY SETS AND COMPLEXITY CLASSES

(4) A language L is recursively enumerable if and only if there exist a homomor-
phism h, a language Lo Eq (log), and a regular set R such that h (Lo R)= L.

One of the referees has noted that cases (2) and (3) require two different proofs.

5. Additional results. We close by sketching some additional results based on a
variation on the notion of balance.

Let h a, h2 be two homomorphisms from E* to A* and let g be a mapping from * to
F*. Let f be a bounding function. We say that (h a, h2) has f-output bounded balance on a
language L___E* with respect to g, if for every x in L and each prefix y of x, abs
((y))<=f(lg(x)l). If L=Eq(ha, h2), then we say that the pair (ha, h2) has f-output
bounded balance with respect to g [3], [4].

In this case, the balance bound depends on the length of the image of x L under g
and not on the length of x. The notion of f-output bounded balance on L with respect to
g can be defined for fixed points of DGSM mappings and on languages of the form
L Eq (h 1, h2) 0 R, where R is a regular set and h a, h2 are homomorphisms.

LE’MMA 5.1. For any language L, L NSPACE(n) ifand only ilL g(Eq(h a, h2)),
where ha, h2 are homomorphisms, which may be chosen to be nonerasing such that
(h 1, h2) has linear output balance with respect to g and g is an exponential erasing DGSM
mapping.

The proof is an application of the arguments used in 4.
THEOREM 5.2. Leta and2 be good sets ofboundingfunctions. For every DGSM

mapping g and every two homomorphisms h 1, h2 where g is a-erasing on Eq (h a, h2) and
(hi, h2) has 2-0utput bounded balance with respect to g, the language g(Eq(ha, hz)) is
accepted by a nondeterministic Turing machine, which operates in time fi, with fa 1,
and spacef2, with]:2 2. Conversely, ilL is a language accepted by such a machine, then
L can be represented as g(Eq (hi, h2)), where g, hi and h2 have the properties stated above.

Proof. Let g be a DGSM mapping, let h, h2 be two homomorphisms satisfying the
hypothesis, and let L g(Eq (h 1, h2)). For w L, a nondeterministic Turing machineM
with one work tape guesses symbol-by-symbol a string x such that x Eq (ha, h2) and
g(x)= w. On each guessed symbol a, M evaluates ha(a) and h2(a) and stores the
difference between the images under hi and hz of the word guessed so far on its work
tape. Simultaneously, M simulates g in its finite control, and if the symbol a causes a
nonempty output of g, M compares this output with the input under the input head and
moves this head right. The machine M accepts input w if and only if w is completely
scanned, the work tape is empty, and the DGSM g, simulated by M, is in an accepting
state. Now L L(M). Since (ha, h2) has z-output bounded balance with respect to g,
the distance between ha and h2 on any prefix of x is bounded by f2(Iwl) with f2 ’2,
where w g(x). Thus,M is fz-space bounded. On input w eL,M makes c. Ixl steps with
c >0 and g(x)= w. Since g is a-erasing on Eq (ha, h2), the running time of M is
bounded by some fa 6 ,a.

Notice that ha, h2 may be chosen to be nonerasing.
The proof of the converse is straightforward. [-1

COROLLARY 5.3. Let a and 2 be classes of good bounding functions. For every
DGSM mapping g and every two homomorphisms ha, h, ifg is a-erasing on Eq (ha, h2)
and (h a, h2) has z-output bounded balance with respect to g, then

(i) ifl -2, then L g(Eq (ha, h2)) if and only ifLNTIME(a);
(ii) ifl _exp (-2), then L= g(Eq (ha, hz)) if and only ifLNSPACE(2);
(iii) if21 c_ exp(2), then L NTIME(z) implies thatL g(Eq (ha, h2)) and

L g(Eq (ha, h2)) implies that L NSPACE(2).
(Here, exp (2) {kf k > O, f .2}.)

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 741

Notice that these statements also hold for the set of bounded functions 9, where
NTIME(N), NSPACE(9) are the regular sets and for unbounded (partial recursive)
functions and the r.e. sets.

COROLLARY 5.4. (i) A language L is in NP if and only if there exists a polynomial
erasing DGSM mapping g and two homomorphisms hi, hg. with polynomial output
balance with respect to g such that L g(Eq (h a, ha)).

(ii) A language L is in PSPACE if and only if there exist c, k > O, a c -erasing
DGSM mapping g and two homomorphisms ha, ha with polynomial output bounded
balance with respect to g such that L g(Eq (h i, ha)).

COROLLARY 5.5. Let be a class of good boundingfunctions properly between the
polynomials and the Grzegorzcyk class (3, and let Eq (-) {L [L g(Eq (ha, h2)), g is
an -erasing DGSM on Eq (hi, h2) and the pair of homomorphisms (hi, h2) has
polynomial output bounded balance with respect to g}. Then NP

__
Eq () PSPACE.

Appendix. The purpose of this Appendix is to provide a proof of Lemma 4.1.
Recall that for any alphabet E, the language L is defined to be L=
tA{shuffte(w,)[wE*), ,and there exist homomorphisms hi and h2 such that
Eq (h a, h2) L.

LEMMA 4.1. For any finite alphabet Z with at least two elements, the language L
cannot be represented as the equality set oftwo homomorphisms ifeither homomorphism is
nonerasing; i.e., ilL Eq (hi, h2), then both hi and h2 are erasing.

To prove this result, we use certain combinatorial properties of strings.
Facts. (1) If two nonempty strings a, b have the property that ab ba, then we say

that a and b commute. If a and b commute, then there exist a unique nonempty shortest
string c and unique largest integers p, q > 0 such that a c p and b c q [9].

(2) From (1), it is clear that if a, b, and c are three strings such that a commutes
with b and c commutes with b, then a commutes with c.

(3) From (2), it is clear that if $1 and $2 are two nonempty sets of (nonempty)
strings such that every two strings from Sa commute and every two strings from $2
commute, then every two strings from $1 (.J $2 commute if and only if there exist a $1"
and b $2" such tht a e, b # e and a and b commute.

Proof of Lemma 4.1. It is sufficient to prove the result for an alphabet with two
elements, say E {0, 1}. Let us assume that there exist homomorphisms ha and h2 such
that Lo.l Eq (ha, h2) and either hi or h2 is nonerasing. We will write L for L0.,.r.

Since L {0, 1, 0, 1}*, hi and h2 must be defined on {0, 1, 0, 1}. Thus we can
represent hi and h2 by Table A.1.

TABLE A.

hi Xo -o Xl 21

h2)1

(i) For each a {0, 1, 0, 1}, hl(a) h2(a); otherwise, a is in Eq (hi, h2) and
a Ll{shuffle(w,)1 w {0, 1}*}= L, contradicting L Eq (hi, h2).

(ii) Since 0L and L=Eq (hi, h2), Xo;o hl(0) h2(0) yo)o. Either [Xo]<
lyol or Ixol lyol, since]xol [yol implies Xo yo, contradicting (i). Assume that [Xo] < [yo[
so that there exists Uo # e with yo =xouo and o Uo)o. Since 0000L and L
Eq (hi, h2), XoXo’oo ha(0000)= h2(0000)= yoYo)?o)9o so that yo- XoUo and o Uo)9o

742 EQUALITY SETS AND COMPLEXITY CLASSES

imply that XoXoUooUoo =xouoxouooo. Hence XoUooUo UoXoUoo implying that
XoUo UoXo and)#oUo Uo3o. Thus any two strings from {Xo, o, yo, o, Uo} commute.

(iii) Since 11 L, an analysis similar to that of part (iii) shows that either there
exists ua e with ya xaua and a ua3a and any two strings from {xa, a, ya,)?a, ul}
commute, or there exists vl e with xa yav and 33a vaa and any two strings from
{xa, , ya, 33a, va} commute. Thus we have two possible tables.

TABLE A.2

hi Xo Uo3% xl ul)l

h2)31

TABLE A.3

o

hi X1 U0

h2

(iv) Consider the case of Table A.2. The string 0101 is in L so that L Eq (ha, hz)
implies that ha(0101)= hE(0101). Using Table A.2, this means that XoXauoyouayl

XoUoXaUoa so that XaUooUa UoXUao and thus XaUo UoXa and 33oul and oUa
Uao. Hence every two strings from S {Xo, o, xa, a, yo, 33o, yl, 33a, Uo, ua} commute.
Now consider the string 0110 which is not in L. Notice that ha(0110) XoXaUaaUoo
UoUaXoXao by commutativity, and that hE(0110)= XoUoXaUaao UoUlXoXoya by
commutativity. Thus ha(0110)= h2(0110) so that 0110 in is Eq (ha, h2), contradicting
the choice of ha and hE such that Eq (h 1, hE) L. Thus it cannot be the case that every
two strings from the set $ commute.

(v) The conclusion that any two strings from the set S commute was based on the
fact that either x and Uo are nonempty or)3o and u are nonempty. By choice of cases, Uo
is nonempty and u is nonempty. Hence x ha(l) e and 3o h2(0) e, SO that neither
ha nor h2 is nonerasing.

(vi) Consider the case of Table A.3. The string 0101 is in L so that L Eq (ha, h2)
implies that ha(0101)= hE(0101). Using Table A.3 this means that xoyavxuoo
ha(OlO1)hz(OlO1)=XouoYloVlXl so that YlVlUoYo UoYlYOVl. Since YlVl /51321, we
have VIYlUo)o UOYlOVI. Thus, either Uo Vx or Uo Vx w for some w e or va UoW
for some w # e.

(a) Suppose Uo vl. Since Uo e and Vx e, UoVa VaUo so that any two strings
from {Xo, 2o, xl, 21, yo,)o, y,), Uo, va} commute and the analysis proceeds as in parts
(iv) and (v).

(b) Suppose that Uo=VaW for some w C e. The string 1010 is in L so that
L Eq (hi, hE) implies that h1(1010)-h2(1010). Using Table A.3 this means that
YIDIXOIUOO--yIXoUoDI,IO SO that D1XoIUO--XoUoUI,I. Since IgO--DIW we have
DIXOn’1/’/0--X0VIWUI3I SO that VaXo xovl. Thus, either Xo e so that any two strings
from {Xo, o, Xx, a, yo, o, yl, 33a, Uo, va} commute and the analysis proceeds as in parts
(v) and (vi), or Xo e. If Xo e, then UIXOIUO-- X0b/ODI)I implies (Vl)Uo Uo(Vxa) so
that any two strings from {o, xl, 1, yo, 33o, YI, Uo, V} commute and the analysis
proceeds as in parts (iv) and (v).

RONALD V. BOOK AND FRANZ-JOSEF BRANDENBURG 743

(C) Suppose that vl UoW for some w e. As above, since hi(0101) h.(0101),
ylVUo)30 Uoyl)3oVa. Since v UoW, yauowuoo uoyoV so that yuo u0yl. Now
the analysis is as in case (b), depending on whether y e or y e.

(vii) In part (ii) it was assumed that IXo[< lYo[. The argument for the case of Ixol > lyol
is exactly parallel to that given in parts (ii)-(vi).]

REFERENCES

[1] R. BOOK, Polynomial space and transitive closure, this Journal, 8 (1979), pp. 434-439.
[2] F.-J. BRANDENBURG, Multiple equality sets and Post machines, J. Comput. System Sci., to appear.
[3] K. CULIK, II, A purely homomorphic characterization o]recursively enumerable sets, J. Assoc. Comput.

Mach., 26 (1979), pp. 345-350.
[4J ., On homomorphic characterization of families of languages, Automata, Languages, and Pro-

gramming, Lecture Notes in Computer Science 71, Springer-Verlag, New York, 1979, pp. 161-170.
[5] K. CULiK II AND H. A. MAURER, On simple representations o] language families, RAIRO Informat.

Th6or., 13 (1979), pp. 241-250.
[6] K. CULIK II AND A. SALOMAA, On the decidability of homomorphism equivalence for languages, J.

Comput. System Sci., 17 (1978), pp. 163-175.
[7] J. ENGELFRIET AND G. ROZENBERG,Fixed point languages, equality languages, and representation of

recursively enumerable languages, J. Assoc. Comput. Mach., to appear. An extended abstract
appears in the Proceedings of the 19th IEEE Symposium on Foundations of Computer Science,
1978, pp. 123-126.

[8] J. HOPCROFT AND J. ULLMAN, Formal Languages and Their Relation to Automata, Addison-Wesley,
Reading, MA, 1969.

[9] R. LYNDON AND M. P. SCHUTZEN3ERGER, The equations a
t bcP in a free group, Michigan Math.

J., 9 (1962), pp. 289-298.
[10] Z. MAriNA, Mathematical Theory o] Computation, McGraw-Hill, New York, 1974.
11 A. SALOMAA, Equality setsfor homomorphisms o]lCree monoids, Acta Cybernet., 4 (1978), pp. 127-139.
[12] R. SMULLYAr, Theory of Formal Systems, Annals of Mathematics Studies, No. 47, Princeton

University Press, Princeton, NJ, 1961.
[13] R. STEARNS, J. HARTMANIS AND P. LEWIS, Hierarchies for memory limited computations, Conference

Record, 6th IEEE Symp. on Switching Circuit Theory and Logical Design, 1965, pp. 179-190.
[14] C. WRATHALL, Remarks on languages and relations, in preparation.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0009 $01.00/0

FINDING CONNECTED COMPONENTS AND CONNECTED ONES ON A
MESH-CONNECTED PARALLEL COMPUTER*

DAVID NASSIMIr AND SARTAJ SAHNI$

Abstract. Let G (V, E) be an undirected graph in which no vertex has degree more than d. Let
]V] n 2p. In this paper we present an O(q3(q / d)n log n) algorithm to find the connected components of
G on a q-dimensional n n ... n mesh-connected parallel computer. When d 2, the connected
components can be found in o(qnn) time. We also show that the connected ones problem can be solved in
O(q6n time.

Key words, connected components, connected ones, mesh-connected computer, parallel algorithm,
complexity

1. Introduction. A mesh-connected parallel computer (MCC) is an SIMD (Single
Instruction Stream, Multiple Data Stream) computer. It consists of N 2p processing
elements (PEs). In a q-dimensional n n . n MCC, the PEs may be thought of as
logically arranged in a q-dimensional n n ... n array. The PE at location
(iq-1, , io) of the array is connected to the PEs at locations (iq_l, , ij + 1, , i0)
0 <_-f < q, provided they exist. Two PEs are adfacent iff they are connected. A PE may
transmit data to an adjacent PE in a unit-route. In an MCC, each PE has some local
memory. Each word and register of local memory has a storage capacity of log N bits
(all logarithms in this paper are base 2). The PEs are synchronized and operate under
the control of a single instruction stream which is determined by the control unit. An
enable mask may be used to select a subset of PEs that will perform the instruction to be
executed at any given time. All enabled PEs perform the same instruction.

Parallel algorithms for MCCs and closely related models (such as cellular automat-
ons and parallel processing arrays) have been studied by several researchers. Efficient
sorting algorithms can be found in [11] and [15]. Algorithms for certain graph and
matrix problems appear in [1] to [4], [8] to [10], and [16]. General routing problems are
considered in [12], [13], and [14]. [6] and [7] cover language recognition type problems.
Several other references to work on MCCs exist. Most of these can be found by tracing
through the references of the papers cited above.

In this paper we shall address the following problems:
(i) Let G (V, E) be an undirected graph with N n"= 2p vertices. Let the

degree of each vertex be at most d. Find the connected components of G. We shall call
this problem: connected components[or degree d graphs. The initial configuration for this
problem has the adjacency list for vertex i, A(i, O" d 1), stored in d registers of PE(i).

(ii) Connected componentsfor degree 2 graphs: This is a special case of (i) (i.e. with
d -2). It arises in the design of a parallel algorithm to set-up the Benes permutation
network (Nassimi and Sahni [14]).

(iii) Connected ones: In this problem each PE has a register called A. Initially
A (i) I or 0, 0 _-< < N. Two ones are said to be adfacent if they are in the A registers of
two adjacent PEs. The transitive closure, R*, of this adjacency relation defines the
connectivity of the ones. A one in PE(i) is connected to a one in PE(/’) iff R*(i,) 1.
The connected ones problem is to determine whether all ones are connected.

Hirschberg [5] has obtained an O(log2N) parallel algorithm to find the connected
components of any N vertex undirected graph using an SIMD machine with N2PEs.

Received by the editors October 5, 1979, and in final form February 20, 1980. This research was
supported in part by the National Science Foundation under grant MCS 78-15455.

r Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
Illinois 60201.

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

744

CONNECTED COMPONENTS AND CONNECTED ONES 745

The parallel machine model used by him is different from the one we are using. In his
model, all PEs share a common memory. So, data transfers between PEs may be made
in O(1) time via this memory. We obtain an O(q3(q + d)n log n) algorithm to find the
connected components of an nq-vertex graph on an n q PE MCC. Our algorithm can,
however, be used only on graphs with vertex degree at most d. The basic idea behind our
algorithm is quite similar to the idea underlying Hirschberg’s algorithm. The imple-
mentation of this scheme on an MCC requires the use of novel strategies. Our algorithm
for problem (ii) runs in O(q4n) time.

The connected ones problem has been studied earlier by several researchers ([1],
[8], and [9]). The problem is of importance in pattern recognition. The parallel
computer model used in [1], [8], and [9] is called a parallel processing array (PPA). The
essential difference between a PPA and an MCC is that each PE in a PPA is a finite state
automaton capable of storing only a fixed number of bits of information. Each PE in an
MCC can store O(log N) bits of information. While other differences between the two
models exist, these are not so crucial. For the PPA model, Levialdi [9] has an O(n)
algorithm to solve the connected ones problem for an n n PPA. This algorithm can be
easily run on an n n MC(in O(n) time. Kosaraju [8] has extended this result for the
case of n n d PPAs. Kosaraju’s algorithm solves the connected ones problem for
n n d PPAs in O(n) time. It is not known if the connected ones problem for n n n
PPAs can be solved in O(n) time. We are able to solve the connected ones problem for
q-dimensional n n .. n MCCs in O(q6n) time. The underlying idea behind our
algorithm is the same as that for our algorithm for problems (i) and (ii).

In 2 we discuss the solution strategy to be used in obtaining our algorithms for the
three problems cited above. In 3 we introduce the notation and terminology to be used
in later sections. In this section we also introduce the subalgorithms that have been
developed in [13] and [15] and which will be used to arrive at the algorithms of this
paper. Section 3 also contains a new MCC algorithm. This algorithm generates reduced
min-trees (this term will be defined in 2). Sections 4, 5, and 6 respectively contain the
algorithms for problems (i), (ii) and (iii).

2:. Solution strategy. The solution strategy used to arrive at the algorithms of 4,
5 and 6 is quite similar to that used by Hirschberg [5]. First, let us define two terms. A
rain-tree is a tree in which the index of each node is less than the index of each of its
children. A reduced min-tree is a min-tree of height at most two. (The height of a tree is
the maximum level in the tree. The root is at level 1.) The algorithms developed in this
paper will partition the set of vertices in a graph (or the set of ones) into a set of reduced
min-trees such that two vertices (or two ones) will be in the same reduced min-tree
they are in the same connected component (or in the same set of connected ones).

While finding the connected components of a graph, we shall maintain several sets
of vertices. These sets will represent a partition of the vertex set of the given graph, G.
All vertices in the same set will be in the same connected component of G. Each set will
be represented as a reduced min-tree with R (i) pointing to the root of the tree. The
basic strategy in our connected components algorithm is to combine together sets of
vertices while retaining the property that all vertices in the same set are in the same
component of G. This is continued until no more set combination is possible. It is a
trivial matter to see that at this point, each set of vertices defines a connected
component of G.

We illustrate the preceding strategy by an example. Consider the 9-vertex graph of
Fig. 1 (a). Initially, no two vertices are known to be in the same component. So, we begin
with 9 sets of vertices. These are given by the 9-tree forest of Fig. 1 (b). The arrows give

746 DAVID NASSIMI AND SARTAJ SAHNI

@ (R)
(a) Example graph

A: 9 i 8

F:

I i 2

2 7 3 6 4 6

(b) Initial forest

2 3 3 4 4 4

()

(d) New forest

F:

(f) reduced min-tree

FIO.

the R values. Observe that R (i) for all nodes (as stated earlier, R (i) gives the root of
the tree). Two trees with roots and L L are adjacent iff tree contains a node i’ and
tree / contains a node/’ such that i’ and/’ are adjacent in G. The tree with root / is the
rain-adjacent tree to the tree with root iff the tree with root has no adjacent tree with
root less than]. To determine whether two sets should be combined, we first determine
the rain-adjacent tree A(i) for each root i. The A values are given below each root of
Fig. l(b). As can be seen, for some i, A (i) > i. This is undesirable, since changing R (i) to
A (i) to effect a set combination would result in nontrees (i.e. graphs with cycles). This is
remedied by changing all R (i) with A(i)> to A (A(i)).

LEMMA 1. A(A (i)) =< i.

Proof. Let A (i) =/. Since trees and j are adjacent, A (]) < i.]
From Lemma 1 it follows that if we replace R (i) by A (i) if A (i) -< i, and by A(A (i))

otherwise, then we will be combining together min-adjacent trees and will be left
behind with min-trees. Fig. 1(c) gives the updated A values and Figure l(d) shows the
min-trees resulting from the combination just described. All min-trees of Fig. l(d) are
also reduced min-trees. Repeating the above combination process, we first find that

CONNECTED COMPONENTS AND CONNECTED ONES 747

A(1)= 2, A(2) 1, A(3) 2 and A(4) 3. Updating A(i) for A(i)> i, we get A(1) 1.
The resulting min-tree is given in Fig. 1 (e). The corresponding reduced min-tree is given
in Fig. 1 (f). The next lemma shows that the combination process described above need
be repeated at most log N times for an N-vertex graph.

LEMMA 2. If the vertices of a connected component are in r distinct trees, r > 1, then
following a tree combination as described above, they are in at most /r/2J trees.

Proof. Let the roots before the combination be I {il, i2, , it}. Let A (i), L be
the root of the min-adjacent tree for root i. And, let I IUIL where I {ili I and
A(i) > i}, and IL {ili ! and A(i) < i}. The only candidates for root nodes following
the combination are nodes I (since for any node I, R (i) is changed to A(i)< i).
For a node I, R (i) becomes A(A (i)) A (f), where j A (i) and A(f) =< </. Thus,
the number of new roots, r’, is also no more than the number of nodes j of I with
A(j)<j. That is, r’_-< Ii l, And since r’-< 1I1, we conclude r’-< [r/2J. rq

3. Terminology, notation and subalgorithms. Throughout, we shall assume that
we are dealing with an n x n n. n q-dimensional MCC with N n q 2" PEs. For
any integer i, (i)b will denote bit b of i, and (i)s:l, S > [, will denote the number with
binary representation (i)s (i). Bit 0 is the least significant bit. By a 2k-block of PEs
we shall mean a block of 2k consecutively indexed PEs whose indices differ only in the
least significant k bits. We shall index the PEs in a q-dimensional MCC in shuffled
row-major order (see [13] or [15]). When this indexing scheme is used, the index of the
PE in position (iq_l,..., io) of the q-dimensional PE array is obtained by merging
together the binary representations of iq_, , i0. Let log n. When shuffled row-
major indexing is used, the binary representation of the index of the PE in position
(i_, iq-2, io) is (il-1)t-l(iq-2)t-l (io),-(i<-)t-e(i-2)t-2 (io)t-2
(i-)o(i-2)0 (io)o. (Recall that (iq-1)t- denotes bit t- 1 of i_.) Fig. 2gives the PE
indices resulting when the shuffled row-major indexing scheme is used on a 4 4 MCC.

0 1

2 3

8 9

4 5

6

12

i0 ii 14

13

15

FIG. 2. Shuffled row-major indexing.

If we have a q-dimensional MCC with N n q 2" PEs, then each 2"--block of
PEs will form an n/2 n n . n array, each 2"-2-block will form an n/2 n/2
n ... n array, and each 2"-%block will form an n/2 n/2... n/2 array when
shuffled row-major indexing is used. In general, a 2k-block forms an m_ mq-2

m0 array, where

2 rk/,- 0 < < d, d k mod q,
(1) mi

2 t/oi, d < <q.

To see this, note that the most significant bit of a PE index comes from dimension q 1,
the next from dimension q 2, and so on. In general, bit of a PE index is the [i/q th bit
of dimension mod q.

In words, (1) states that when shuffled row-major indexing is used, then each
q--12-block forms an mq-1 m,_2 . mo array such that Yi=o mi is minimized. As an

748 DAVID NASSIMI AND SARTAJ SAHNI

example, consider 22-blocks for a 4 x 4 MCC using row-major and shuffled row-major
indexing (Fig. 3). The quantity m0 + m is 4 for the shuffled row-major indexing but 5 for
the row-major indexing.

0 i 4 5

2 3 6 7

8 9 12 13

i0 ii 14 15

(a) Shuffled row-major

FIG 3.22-blocks.

0 i 2 3

4 5 6 7

8 9 i0 ii

12 13 14 15

(b) Row-major

Our algorithms will make use of two kinds of assignment statements. The first kind
is an assignment requiring no data routing. This will be denoted by the use of the symbol
’:=’. The second kind will require data routing among the PEs and will be denoted by
’+-’. PE selectivity will be done by providing a masking function. For example, the
statement

X(i) := Y(i), ((i)a O)

has selectivity function (i)a 0, and the assignment X := Y is to be carried out only on
PEs with bit b 0. When a selectivity function is provided for a for loop, the instructions
in the for loop body are to be performed only on PEs satisfying the selectivity function.

The discussion of the next three sections will make use of the following algorithms.
(i) SORT.
This algorithm sorts data items G(i), O<=i<N=n ’, into nondecreasing order

assuming a shuffled row-major indexing scheme. Its complexity is O(q:n) (see [15]).
(ii) RAR (Random Access Read).
In an RAR, each PE specifies a PE index from which it wishes to receive data. The

RAR algorithm described in 13] routes data from the source PEs to the PEs desiring to
receive the data. Each PE is allowed to request data from at most one PE. Several PEs
can request data from the same PE. The algorithm of [13] has complexity O(qEn). An
RAR in a 2-block takes 0(q22 /’) time.

(iii) RAW (Random Access Write).
In an RAW, each PE specifies the PE to which its data is to be sent. If two or more

PEs specify the same destination PE, then the RAW algorithm of [13] can be set either
to send all pieces of data to the destination or to send a selected one (say, the one with
minimum key). In the former case, if data from at most d PEs is to go to one PE, then the
time needed is O(qn (q + d)). In the latter case, the time needed is O(q2n). An RAW in
a 2k-block takes O(q2[k/ql(q + d)) or 0(q22 [g/q]) time, respectively.

(iv) RANK.
The rank of a selected record in a PE is the number of PEs of smaller index which

contain a selected record. For example, assume we have 8 PEs each containing one
record. Let.the key values of these 8 records be (6, 4, 2, 2", 6, 6", 3", 4*) where an
asterisk over a key value denotes a flagged or selected record. The ranks of the flagged
records are (-, -, -, 0, -, 1, 2, 3). Nassimi and Sahni [13] present an algorithm to rank
records in each 2k-block of PEs. Let s [k/qJ, d k rood q, and let rns be as given
in (1). The number of unit routes needed by the ranking algorithm of [13] is

CONNECTED COMPONENTS AND CONNECTED ONES 749

q-1
2 i=o (mi- 1) (q + d)2S+l-2q O(q2[k/q]). When k log N q log n, the number
of unit-routes becomes 2q (n 1).

(v) CONCENTRATE.
Let G(ir), 0 <= r <= f, be a set of records with G(ir) initially in PE(i). Assume that the

records have been ranked so that the rank H(ir) of record G(i) is r. A concentrate
results in record G(i) being moved to PE(r), 0_<-r-</". The algorithm given in [13]
carries out this function using the same number of unit-routes as used by the ranking
algorithm. This algorithm permutes records so that no record is destroyed.

(vi) REDUCE.
Let R(0: N-1) define a set of rain-trees (see 2). R(i)= iffi is a root of a

min-tree and R (i)< otherwise. Procedure REDUCE(k) generates the set of reduced
min-trees when each of the original min-trees is confined to a 2k-block of PEs. A
2k-block may contain more than one min-tree. Note that R (i) denotes a register in
PE(i). In line 3, we assume that the condition ((R (i))k-l:b (i)k-l:b) will be true for all
when b > k- 1.

line procedure REDUCE(k)
1 global R
2 for b := 1to k do
3 R(i)-R(R(i)), ((R(i))k-:b =(i)k-:b)
4 end
5 end REDUCE

ALGORITHM 1

The correctness of REDUCE may be established by induction on b. We shall show
that following iteration b r of the tor loop, the following condition holds"

C" For any i, R (i)=/" _-< i. Furthermore, either] is a root,
or and] are in different 2r-blocks.

Observe that initially CO holds. For the induction step, assume that Cr-1 holds
following iteration b r 1. During iteration b r, PE(i) is enabled to update its R (i) iff
and R (i)] are in the same 2r-block. If f is a root, then the update does not alter R (i).

If/" is not a root, then from C-1, it follows that and/" are in different 2r-l-blocks such
that (i)r-X 1 and (/’)-1 0. Let R (j) I. Following the update, we get R (i) < i. If
is not a root, then it must be in a lower 2--block with respect to f; this means that and
are in different 2-blocks. Hence, C will hold after iteration b r. The correctness of
REDUCE(k) will follow from Ck since each of the original min-trees was restricted to a
2k-block.

Line 3 of REDUCE is an RAR in a 2b-block, and requires 0(q22 tb/ql) time. The
complexity of REDUCE(k) is therefore O(q32k/q). When k p log N, the complex-
ity becomes O(q3n).

4. Connected components for degree d graphs. Let G be a graph with 2k vertices.
No vertex has degree more than d. Let ADJ(i, j), 0_-<j< d, be the adjacency list
for vertex i, 0 _-< < 2z If vertex has degree di< d then we assume that ADJ(i,) c
di-<j <d. We also assume that ADJ(i,/’), 0_-</" <d, denotes memory cells/registers
associated with PE(i), 0 _-< < 2k. A shuffled row-major indexing of PEs is assumed. The
graph resides in a 2k-block of PEs.

Procedure CONNECT(k, d) is a direct implementation of the strategy outlined in
2. Line 1 initializes the vertex sets to contain one vertex each. Each set is represented

as a min-tree. The for loop of lines 2-14 iterates the set combination process k log 2k

750 DAVID NASSIMI AND SARTAJ SAHNI

times. Lines 3-13 implement the set combination process. In lines 3-9 we determine for
each vertex , its min-adjacent tree. This is defined as:

CANDID(j) min{R (t)lt ADJ(j, l) for some and R (t) R (/)}.

Line 10 then finds the min-adjacent tree for each root i. Line 11 takes care of trees that
have no adjacent trees, and line 12 updates R according to Lemma 1. From the
discussion of 2, it follows that after line 12, R defines a set of min-trees. Line 13
produces a reduced min-tree from each tree.

As far as the complexity of CONNECT is concerned, we observe that lines 6 and 12
require RARs while line 10 is an RAW. Hence, each of these three lines requires
O(qZ2/q) time. Line 13 requires 0(q32to time. The overall complexity of
CONNECT is therefore O(k(q32/ + dqZ2/q)) O(kqZ(q + d)2t/q). Note that in this
much time we can find the connected components of several 2-vertex graphs by using
each 2-block of PEs for a different graph. Also note that when k =logN, the
complexity of CONNECT becomes O(q2(q + d)N/ log N) O(q3(q + d)n log n).

line

10
11
12
13
14
15

procedure CONNECT(k, d)
//ADJ(i, 0: d- 1) gives the adjacency list for PE(i).//
lid is the degree of the graph. 2k is the number of PEs//
R (i) := i//start with single-node trees//
for b := 0 to k- 1 do//merge trees//
CANDID(j) := oe
or e := 0 to d 1 do //get smallest neighboring root//
TEMP(j) := oo

TEMP(]) R (ADJ(], e))//get root from neighbor//
TEMP(f) := co, (TEMP(/’).= R(])) //discard if your own root//
CANDID(f) := rain{CANDID(f), TEMP(/’)}

end
//find min-adjacent tree//
R (i) min{CANDID(j)IR () i}
R(i) := i, (R(i) oo)//this tree cannot grow//
R(i) R(R(i)), (R(i) > i)//convert to min-tree//
call REDUCE(k)//reduce min-tree//

end
end CONNECT

ALGORITHM 2.

5. Connected components for degree 2 graphs. As stated earlier, this special case
arises in setting up the Benes permutation network [14]. We shall show that this special
case can be solved in o(qan) time on a q-dimensional MCC with N n q PEs. As in the
previous section we begin with the adjacency list of vertex in PE(i). The indices of the
(at most) two vertices adjacent to vertex are stored in ADJ(i, 0) and ADJ(i, 1). If
vertex is of degree 1 then ADJ(i, 1) oo; if the vertex has degree 0 then ADJ(i, 0)
ADJ(i, 1)= oe. Our connected components algorithm will produce reduced min-trees
with the property that R(i)= R(j) iff and j are in the same connected component.

Our algorithm for degree 2 graphs uses a strategy slightly different from that
described in 2. Consider the example graph of Fig. 1 (a). As before, we begin with each
vertex in a set of its own. Vertices in a set are represented by a min-tree. Fig. 1 (b) gives
the initial forest denoting the sets. Each tree determines its min-adjacent tree. These

CONNECTED COMPONENTS AND CONNECTED ONES 751

(a) Graph of roots from Figure l(d)

2 i 2 3

(b) Min-adj acent trees

I i 2 3

(c) Adjusted new roots

(d) Min-tree

(f) Reduced min-tree of (e) with

remaining nodes added

(e) Reduced min-tree

(g) Final reduced min-tree

FIG. 4

are given outside the nodes in Fig. 1 (b). Fig. 1 (d) depicts the min-trees following a tree
combination step making use of Lemma 1. At this point, rather than repeat the
tree-combination step and get the min-tree of Fig, 1 (e), we form a new graph which
contains only the root nodes of Fig. 1 (d), i.e., nodes 1, 2, 3, and 4. This graph is called the
root graph. In the new root graph, vertices and f are adjacent iff the trees with roots
and f are adjacent. The resulting graph is given in Figure 4(a). Note that, in general, if
vertices ix, iz, , it are in the same min-tree following the tree-combination step, then
at most two of the vertices ix, i2, , it can be adjacent to vertices not in the tree. To see
this, observe that the graph we began with was of degree 2. Each vertex in a min-tree is
adjacent to at least one other vertex in the tree (provided the tree has more than one
vertex). If every vertex of ix, i2,’", it is adjacent to two other vertices in the same
min-tree, then none of il, i2, , it can be adjacent to a vertex not in the min-tree. So,
assume there is a vertex (say ix) which is adjacent to exactly one of i2," , it. Without

752 DAVID NASSIMI AND SARTAJ SAHNI

loss of generality, we may assume this vertex to be i2. i2 must be adjacent to one of
i3, it otherwise i3, it cannot be in the same min-tree as il and i2. Repeating this
argument, we see that the vertices in a tree can be relabeled so that ij is adjacent to ij/l,
1 =< f < t. So vertices il and it are the only vertices that can be adjacent to a vertex not in
the tree. Let the root of this tree be it, and let u and v be the two possible vertices
adjacent to il and it and not in this tree. Let R (u) and R (v) be the roots of the trees
containing u and v respectively. In the new graph of root nodes, only R (u) and R (v) can
be adjacent to vertex i, So, the new root graph is also of degree 2.

The tree combination step of 2 is repeated on the root graph of Fig. 4(a). This
yields Fig. 4(b), 4(c) and 4(d). The min-tree of Fig. 4(d) is reduced to get Fig. 4(e). At this
point, if more than one reduced min-tree existed, we would form a new root graph and
re-apply the tree combination step. The tree combination-root graph formation process
has to be repeated at most log Ntimes if we start with an N node graph (see Lemma 2).
Our algorithm will repeat this basic step exactly log N times. Once we are finished with
this step, we will be left with one min-tree for each component (as in Fig. 4(f)). The
min-tree for each component is then reduced as in Fig. (4(g).

line

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22

23
24
25
26
27

procedure CONNECT2(p)
//ADJ(i, O" 1) gives the adjacency list for PE(i)//
//2p N is the number of PEs//
ORG(i) := R (i) := i//original address of a node//
LIVE(i) := 1
LIVE(i) := 0, (ADJ(i, 0)= ADJ(i, 1)= oo)
b := p//initial graph is in a 2P-block//
loop, (LIVE(i)= 1 and < 2b)//active set of PEs//

R(i) := min{ADJ(i, 0), ADJ(i, 1)}
R(i) R(R(i)), (R(i) > ij //convert to rain-trees//
call REDUCE(b)
if b 1 then[R (i) ORG(R (i))

exit trom loop]//go to line 25//
for e := 0, 1 do

ADJ(i, e) R (ADJ(i, e))
ADJ(i, e):= oo, (ADJ(i, e)= R (i))

end
CANDID(i) := min{ADJ(i, 0), ADJ(i, 1)}
{ADJ(i, 0), ADJ(i, 1)),--{CANDID(j)IR(j)= i}
R(i)ORG(R(i))//cut off all nodes from roots//
LIVE(i) := 0, (R(i)
//update adjacency lists of live nodes before moving://
call RANK(b)//rank live nodes. Let H be the rank.//
ADJ(i, 0) H(ADJ(i, 0))
ADJ(i, 1) H(ADJ(i, 1))
call CONCENTRATE(b)//concentrate live nodes. The records//
//are G (ORG, LIVE, ADJ, R)//

b:=b-1
repeat //go to line 5 / /
R(ORG(i)) R(i)//send all nodes back to origin; use SORT.//
call REDUCE(p)

end CONNECT2
ALGORITHM 3

CONNECTED COMPONENTS AND CONNECTED ONES 753

The reason the addition of the root graph formation step leads to an asymptotically
faster algorithm than procedure CONNECT (Algorithm 2) is that a root graph cannot
contain more than N/2 nodes of degree one or two if the original graph contained N
nodes. This follows from Lemma 2. As a result, the root graph can be concentrated into
a 2P-l-block of PEs before tree combination. The next root graph formed will have at
most N/4 nodes and so can be concentrated into a 2P-2-block of PEs. Thus, following
each tree combination step, we can localize the next root graph to a smaller block of
PEs. Tree combination in a smaller block of PEs takes less time than in a bigger block
and so the resulting algorithm is faster.

Now, let us look at the details of the algorithm. Since our algorithm will be
concentrating root graphs into smaller blocks of PEs, we will have a need to know the
originating PE for each vertex in a root graph. ORG(i) will be used to denote the
originating PE for the vertex currently in PE(i). The variable LIVE will be used to
distinguish between nodes in the current root graph and other nodes: LIVE(i) 1 iff the
vertex currently in PE(i) is in the root graph and has degree more than zero;
LIVE(i) =0 for all other PEs. We may regard the initial graph as a root graph.
Procedure CONNECT2 (Algorithm 3) is a formal specification of our algorithm. Lines
1 to 3 initialize ORG, R, and LIVE. The variable b is used to denote the current block
size. It is initialized to p (i.e. the block size is 2 N) in line 4. Lines 5 to 24 define the
basic tree combination-root graph formation step. The PE selectivity function specified
in line 5 requires that the statements within the loop body be executed only on "live"
PEs that are in the "first" 2b-block (the "first" 2b-block contains PEs 0, 1, , 2- 1).
Additional selectivity functions provided within the loop further restrict the PEs on
which certain statements are to be executed.

At the start of each iteration of the loop of lines 5-24, we have a new root graph.
Each vertex in this graph is in a different set. So, to find the min-adjacent tree for any
single-node tree T, we need only find the least indexed vertex adjacent to the sole vertex
in T. This is done in line 6. Line 7 updates R according to Lemma 2. The min-trees
created in lines 6 and 7 are reduced in line 8. If b 1 then only two vertices could be
present in the root graph. So, only one min-tree can result following lines 6 and 7.
Hence, no further iterations are needed, and the loop is exited from line 10. If b 1,
then further iterations of the tree combination step may be needed. So, we proceed to
set up the new root graph. In lines 11 to 15 each live vertex determines whether it is
adjacent to another live vertex in a different min-tree. Following line 15, CANDID(i)

itt the vertex in PE(i) is adjacent to a live vertex in a different tree. If CANDID(i)
c, then CANDID(i) equals the index of the PE containing the adjacent live vertex’s
root. In line 16 the (at most) two vertices that will be adjacent to root in the new root
graph are recorded in ADJ(i, 0) and ADJ(i, 1). Note that one or both of these values
may be c. At this point the R value of each live PE(i) is updated to be the originating
PE of the vertex in PE(R(i)) (line 17). Following this, R(i)=ORG(i) only for root
nodes. Line 18 "kills" nodes that are not to be in the new root graph as well as nodes
that would have a degree of zero in the new root graph.

Following the creation of the new root graph, the new root graph is to be
concentrated into a smaller block of PEs. Procedure RANK ranks all the nodes in the
new root graph. The rank, H, of a node gives the PE to which it is to be routed during the
concentration. ADJ(i, 0" 1) is updated in lines 20 and 21 to reflect the PE indices of the
adjacent nodes following the concentration. Line 22 actually concentrates the nodes in
the new root graph. The records being concentrated are (ORG(i), LIVE(i),
ADJ(i, 0: 1), R (i)) for LIVE(i) 1 and <26. Note that if there are j live PEs, j -<2b-1,
then following a concentration the live records occupy PEs 0, 1,...,j-1 and

754 DAVID NASSIMI AND SARTAJ SAHNI

the remaining records are in PEs j, , N- 1. No record is destroyed during concen-
tration. Also, CONCENTRATE does not change the relative order of live records since
for two live records and j, H(i)>H(j) iff i>j. As a result of this, we can use
ADJ(i, 0: 1) rather than ORG(ADJ(i, 0)) and ORG(ADJ(i, 1)) when finding min-
adjacent trees (line 6). Note that for R(i) as given in line 6, we have ORG(R(i))=
min{ORG(ADJ(i, 0)), ORG(ADJ(i, 1))}; assume ORG(oo) oo. Thus, in lines 6, 7, 12,
13, 15, 16, 20, 21 R and ADJ are really PE indexes and not vertex indexes. In lines 9
and 17 R is reset to be a vertex index. So, on exit from the loop, all R values are vertex
indexes. Line 25 sends every vertex back to its originating PE. It is easy to see that
following this, we shall have R(i)<-i for every i, 0 _-< < N. The min-trees are finally
reduced in line 26.

To obtain the complexity of procedure CONNECT2, we need be concerned only
with lines 7, 8, 9, 12, 16, 17, 19, 20, 21, 22, 25 and 26. The remaining lines contribute a
total of O(p) time. Lines 7, 9, 12, 17, 20 and 21 are RARs in a 2b-block. Line 16 is an
RAW in a 2b-block. During this RAW, only the smallest two values destined for a given
PE are to reach the destination PE. Using the complexity figures given in 3 for RARs,
RAWs, REDUCE, CONCENTRATE and RANK in a 2b-block, we see that each
iteration of the loop of lines 5 to 24 takes O(q32 rblq]) time. So, the overall time spent in
this loop is O(q4n) where N n q 2p. Line 25 requires a sort on the field ORG. This
takes only O(qEn) time. Line 26 takes o(qan) time. So, CONNECT2 has time-
complexity O(q4n).

6. Connected ones. Before describing our algorithm to solve the connected ones
problem, we introduce some terminology. Two 2b-blocks are siblings iff they together
form a 2b/-block. A 2b-block is a left 2b-block if it contains only PEs with bit b equal to
zero. It is a right 2b-block if all PEs have bit b equal to one. APE in a 2b-block is a
boundary PE iff it is adjacent to a PE in its sibling 2b-block. Let d b rood q. From the
discussion in 3, we know that bit b of a PE index is bit [b/q] of dimension d when
shuffled row-major indexing is used. So, a 2b+l-block results from combining two
sibling 2b-blocks along dimension d. Also, a 2b-block defines a PE array of size
mq-1)< mq-2 N X too, where the mis are as give,n by (1). In particular, me =2 Ib/ql. The
number of boundary PEs, t, in each 2b-block is therefore 2 b-tb/q].

Our algorithm for the connected ones problem actually partitions all the PEs into
sets such that PE(i) and PE(j) are in the same set iff A (i) A (j) 1 and these two ones
are connected. On termination of the algorithm, each partition is represented by a
reduced min-tree. We shall have R (i) R (j) oo iff A (i) A (j) 1 and these two ones
are connected. R (i) oe iff A(i) 0. To determine if all the ones are connected we need
only check if the number of distinct R values (not counting oo) is more than one. This is
easy to do.

Our algorithm begins by considering each 2-block. For the lone PE in a 2-block,
R(i)= if A(i)= 1, and R(i) oo if A(i) 0. From the sets of connected ones in each
2b-block, we construct the sets of connected ones in each 2b+l-block, 0 _-< b < p. (Recall
that the MCC has N 2p PEs.) The sets of connected ones in a 2b+l-block are obtained
by combining together the sets for the two 2b-blocks contained in the 2b+l-block. Sets
are combined in the same manner as before, i.e., min-adjacent trees are combined
together. In defining the set adjacencies for purposes of this combination, it is sufficient
to consider only boundary node adjacency. Let be a boundary PE in a left 2b-block and
let] be a boundary PE in the corresponding right 2b-block. PE(i) is a live boundary PE
iff it is adjacent to a PE(j) in its sibling 2b-block and A(i) A(]) 1. Note that each live
boundary node is adjacent to exactly one other live boundary node in its 2b+l-block. A

CONNECTED COMPONENTS AND CONNECTED ONES 755

PE is a live root PE if it is the root of a min-tree containing a live boundary PE (a live root
PE can also be a live boundary PE). Thus, to obtain the sets of connected ones in a
2b+-block, we need only attempt to combine those 2b-block sets with a live root. This
combination can be carried out by considering only the adjacencies of the live boundary
nodes.

With this introduction, we are ready to look at the details of procedure CONNECT
ONES (Algorithm 4). This procedure uses a sub-procedure ROUTE(E, d, i) which
transmits the data in the E register of each PE to the E register of a PE that is units
away along dimension d. maybe positive or negative depending on the direction along
dimension d that the route is to be performed. Lines 1 and 2 set-up the reduced
min-trees corresponding to 2-blocks. Lines 3-30 build the reduced min-trees for each
2b+l-block, 0<_- b < p. Lines 4-11 determine the live boundary PEs. This is done by first
determining the dimension, d, along which the member 2b- blocks are combined (line 4).
Following line 7, E(i) 1 iff PE(i) is a live boundary PE in a left 2b-block and following
line 10, LIVE(i) 1 iff PE(i) is a live boundary PE. Line 12 identifies the live root-PEs.
Since the number, t, of boundary PEs in a 2b-block is 2b-lb/ql, the number of live PEs
(including live root PEs) in a 2+a block is no more than rain{2b+l, 4t}. Live min-trees
are combined by first concentrating the live nodes in each 2b+-block into a "corner" of
that block. This requires us first to rank the live nodes (line 13) and then to set-up the
adjacency list for each live boundary node. As remarked earlier, each live boundary
node is adjacent to exactly one live boundary node. Lines 16-22 set-up ADJ(i)=] for
each live boundary node i./" is the PE index to which i’s adjacent live boundary node
will be moved. The concentration of live nodes is performed in line 24. The records
being concentrated are G(i)=(R(i), ADJ(i), LIVE(i), ORG(i)). (As before,
CONCENTRATE permutes the records in each 2b+a-block so no record is destroyed.)
CONNECT’ is the same as procedure CONNECT of 4 except that line 1 is omitted
and only PEs with LIVE 1 are involved in any computation. Following line 26, live
nodes and] have the property that R (i) R (/’) iff ORG(i) and ORG(/’) are in the same
set of connected ones for the 2b+a-block containing PEs and/’. Lines 27 and 28 move
the reduced min-trees created in line 26 back to the originating PEs. The reduced
min-trees together with the PEs that were not live before the concentrate (line 24) form
min-trees of height at most 3. Line 29 reduces these min-trees (note that R (i) for a
root). Line 29 may be restricted to PEs which had LIVE(i)= 0 before line 24 was
executed.

Let rn 2 [b/q] and m’= 2 [k/q] where k is as given in line 25 of the algorithm. Lines
6, 9, 18, and 21 represent unit-distance routing and so have a complexity of O(1). Line
12 is an RAW in 2b-blocks and requires O(q2m) unit-routes. Line 13 takes O(qm)
time. Lines 15 and 29 are RARs in 2b-blocks and take O(q2m) time. Line 24 has
complexity O(qm). Lines 26 and 27 have complexity O(q4m log m’) and O(q2m ’)
respectively. Finally, line 28 is a sort, and has complexity O(q2m). Since

bq b 5mq4m’ log m’ -qZm 2b/q----’--7= O(q),

each iteration of the tot loop takes O(qSm) time. The overall complexity of CONNECT
ONES is therefore O(q6n).

An O(n) algorithm for the connected ones problem can also be arrived at using
other block combination strategies. For example, if we have found the sets of connected
ones in each 2b-q-block then the sets for each 2b-block may be found by combining
together the sets in the 2q2b-q-blocks that make up the 2b-block. A boundary PE of a

756 DAVID NASSIMI AND SARTAJ SAHNI

2b--block can be adjacent to at most q boundary PEs in the remaining 2 1 blocks
making up a 2b-block. If we set up ADJ(i, 0" q 1) in a manner similar to the setting up
of ADJ(i) in procedure CONNECT ONES then we can make a call to CONNECT’ (as
in line 26) with k replaced by k’ and 1 replaced by q. k’ is the maximum number of live
nodes in a 2b-block.

Another possibility is to reduce the number of block combination steps to a
constant. For example, if q 3 then we can consider/,/3/4 X n 3/4 x//3/4 blocks. Each PE
in such an n9/a-block is ones-adjacent to at most 6 other PEs in that block (two PEs are
ones-adjacent iff they are adjacent and they both contain a one). Applying procedure
CONNECT to each n9/4-block in parallel takes O(n 3/4 log n) time. The n9/a-blocks
can be combined together as before. The total number of boundary nodes in a
//3/4 X n 3/4)< n 3/4 block is 6/,/3/2. The number of blocks is//3/4. So, the total number of
live nodes (including roots) is at most 12n 9/4. The time to concentrate these nodes is
O(n), and the time to run CONNECT’ is O(n 3/4 log n). So, the overall time is O(n).

line

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.
27.
28.
29.
30.
31.

procedure CONNECT ONES (p)
//Find connected l’s. 2p n o N is the number of PEs.//
R(i) := o, (A(i) 0)//A is 0/1 pattern//
R(i) := i, (a(i) 1)
ior b := 0 to p- 1 do//combine pairs of 2b-blocks.
d := b rood q
E(i) := (i)b *a(i)
call ROUTE(E, d,-1)//unit distance route to left half//
E(i) := (1- (i)b) * a(i) * E(i)
LIVE(i) := E(i)//live PEs in left block//
call ROUTE(E, d, +1)//unit-distance route to right//
LIVE(i) := 1, (E(i)= 1)//live PEs in right block//
BORDER(i) := LIVE(i)//mark live border PEs//
LIVE(R(i)) 1, (LIVE(i)= 1)
call RANK(b + 1)//rank live nodes. Let H rank.//
H(i) := H(i)+ 2b+a (i)p-:b+ //Add block bias//
R(i)H(R(i)), (LIVE(i)= 1)//update before move//
ADJ(i) := c//build ADJ for live boundary PEs://
E(i) := H(i)
call ROUTE(E, d, 1)
ADJ(i) := E(i), ((i)b 0 and BORDER(i)= 1)
E(i):=H(i)
call ROUTE(E, d, + 1
ADJ(i) := E(i), ((i)b 1 and BORDER(i)= 1)
ORG(i) :=
//Let record G(i)= (R(i), ADJ(i), LIVE(i), ORG(i))//
call CONCENTRATE(b + 1)
k := min{b + 1, b- [b/qJ +2}//live nodes in a block <= 2k.//
call CONNECT’(k, 1)//same as CONNECT without line 1//
R(i) ORG(R (i)), (LIVE(i)= 1)
R(ORG(i)) R(i)//move back//
R(i) R(R(i)) //reduce the min-trees//

end
end CONNECT ONES

ALGORITHM 4

CONNECTED COMPONENTS AND CONNECTED ONES 757

REFERENCES

C. ARCELLI AND S. LEVIALDI, Parallel shrinking in three dimensions, Computer Graphics and Image
Processing, 4(1972), pp. 21-30.

[2] L. E. CANNON, A cellular computer to implement the Kalman filter, Ph.D. Thesis, Montana State
University, 1969.

[3] E. DEKEL, D. NASSIMI, AND S. SAHNI, Parallel Matrix and Graph Algorithms, University of
Minnesota Technical Report # 79-10, 1979.

[4] M. J. FLYNN AND S. R. KOSARAJU, Processes and their interactions, Kybernetes, 5 (1976), pp.
159-163.

[5] D. HIRSCHBERG, Parallel algorithms]’or the transitive closure and the connected components problems,
Proceedings ACM 8th Annual Symposium on Theory of Computing, 1976, pp. 55-57.

[6] S. R. KOSARAJU, On some open problems in the theory of cellular automata, IEEE Trans. Comput., 23
(1974), pp. 561-565.

[7] S. R. KOSARAJU, Speed of recognition of context-free languages by array automata, this Journal, 4
(1975), pp. 331-340.

[8] Fast parallel processing array algorithms for some graph problems, Proceedings ACM lth
Annual Symposium on Theory of Computing, 1979, pp. 231-236.

[9] S. LEVIALDI, On shrinking binary picture patterns, Comm. ACM, 15 (1972), pp. 2-10.
[10] K. LEVITT AND W. KAUTZ, Cellular arraysfor the solution ofgraph problems, Comm. ACM, 15 (1972),

pp. 789-801.
11 D. NASSIMI AND S. SAHNI, Bitonic sort on a mesh-connected parallel computer, IEEE Trans. Comput.,

28 (1979), pp. 2-7.
[12] ., An optimal routing algorithm for mesh-connected parallel computers, J. Assoc. Comput. Mach.,

27 (1980), pp. 6-29.
[13] Data Broadcasting in SIMD Computers, University of Minnesota, Technical Report # 79-17,

1979. IEEE Trans Comput., to appear.
[14],Parallel algorithms to set-up the Benes permutation network, University of Minnesota Technical

Report # 79-19, 1979.
[15] C. THOMPSON AND H. KUNG, Sorting on a mesh-connected parallel compu,ter, Comm. ACM, 20

(1977), pp. 263-271.
[16] F. L. VAN ScoY, Parallel algorithms in cellular spaces, Ph.D. Thesis, University of Virginia, 1976.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0010 $01.00/0

FACTORIZATION OF SYMMETRIC MATRICES AND
TRACE-ORTHOGONAL BASES IN FINITE FIELDS*

GADIEL SEROUSSI’ AND ABRAHAM LEMPEL

Abstract. It is shown that every symmetric matrix A, with entries from a finite field F, can be factored
over F into A BB’, where the number of columns of B is bounded from below by either the rank p(A) of A,
or by + p(A), depending on A and on the characteristic of F. This result is applied to show that every finite
extension of a finite field F has a trace-orthogonal basis over F. Necessary and sufficient conditions for the
existence of a trace-orthonormal basis are also given. All proofs are constructive, and can be utilized to
formulate procedures for minimal factorization and basis construction.

Key words, matrix factorization, finite fields, trace, trace-orthogonal basis

1. Statement of the main results. Throughout this paper all matrix operations and
concepts such as rank, linear dependence, etc., are taken over a finite field F whose
order, pr, and characteristic, p, will be specified, when so required, by writing F
GF(pr).

Consider a symmetric matrix A. A matrix B is called a [actor of A if A BB’,
where B’ is the transpose of B. Our basic result, as established by the existence parts of
Theorems 1 and 2, is that over a finite field, every symmetric matrix has a factor.

A factor B of a symmetric matrix A is called a minimal [actor if no factor of A has
fewer columns than B. The number of columns of a minimal factor of A will be denoted
by IX(A).

TI-IZORZM 1. Every symmetric matrix A (Aij) over F GF(2r) has a factor, and
tx (A p (A + 6 (A), where p (A is the rank ofA and

1 ifmii 0 for all i,
6 (A

0 otherwise.

This result generalizes the main result of [1], where the theorem is shown to hold
for the special case of r 1, i.e. for matrices over the binary field GF(2). The proof of
Theorem 1 is presented in 2; it is constructive and follows, essentially, along the lines
of the proof in [1].

A square submatrixM ofA is called a principal submatrix ofA if eitherM A or if
there exists a permutation matrix P such thatM occupies the upper left corner of PAP’.
Note that if A is symmetric, then so is M. Also, every symmetric matrix A, A : 0, has a
principal submatrix M* whose order and rank are both equal to p (A). The determinant

IM*I of such a submatrix of A will be referred to as a major of A. By Lemma 5 of 3,
every symmetric matrix A 0 over a finite field F has the property that either all of its
majors are quadratic residues in F or none of them are. For fields of odd characteristic
we obtain the following result.

THEOREM 2. Letp be an odd prime. Every symmetric matrix A overF GF(p r) has
a factor, and ifA # 0 Ix (A) p (A) + e (A), where

0 if the majors ofA are quadratic residues in F,
(a)

1 otherwise.

* Received by the editors May 13, 1979, and in final revised form February 25, 1980.
5" Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.

758

FACTORIZATION OF SYMMETRIC MATRICES 759

The proof of this theorem is also constructive and it is presented in 3. It should be
noted that despite their formal resemblance, there is an essential difference between
Theorems 1 and 2, as in finite fields of characteristic 2 every element is a quadratic
residue. Thus, in such fields e (A) is always equal to zero while (A) depends on A.

A matrix B is called a semifactor of the symmetric matrix A if there exists a
diagonal matrix A such that A-BAB’. In particular, every factor of A is also a
semifactor of A, with A I, the identity matrix. B is called a minimal semifactor of A if
no semifactor of A has fewer columns than B. The number of columns of a minimal
semifactor of A will be denoted by/xs(A). In 3 we also prove the following result.

THEOREM 3. Let p be an odd prime. For every symmetric matrix A 0 over
F GF(pr), txs(A) p(A).

By omission of the case p 2, Theorem 3 points out another peculiarity of GF(2r)
which is due to the fact that every element of such a field is a quadratic residue in it. If
A BAB’ over GF(2), then A BF(B F)’ where F A-. Hence, over finite fields of
characteristic 2,/Xs (A) =/x (A) and, in view of Theorem 1, Theorem 3 does not extend
to the case p 2 when 3 (A)= 1.

An interesting application of the foregoing results is a method of constructing
trace-orthogonal bases over finite fields. Consider a finite field F GF(q) and a finite
extension op GF(q) thereof. For a , the trace of a over F is defined by

n--1

T(c)= .
i=O

A basis 12 {o)1, w2,..., w,} of over F is called a trace-orthogonal basis (in short,
TOB) if

T(oioi) 0 if and only if];

is called a trace-orthonormal basis.(in short, TONB) if is a TOB and if T(w i) 1 for
all 1, 2,..., n.

In 4 we prove, constructively, the following result.
THEOREM 4. Every finite extension dp GF(q) of a finite field F GF(q) has a

TOB over F; dp has a TONB overF if and only if either q is even or both q and n are odd.
The validity of this theorem for the special case of F GF(2) has been established

in 1]. A TONB is referred to in [2, Chapt. 4] as a self-complementary basis. Theorem 4
thus specifies the necessary and sufficient conditions for the existence of such a basis in
an arbitrary finite field.

In the sequel we shall make free use of some fundamental properties of finite fields.
Chapter 4 of [2] can serve as a suitable reference for the required background on finite
fields.

2. Faetorization over GF(2). Following [1], we prove the existence part of
Theorem 1 by describing the construction of a so called elementary factorization.

Consider a symmetric matrix A (Ag.) of order n, and let N {1, 2, , n}. We
define a set NI N and a set of ordered pairs N: N N as follows:

N {(i,/)1i, i N, <], and Ai. e 0}.

A k-column, k N1, is a column of n rows with a 1 in row k and zeros elsewhere; an
(i,])-column, (i,]) N2, is a column of n rows with a 1 in rows and] and zeros
elsewhere. Let E [EIE2... E,] be a matrix of n rows and rn + IN [columns

760 GADIEL SEROUSSI AND ABRAHAM LEMPEL

such that E contains one k-column for each k E N1 and one (i, j)-column for each
(i, j) E N2, and let A (A/i) be a diagonal matrix of order m with

Aii
{,Akj

if Ei is a k-column,

if Ei is a (k, j)-column.

LEMMA 1. Let E and A be as defined above. Then A EAE’.
The proof of this lemma is a straightforward generalization of the proof of Lemma

1 in [1].
Note that the construction leading to Lemma 1 is valid over every field. However,

over GF(2r) it also produces a factor B EA2r-1 of A, and thus establishes the existence
part of Theorem 1. We proceed now to derive a procedure for reducing a given factor to
a minimal one. We shall use the notation c (M) for the number of columns of a matrix M.

LEMMA 2. IfB is a factor of A, then c (B) >= p (A) + 8 (A).
Proof. Clearly, (B) -> p (B) => p (A). Hence, for 8 (A) 0 the lemma is trivial.

Assume 8(A)= 1. Then Ak 0 for all k and, recalling that we work in GF(2r), we
obtain

2

O= Akk B2 Bk
j=l

which implies .%1 Bki--0 for all k. Hence, the columns of B are linearly dependent
and, therefore, c(B)>=p(B)+ 1 >=p(A)+ 1. QED.

Lemma 2 shows that p (A) + (A) is a lower bound on/x (A). The following lemmas
show how to achieve this bound.

LFMMA 3. If A BB’ is nonsingular and if a proper subset of columns of B are
linearly dependent, then there exists a factor J ofA such that c (J) < c (B).

Proof. Since BB’ is invariant under a permutation of the columns of B, we may
assume that B =[G HI, where l<-c(G)<c(B) and the columns of G are linearly
dependent. Hence, there exists a nonzero vector u (u) such that Gu 0. Without loss
of generality, we may assume that U 1. Let s =Y Ui and let B* [Z H], where

G ifs =0,
Z=

[G O] ifs#0,

and where [G 0] is the matrix obtained by adjoining an all-zero column to G. Since
ZZ’= GG’, B* is a factor of A. Let Za and Ha be the first columns of Z and H
respectively, and let x Z1 +Ha and Y Z + xv’, where

ifs =0,

ifs #0.

We have Zv Gu 0 and, since we compute in a field of characteristic 2, we also have

Therefore,

and/ Y
obtain

2

UtU S2+ UU S2+E U2 S -[- U =2s2=0.

YY’ ZZ’ + Zvx’ + xv’Z’ + xv’vx’ ZZ’,

H] is a factor of A. Now, recalling that u 1 and that Ha Za + x, we

Ya Zl + xi)1 Zl + xu Zl + x Ha.

FACTORIZATION OF SYMMETRIC MATRICES 761

Thus, the joint contribution of Y1 and H1 to the product//’ is null and, hence, the
matrix/ obtained by deleting Y1 and H1 from/ is also a factor of A. Consequently,
we have

c()=c(Y)+c(H)-2=c(Z)+c(H)-2<=c(G)+c(H)-I < c(B). QED.

LEMMA 4. IfA BB’ is nonsingular and, if c (B) > p (A) + 6 (A), then there exists a

factor 1 ofa with c () < c (B).
Proof. Nonsingularity of A BB’ implies p (A) p (B), and if (B) > p (A) + t (A),

then c (B) > p (B) + 6 (A). Hence, if 6 (A) 1, then any p (B) + 1 columns of B form a
proper subset of linearly dependent columns of B. By Lemma 3, this implies the
existence of a factor B with c(/)< c(B), which validates the lemma when 6(A)= 1.

Assume now that 6 (A) 0. We still have c (B) > p (B) and, therefore, there exists a
nonzero vector u (ui) such that Bu 0. If ui 0 for some i, then again B has a proper
subset of linearly dependent columns, and we are back at the case covered by Lemma 3.
Thus, we can assume that ui 0 for all i. Since 6 (A) 0, the columns of B do not sum to
an all-zero column. Therefore, given any constant c, there is at least one such that
ui c. In particular, there exists some such that ug ui. Without loss of generality, we
may assume that 1 U Y uj. Consequently, if B. denotes the]th column of B and
S--EJ=2 /’gb where m=c(B), we obtain BI=S’,/=2 ujBj and s0. Let J=B+Bv’
where v’ (1 s- -1 -1

u2 s u3 s u,,).Since

BvB’a (B1 + s- uiBi)B’ (1 + s-x)BIB’I,
/=2

we have BvB’ +BlV’B’= O. Also, since s- i2 ui 1, we have
2

2 -1v’v=l+s-Z ui =1+ s Z u =0.
/=2 /=2

Therefore,

J’=BB’ +BvB’I +Bv’B’ +Blv’VB’ BB’,

and/ is a factor of A. Observing that/ B +B O, it follows that the matrix/
obtained by deleting the first column from / is also a factor of A with c(/)=
c(B)- 1. QED.

This concludes the proof of Theorem 1 for the nonsingular case. The existence part
is covered by Lemma 1, and the minimality part by Lemmas 2 and 4. Using the
constructions of the proofs of Lemmas 1, 3, and 4, one can readily establish a simple
procedure for obtaining a minimal factor.

When A is singular it contains a principal submatrix M* whose rank and order are
both equal to p (A). (We may assume p (A) > 0, for the theorem is trivial when A 0.)
One can readily adapt the argument given in 1 to show that (M*) 6 (A) over every
field of characteristic 2, and that there exists a nonsingular matrix R such that

Since M* is nonsingular, it has a minimal factor H with c(H)= o(M*)+ 6(M*)=
O (A) + 6 (A). Hence

762 GADIEL SEROUSSI AND ABRAHAM LEMPEL

and B R-l[oHI is a factor of A with c(B) o(A) + 6(A). This validates Theorem 1 for
the singular case as well.

3. Factorization over finite fields of odd characteristic. Let p be an odd prime and
let A be a symmetric matrix of order n overF GF(pr). On our way to prove Theorem
2 we first prove Theorem 3. Since both theorems are void when A 0, we shall assume
throughout that p (A) > 0.

Proof of Theorem 3. We prove the theorem by induction on the order n of A. The
theorem being trivially true for n 1, we assume it to hold for 1 -< n _-< m 1, and we
consider a symmetric matrix A of order m and rank p (A) > 0 over F. Since the number
of columns of a semifactor of A cannot be less than p(A), it suffices to show that there
exists one with no more columns.

Case I" p(A)< m. In this case, A has a principal submatrix M* whose rank and
order are both equal to p(A). As in the singular case of 2, there exists a nonsingular
matrix R such that

Since the order of M* is less than m, it follows from the inductive hypothesis that M*
has a semifactor B* with c(B*)= o(A). Therefore, B R-[g*] is a semifactor of A
with c (B) 0 (A).

Case II" 0 (A) m andA 0orsome k. LetA denote the kth column of A, and
let A A -AAA. Since A-AAA 0, we have 0() < m. We cannot
have A 0, because then o(A)= 1 < m, contrary to the definition of Case II. Thus,

0 and, by Case I, has a semifactor with c() 0(). Therefore, B [A]
is a semifactor of A with c (B)=p(A)+ 1 N m.

Case III’ o(A)= m and A 0 or ll k. Since A is nonsingular and the field
characteristic is odd, 2A 0 for some k 1. Let A* -(2A (A A1)(A A
and let =A-A*. Since el =A =0 andA =A, we have

=A-A +(2A)-(A-A1)(AI-A-A +Al)

=A-A +(A-A) 0.

Thus, 0 (A) < m and, since in this case too A 0, by Case I, A has a semifactor B with
c()=0().Therefore, as in Case II, B =[x],wherex =A-A,isasemifactorof
A with c(B) o(A) + 1 N m. This completes the proof of Theorem 3. QED.

The following lemma guarantees that the definition of e(A) in Theorem 2 is
unambiguous.

LEMMA 5. Let A be a symmetric matrix over F. Then, either every major oA is a
quadratic residue in F, or none o them is.

Pro@ The lemma is obvious when A is nonsingular. If A is singular, let M and
be nonsingular principal submatrices of order 0 (A) of A. Then, there exist nonsingular
matrices T and T such that

Hence,
A=T[00]T’=[0M 00]7".

o]

FACTORIZATION OF SYMMETRIC MATRICES 763

where

S-- [Sll 812] r_lf,,
$21 S22.]

and Sxl is a square matrix of order p(A). It follows that

[821

andM SllMSI1. Therefore, IMI; ISlxl[r[and [M[is a quadratic residue if and only
if 1/17/I is. QED.

The following lemma will be useful in constructing a factor from a given semifactor
of a matrix A.

LEMMA 6. Ifh E F GF(p r) is not a quadratic residue in F, then h is the sum of two
quadratic residues in F.

Proof. Let 3, be a primitive element of F (i.e., the multiplicative order of 3’ is pr 1).
Then the set O of quadratic residues of F is given by

0={3"2’]1<i <pr-I}2
{0},

while the set O of nonresidues is given by

0={3"2-[1</<p-I}
Since [l[=1/2(p r+I) does not divide [F[=p , O is not an additive subgroup of F.
Therefore, O is not closed under addition, and there exist q i, q2E i such that

2t-1
qx+q=3" for some t, l<-t<-_1/2(p -1). Hence, for each i=1,2,...,1/2(p -1) we
have

3"
2i-1

=ql 3"2(i-t) +q23"2(i-t).
Since O is closed under multiplication, it follows that every element of O is the sum of
two elements from O. QED.

LEMMA 7. IfA BB’ # 0 then c (B >= p (A + e (A).
Proof. Since we must have c(B)>-o(A), it suffices to show that the equality

c (B) p (A) implies e (A) 0. Assume c (B) O (A), and let M* be a principal sub-
matrix of A whose order and rank are equal to o(A). Then, if B* is the corresponding
submatrix of B, we have M*= B*(B*)’ and [M*I- [B*I2, Hence, if c(B)= o(A), the
majors of A are quadratic residues and e (A)= 0. QED.

Proof of Theorem 2. By Lemma 7, it suffices to show that every symmetric matrix
A 0 over F has a factor B with (B) p (A) + e (A). To this end, consider a minimal
semifactor $ of A. By Theorem 3, c(S)= p(A), and there exists a diagonal matrix A
such that

A=SAS’= liSiS,
i=X

where p(A) and hi Aii, 1 <= <= t.
Let 3", Q and O be as defined in Lemma 6. Then, for each hi there exists an

element aiF such that hi =a
2 and --SiS i, where I -’-aiSi. Similarly, for

each h;61. there exists an element bs6F such that As b3" and AiSiS;

764 GADIEL SEROUSSI AND ABRAHAM LEMPEL

where . biSi. Thus, without loss of generality, we may assume that Ai "y for 1 -<_ _-< s,
and that hi 1 for s < -< t.

Now, let M* be a principal submatrix ofA whose order and rank are equal to p (A),
and let S* be the corresponding submatrix of S. Then [M*I IAI [S*I2 yslS*12, and we
have e (A)= 0 if and only if s is even.

Case I: s 2k. If k 0, then A =/, and B S is a factor of A with c(B) p(A). If
k _-> 1, then, by Lemma 6, there exist a,/3 F such that 3/- a

2 +/3 2. Consider the matrix
B whose columns are defined by

B2i-1 0$2i-1 -[- S2i,

B2i [JS2i-1 oS2i,

for 1 <- k, and Bg Sg for s < <- t. Since for 1 -<_ =< k we obtain

Sn2i-ln2i-1 -[- B2iBi O2 -1- [J2)(S2i-lSt2i-1 -[- S2i 2i)

S’(S2i-lSt2i-1 at- S2i 2i),

it follows that B is a factor of A with c(B)= p(A).
Case II" s 2k + 1. If k > 0, we can apply the construction of Case I to obtain a

semifactor [Ss B of A, c (B) p (A) 1, such that

A ySsS’s +:’= (a 2 + 2)SsS’s + J’.
Thus, the matrix B whose columns are defined by B1 ass, B2 Ss, and B2+i Bi for
1 _--< _--< p (A) 1, is a factor of A with c (B) p (A) + 1.

Since Case I corresponds to e(A)= 0 and Case II corresponds to e(A)= 1, this
completes the proof of Theorem 2. QED.

4. Trace-orthogonal bases over finite fields. Consider a finite field F GF(q) and
a finite extension GF(q") thereof. Recalling that a s F if and only if a q a, and that
over F (a +/3)q a +/3, one can readily verify the following properties of the trace
operator T:

(t.1) T(a)F for all a ,
(t.2) T(a q) T(a) for all a ,
(t.3) T(aa+b)=aT(a)+bT03) foralla,Oanda, bF.
Let be a primitive element of and let V (Vi) be a square matrix of order n

whose entries are defined by

Vii ,]/iqi, 0 <-- i, j <- n 1.

It is easy to see that V is a Vandermonde matrix over , and hence its determinant is
given by

Oi<]<n-1

Consider the symmetric matrix A VV’. Since V is nonsingular over , so is A.
Moreover, since

n--1

Aii ygqkyik T(yg+i), 0_-< i,/’_-< n 1,
k=0

if follows, by (t.1), that the entries of A belong to F and that A is nonsingular over F.
LZMMA 8. Over the fieldF GF(q), Ix (A) n ifand only ifeither q is even or both q

and n are odd.

FACTORIZATION OF SYMMETRIC MATRICES 765

Proof. Since A is nonsingular, it suffices to show that when q is even, Akk 0 for at
least one k, and that when q is odd, IAI is a quadratic residue in F if and only if n is odd.
Suppose q is even. Then, the characteristic of F is 2, and we have

A T(,/e) (T(/)) Ao.
Since A is nonsingular, there must be at least one k such that A0 # 0 and, thus,A # 0
for at least one k.

Assume now that q is odd. Since IJl VI over , it suffices to determine the
condition under which VI belongs to F. To this end, recall that

Ivl 1-I
O<=i<]<=n-1

qOSince (a-/3)q
aq- q, and a

q"
a a for all a,/3 e q, we obtain

n--1

Ivl II FI
l<--i<j<=n--1 i=1

Hence, VI F if and only if n is odd. QED.
By Lemma 8 and Theorem 3, it follows that the matrix A VV’ can always be

factored over F into

A =SAS’,

where A is a diagonal matrix and c(S) n.
Now, let rn qn 1 and let M (Mij) be the m x rn symmetric matrix with

M0. T(y+), 0 _-< i, j -<_ m 1.

Note that A is a submatrix of M, occupying the n x n upper left corner of M. We now
show that the rank of M is n. Since 3’ is primitive in q), the n powers 3/, 0 _<-] <- n 1,
form a basis of (P over F. Therefore, for each k 0, 1, , rn 1 there exist n elements

k n-1L. e F, 0 -<] _-< n 1, such that 3’ =o L3’j. Consequently, we obtain

n--1 n--1

Y’. MiiLi Y’. LiT(3,i+i),
j=o i=0

which, by (t.3), yields

MiL, T LikT
i+ T(3,’i+’).

1=0

This shows that every column Mk of M is spanned by its first n columns
M0, M1, ’, Mn-1, and since p (A) n we also have p(M) n. Moreover, if L denotes
the n x m matrix formed by the Ljk, 0 _--<] =< n 1, 0 _--< k -< m 1, then

M L’AL L’$AS’L BAB’

where B L’$.

It is also easy to verify that the m columns M, 0 -< k -< m 1, of M, and the all-zero
column Z of length m, form a field which is isomorphic to (P under componentwise
addition as defined in F and multiplication defined by

M,Z ZM, Z, 0 <= k <= m 1,

ZZ Z,

M/M M/+, O<_i,j<__m-1,

766 GADIEL SEROUSSI AND ABRAHAM LEMPEL

where all column indices are taken modulo m. The one-to-one correspondence
between these columns and the elements of expressed as powers of 3’ is

M- 3"
, O <- k <= m -1,

Z -Oo

Note that Z and the m columns of M exhaust all linear combinations of the first n
columns of M over F. We can prove now the following result.

LEMMA 9. The columns Bo, B1,’’’, B_ of a minimal semifactor B ofM[orm a
TOB of over F.

Proof. Since M- BAB’, it is clear that the columns of B span those Of M.
Moreover, since c(B)= n and p(M)= n, we must have tg(B)= n and, hence, the
columns of B form a basis of over F. As such, it should be clear that the columns of B
are a subset of those of M. It remains to be shown that this basis is actually a TOB. Let

ei3" 0 =</" =< n 1 0 -< ej -< m 1 be the power of 3’ corresponding to Bj. Without loss of
kgenerality, we may assume that e0 < el <" < en-1. Substituting 3" for Mk and 3" ei for

B. we can replace M’ BAB’ by

[3"03"13"2,,, 3"m--l] [3"eo3"el,,, 3’e._I]AB,"

It is clear from this relation that for each/" such that 0 =< j = n- 1, and for each
i-0, 1,... ,n-l,

(AB’) { 1
iej AiBefi 0

if =/’,
otherwise.

Since B corresponds to 3"ej which, in turn, corresponds to Mej, we have

This implies

and hence,

B [MoM, Me,_1].

Bi Mie, T(3" i+e’)

1 if/=/’,
,.iBefi- ,)tiT(3" e’+ei)

0 otherwise.

Since Iml 0,/i 0 for all i, and we have

fZ-1 ifi=j,
T(3"e’. 3’ e,) / 0 otherwise.

This proves, as claimed, that the columns of B form a TOB of over F. QED.

Proofof Theorem 4. The existence part with respect to a TOB is covered by Lemma
9. When q is even or when both q and n are odd, it follows from Lemma 8, that A can be
factored over F into A SS’ (i.e., A I) with c (S) n. Consequently, M BB’ over F,
and the columns of B form a TONB of over F. To prove that the condition of the
theorem is necessary for the existence of a TONB, suppose has such a basis over F.
Then, the principal n x n submatrix of M whose columns (and rows) correspond to the
TONB is the identity matrix I of order n. The determinant [rl 1 of this principal
submatrix is a major of M. Consequently, either q is even or q is odd and e (M)= 0.
Hence, either q is even or q is odd and/x (M) =/x (A) n. By Lemma 8, this implies that
either q is even or both q and n are odd. QED.

FACTORIZATION OF SYMMETRIC MATRICES 767

REFERENCES

[1] A. LEMPEL, Matrix factorization over GF(2) and trace-orthogonal bases of GF(2n), this Journal. 4
(1975), pp. 175-186.

[2] F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1977.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0011 $01.00/0

A MODEL AND PROOF TECHNIQUE FOR
MESSAGE-BASED SYSTEMS*

JEROME A. FELDMAN AND ANIL NIGAM+

Abstract. Distributed computing with widely separated machines is a subject of growing theoretical and
practical interest. This paper attempts to present a framework for the analysis of message-based distributed
computations. This is done in the context of the classical critical section problem and the high-level language,
PLITS. The proof techniques described are based on the use of finite-state machines which characterize the
external behavior of each module in the distributed computation.

Key words, distributed computing, proof techniques, critical section problem, communication proces-
ses, finite-state model

1. Introduction. Distributed computing, the execution of a single computation by
a network of computers, is currently a very hot topic. As is usual in computing,
applications are proceeding in advance of any systematic study of the subject. The
technical and economic reasons for the great increase in distributed computing seem
likely to remain in force for some time. In addition to its practical significance,
distributed computing is a subject of inherent intellectual interest because every
complex system, from a micro-organism to a society, does its computations with a
number of fairly independent subsystems whose communications can be viewed as
messages. We have previously worked on a message-based model for system programs
[2] and on a high-level programming language (PLITS) for distributed computing 11].
This paper attempts to lay out an abstract framework for the analysis and synthesis of
message-based distributed computation.

The direct motivation for the current effort came from a graduate seminar that was
working on the refinement and applications of PLITS. The students had very little
trouble writing message-based PLITS programs but had great difficulty proving them
correct, even though they could prove ordinary programs. One difficulty was the
absence of an agreed-upon formalism for demonstrating the correctness of such
programs. An initial attempt at such a formalism is one of the three goals of this paper.
A second goal is to extend the recent work on synchronization of modules which share
memory to those which communicate only by messages. Our third goal is to contribute
to the development of programming and proof techniques which will help in the
production of demonstrably correct solutions to real distributed computing problems.

The choice of a model is often the crucial step in the formalization of a domain.
Distributed computing presents particular modeling difficulties because an adequate
treatment of it requires consideration of several poorly understood concepts including
time-dependency, parallelism and unreliability. There also is much less accumulated
intuition than is available for monoprocessing. The particular model chosen here
assumes that reliable transmission (including preserving sequence) and the detection of
dead modules is treated by an underlying system. This is the same level of model used in
our PLITS work and seems to be a clean abstraction of a level to be found in most
distributed systems.

* Received by the editors December 29, 1977, and in revised form August 1, 1979. This research was
supported by the Alfred P. Sloan Foundation under grant 74-12-5 and by the National Science Foundation
under grant MCS76-10825.

t Department of Computer Science, University of Rochester, Rochester, New York 14627.

768

MESSAGE-BASED SYSTEMS 769

This paper can also be viewed as part of the continuing effort to carefully define and
study the problems of synchronizing multiple concurrent program modules (or proces-
ses). The most recent informal effort along these lines is a paper by Peterson and Fischer
[23] which discusses the critical section problem for distributed systems. A more formal
investigation has been reported in [7]. The critical section problem is not particularly
interesting (cf. below), but is very simple and has a long history. There is currently a
great deal of work, on the validation of communication protocols [26], which is also
related to our work.

We will loosely follow the formulation of Peterson and Fischer, but our concern is
with message-based coordination problems. Essentially all previous work on the
problems has been based on models employing shared memory for system state
variables (flags). This model makes sense in a single processor with multiple modules,
but does not have an obvious realization in a system distributed across a network. One
thing we will do later is explore direct extensions of the flag style of solution to
message-based (realistic) distributed systems. The historical context of the critical
section problem is in the design of resource-sharing operating systems. A resource (such
as a printer or a disk unit) had to be used by only one process of the system at a time.
Since all the processes were on a single machine, the reading of flags was perfectly
straightforward. We are concerned with the allocation of resources by a widely
distributed system. This paper explores the techniques available for synchronizing
message-based systems and, especially, the proof methods which can be employed with
them.

There is an additional set of problems involving the allocation of multiple resources
among parallel processes with overlapping requirements [8]. This paper does not
directly address these problems, but the results developed here can be used to extend
the existing coordination algorithms to distributed systems. There is work in progress
[21] on applying results of this paper to data base problems.

A typical resource to be allocated by a distributed processing system might be
access to a distributed data base or a band of the electromagnetic spectrum or a volume
of air space by an air traffic control system. Often the best solution to these shared-
resource allocation problems is to have a specific module in charge of allocating the
resource (this is analogous to replacing global variables with classes or modules). The
major problem with having one controller per resource is that a failure in the controller
totally precludes the use of the resource. If there are redundant controllers for a
resource, they will have a synchronization problem like those discussed here.

One of our main goals is to develop a model for message-based computation which
is both useful for proving correctness and sufficiently realistic to be implemented as a
layer of practical distributed computing systems. The model will be defined in terms of
specific assumptions (or axioms) such as"

(A1) Messages sent from a sending module to a receiving module will all arrive
safely and in the order issued with no duplications.

(A2) There is enough space to queue all incoming messages for each module.
For each such assumption (there are two more), we will describe briefly how its

validity can be achieved. Assumption A1 (reliable transmission) is at the heart of all
message-based systems [27] and has been called the pipelining assumption [4]. It is
usually achieved by using redundancy checks and sequence numbers in messages and
requiring a positive acknowledgment from the receiver before the sender discards its
copy of a message. Assumption A2 is usually accomplished by keeping the sender
continuously informed of the available capacity of the receiver. If messages are all
processed in the order received, it is equivalent (although less efficient) to have the

770 JEROME A. FELDMAN AND ANIL NIGAM

sender retransmit messages rejected because of inadequate queue space. It is feasible to
have essentially unbounded message queues by using secondary storage. If even this
very large limit is exceeded, the system is deemed to be broken. These assumptions (and
the two which follow) seem to be at a level appropriate for our goals. It is reasonable to
ask that our methodology be adequate to prove assumptions A1-A4 given a more
primitive model and we will carry out one such reduction below.

In order to be explicit, we will assume that modules are programmed in an Algol-
like language which has been augmented with constructs dealing with messages ([11]
contains a complete specification for a usable example of such a language). In the
language used here, a module can transmit a message by executing a statement of the
form

Send (message) To (module).

Messages are queued at the receiving end until requested. We also postulate a single
primitive, Receive (message), by which the receiver lrocess can request and wait for a
message (from the q0eue provided by the underlying system). A module executing a
Receive will be assumed to eventually be resumed with either the first incoming
message or with the special message "dead". The treatment of dying and reincarnating
modules is the basis for assumptions A3 and A4 and will be discussed in detail below.
We also want to explicitly account for arbitrary differences in execution speeds among
modules. Intuitively, one can imagine that a module has been swapped out of main
memory between any two statements.

With this model, we can devise a very simple solution to the critical section
problem that satisfies the three conditions of mutual exclusion, no lockout, and no
deadlock assuming neither module dies and that each module attempts to enter the
critical section infinitely often. There are two messages, "canI?" and "yes", in addition
to the system message "dead". Neither m’odule will enter its critical section until it
receives a "yes" from the other one. In the interesting case when the modules exchange
"canI?" requests, module Po will have precedence. The code for the two modules Po
and P1 is shown in Fig. 1.

Po
NEUTRAL: NEUTRAL:

(non-critical section) (non-critical section)
Send canI? To P1 Send canI? To Po

TRYING: Receive (message) TRYING: Receive (message)
I" message canI? Then I1 message canI? Then
Begin Begin
Go to TRYING Send yes To Po

Und Go to TRYING
End

CRITICAL: (critical section) CRITICAL: (critical section);
Send yes To PI Go to NEUTRAL
Go to NEUTRAL

FIG. 1. Programs]’or the solution o] the oversimplified critical section problem.

Intuitively, the solution works because there is a complete "canI"-"yes" hand-
shake for each entry to a critical section. In this (much too simple) case, each module can
only respond to messages at one place, TRYING. Independent of who sends the first
"canI?" message, each will send and receive a "canI?". Module Po has precedence so it
just waits for another message. P1 yields precedence so it will send a "yes" and wait for a
message. Po will get the "yes", enter its critical section, and complete it. Then it will send

MESSAGE-BASED SYSTEMS 771

a "yes" to P. This enables Px to enter its critical section. We would like to be able to
provide more rigorous proofs for solutions to this kind of problem. Our first attempt will
be to follow the style of Peterson and Fischer [23].

Proo]’. We prove that the algorithms of Fig. 1 solve the critical section problem
(recall that we are assuming for now that neither module ever dies). Notice first that
each module receives all messages in one place (labeled TRYING). A module can enter
its critical section only by receiving a "yes" message at this point. Suppose Po has sent a
"yes" to P; then it is not in its critical section and cannot enter again without (going
through its noncritical section and) sending a "canI?" and getting a "yes" response.
Thus the sequence of messages sent by Po strictly alternates between "canI?" and
"yes".

Now consider the module Pa which will see this alternating sequence. Whenever it
sees a "canI?" it responds "yes" and waits for the next message. But the next message
it receives was shown above to always be "yes". This enables P to enter its critical
section. After P1 finishes its critical section, it will (go to NEUTRAL, send a "canI?",
and) receive the next "canI?" from Po. Thus, the two modules will strictly alternate which
one is in the critical section. Strict alternation obviously entails mutual exclusion and the
absence of deadlock and of lockout.

The algorithms in Fig. 1 are a little more complex than is strictly necessary here,
because we want similar algorithms to work when dying modules are considered. The
proof becomes more involved and will be deferred until more machinery is developed in

2. It is sometimes considered more elegant to have the programs for each module be
identical. To convert our solution to one with this property, one adds tests in each
module on whether it gets or yields lexicographic preference. The problem solved here
is not identical to that faced in Peterson and Fischer [23], because we assume each
module tries to enter its critical section infinitely often; later versions of our solution
relax this requirement.

The proof presented above is in the informal style used in the literature [17], [25]
on synchronization problems. There are some people who find it difficult to convince
themselves that such proofs are correct (sometimes they are not) and under which
circumstances. In the following section, we attempt to lay out a more formal approach
to proving properties of message-based systems. Subsequent sections elaborate on the
problem, the model, and the solution presented above. The central question is how to
produce efficient and demonstrably correct solutions to realistic problems in distributed
computing. One approach we will follow is layering: a given model of the "system" is
defined and a simple solution to the (e.g., critical section) problem proved relative to
that model. Then we consider how to realize the model in terms of a more primitive
"system". Then the simple solution is used to develop more realistic solutions. Finally,
we consider how to synthesize larger systems from demonstrably correct parts.

2. An abstract formulation. We will present informally a formal model which has
proved useful in the design and proof of programs like those of Fig. 1 and more realistic
message-module systems. Flow table methods from sequential circuit theory have been
used [6] to design control programs for parallel processes. The basic idea is to describe
the external behavior of each module as a finite state machine, with a small number of
states. The possible messages in the system are also divided into a small number of
classes, but this trivializes in the current example because there are only two possible
messages (still assuming neither module dies). Now, if we can define all the assumptions
carefully, and if the modules can be described (externally) in such a simple way, proofs
can be made much clearer. Intuitively, the modules P0 and P1 of Fig. 1 each have three

772 JEROME A. FELDMAN AND ANIL NIGAM

distinct states: noncritical, trying, and critical. Fig. 2 presents the programs of Fig. i and
the finite state table that characterizes each one.

Po Pt
NEUTRAL: NEUTRAL:

(non-critical section) (non-critical section)
Send canI? To P1 Send canI? To Po

TRYING: Receive (message) TRYING: Receive (message)

If message canI? Then If message canI? Then
Begin Begin
Go to TRYING Send yes To Po

End Go to TRYING
End

CRITICAL: (critical section) CRITICAL: (critical section)
Send yes To P1 Go to NEUTRAL
Go to NEUTRAL

sSSage message

T

Y state"’x ? Y

C T T T/y C

N/y

T/?

C

N /Q

C /Qe

N /Qe

where T TRYING, C CRITICAL, N NEUTRAL, ? "canI?", y "yes" Qe is the action of queuing
the message, to be processed later.

FIG. 2

The plan is to use the tables as an intermediate representation in establishing the
properties of message systems. A proof will consist of showing that each table captures
the external behavior of the related program (cf. axiomatic semantics) and that the
collection of finite state tables satisfies the required global conditions. The aim is to
avoid global predicates based on the values of internal or auxiliary variables [22]
because these are generally not observable. Some progress has been reported [5] in
establishing correctness via a combination of state behavior and global predicates.

State tables describe the actions and state transitions that occur in a program either
by the program receiving a message (columns ?, y) or by internal actions of the program
(column-). The tables in Fig. 2 are particularly simple. Only one state (T) has message
reception and it changes only on message reception. The other two states (C and N)
queue messages and have the additional nice property that they each have a unique
successor and the transition is triggered by an internal action. The notation "T/?" in an
entry means that the program (simultaneously) sends the message "?" and goes into
state "T". The two blank entries indicate that there is no legal way that a "y" message
can appear while a module is in states C or N. The semantics of a blank entry could be to
discard the message, to signal a control module, etc. We leave it undefined here.

Looking ahead, we will want to develop the mathematics of systems of simple
state-message machines and use these to produce demonstrably correct solutions to real
distributed computing problems. It should already be apparent that this will have a

major influence on how one synthesizes these solutions. In particular, the programs Po

Note. The entries in the tables have the format (NextState)/(Action). If the (NextState) part is omitted, it

means that the process executes the specified Action but stays in the same state.

MESSAGE-BASED SYSTEMS 773

and P1 are direct encodings of the accompanying state tables. It also turns out that this
formalism is of great value in performance monitoring [12].

There are some notational conventions that we will follow throughout. In both
programs and state tables, the names of states will be in all upper case letters. The names
of message classes will be in lower case and special symbols. Other constructs will be
capitalized with reserved words in italics. We will abbreviate state and message names
frequently.

It is easy to characterize the critical section problem in terms of pairs of states
((state of Po), (state of P1)). The mutual exclusion condition is:

(1) -q(C, C).

Let (X, Y) :ff (Z, V) mean that if the system is in state (X, Y), it will necessarily reach
state (Z, V) in finite time. Then the no deadlock condition becomes:

(2) (T, T):=), (C, C)V(C, C)

where X is the complement of X relative to the states of module Pi. Finally, the
condition of no lockout is

(3) (T, X) =),(C, Y)A(x, T)=),(Y, C).

In this formulation, the desired properties of our solutions are the reachability or
nonreachability of certain system states. For the simple example here, one can easily
write down the diagram of all reachable states and read off the desired results. It is also
easy to write a general program to test for similar properties of a small system of
state-message machines [1]. Despite the fact that the example is so simple as to be
almost degenerate, much of this discussion will carry over to realistic problems.

For more complex problems, we will need to look carefully at sequences of system
states. One critical notion is that of a discrete event [13]. For the fixed systems of
modules considered here, an event will be the sending or receipt of a message or a
change in the internal state of a module. More generally, the creation and destruction of
module instances are also events. We will use the notation (X -a, Z) to denote the
event where Po receives a message a while in state X with module PI remaining in state
Z. An important point is that we make no attempt to impose a uniform time frame on a
system of modules. If PI could be changing state or receiving a message in parallel with
X - a, we must account for all possible sequences of these events. We will try to develop
solutions which can be characterized without including the messages en route (and in
queues) as part of the state of the system, but there is no inherent difficulty in including
these as well.

With the formulation, we can present an alternative proof of the solution to the
critical selection problem illustrated in Figs. 1 and 2.

Alternative proof (based on the state tables). Notice that each module sends a ?
only in state T and remains in T until it gets a "yes" response.

No deadlock. If Po is in T, it has sent a ?. If P1 is not in T when it receives the ?, it
will queue it. As soon as P1 enters T, it will send a "yes" response, enabling Po to
enter C.

No lockout. The argument above shows that Po is not locked out. If P1 is in T, it will
remain there until it receives a "yes". But Po sends a "yes" when it completes its critical
section allowing P1 to enter C.

774 JEROME A. FELDMAN AND ANIL NIGAM

Mutual exclusion. If P1 is in C, it has received a "yes" from Po while in T. Po sends
"yes" only on entering state N. For Po to get to C, it must go through T and send a ?. But
P1 will receive the "yes" first and not respend to the ? until its next cycle at TRYING. In
addition, there could be no "yes" in Po’s queue because P1 responds "yes" only once to
each ? and Po uses that "yes" to enter C.

The general situation here is an elaboration of the coordination problem originally
laid out by Petri (cf. [24]). It is fundanentally impractical (because of the finite speed of
signals and finite size of elements) to model an arbitrarily large system as changing its
global state. The fine structure of how the "state-change" is coordinated must be
accounted for. In our model, and in real networks, it is usually impractical to attempt to
move the system deterministically through a fixed sequence of states. Although each
module (and its characterizing table) is strictly deterministic, the overall system is not.
Modules cannot, in general, keep track of the internal state of their correspondents. We
can only verify (and understand) systems that have some stable transitions of at least a
subset of the modules. The notation ($, T)=), (U, V) and its extension to events
provides a way of talking about successions of stable points.

Let us now consider the situation where one module can die at any point in the
dialogue. We assume that the module is eventually restarted at its beginning and would
like the system to continue to perform correctly. Problems like this frequently arise in
practice.

There are two assumptions about dying lnodules, the more intuitive one being:
(A3) When a module dies, its death is reported (by a "dead" message) to all its

correspondents. The dead message remains enqueued until a message from
the reincarnation of the deceased is received, A module that restarts and
attempts to send a message to a module that is dead at that time, receives a
"dead" message.

The common way to get the effect of "A3 is to have the communication system
maintain a continuous "HellomI Heard You" dialogue at a low level. If some module
fails to respond in time to a "Hello", it is declared dead and appropriate actions are
taken. There are some delicate questions involving the choice of time-outs and the
possibility of a module restarting in the middle, which we will not address here.

(A4) When a module restarts, it receives accurate information on which other
modules are alive or dead. Any message to a previous incarnation of a
module will be flushed from the system.

Assumption A4 must be met at some level by any correct system, but its inclusion
as an underlying system feature is debatable. One common way of discarding messages
to previous incarnations is to include a birthtime stamp or incarnation number as part of
the module name. This works, but adds overhead to every message. Another way to
achieve A4 is to have each module go through a special "starting" procedure which
carries out the work needed (for A4). We will first extend the solution of Fig. 2 to dying
modules, under the assumption that A4 holds. Later we describe some details of an
implementation of A4.

We will also need a variation of the Receive ((message)) which does not suspend the
module which executes it. The primitive

Pending ((message))

will return False if no message is in the queue. If the queue is nonempty, a copy of its

Notice that the RECEIVE primitive when applied to a "dead" message returns a copy of it, and the
message remains enqueued (similar to PENDING introduced later).

MESSAGE-BASED SYSTEMS 775

first element is put into (message) and True returned. In the event that Pending
((message)) returns True we might be content to proceed with the computation using
the copy put into (message). However, to dequeue the original message the explicit
primitive Flush ((message)) is provided. Once again following PLITS syntax, we extend
both Receive and Pending to have an optional additional part, "From (module)", which
causes the message reception to be conditional on the Sender.

Modules will have to make assumptions about whether others are dead or not
depending on whether or not there is a "dead" from that module in its queue. Of course,
this information could be outdated, and we will take this into account. For convenience
in writing examples, we will introduce the notation:

Down (Pk) (Pending (message) From Pk)/ (message dead).

That is, Down (Pk) is true iff there is a dead message from Pk in the queue.
Fig. 3 presents the programs and state-tables for the critical section problem with

dying modules under the assumption that A4 holds. The additional program statements
are enclosed in set brackets. The additions to the state tables are simply the columns
labeled "d".

NEUTRAL: (non-critical section)
{If Down (P1) Then Go to CRITICAL}
Send canI? To P1

TRYING: Receive (message)
If message canI? Then
Begin
Go to TRYING

End

CRITICAL: (critical section)
Unless Down (P1) Then
Send yes To P}
Go to NEUTRAL

eo
message

state ? y d

T T C C T

C N N/y

N /Qe C T/?

el
NEUTRAL: (non-critical section)

{ff Down (Po) Then Go to CRITICAL}
Send canI? To Po

TRYING: Receive (message)
If message canI? Then
Begin
Send yes To Po
Go to TRYING

End
CRITICAL: (critical section)
Go to NEUTRAL

el

message
state ? y d

T T/y C C T

C /Oe N N

/Qe C T/?

FIG. 3. Extension of Fig. 2 to include "dead" messages.

We now must show that the solution in Fig. 3 is correct. First observe that the "d"
column accurately reflects the actions of the two programs. In N, a "dead" causes a
transition to C; in T, a "dead" message causes control to skip to C and in C (for Po only)
a "dead" message suppresses the sending of a "yes" which would otherwise accompany
the transition to N.

If both modules remain alive, the situation is unchanged and our previous proof
holds. While one module remains dead, the other cycles merrily through its critical and
noncritical section. Suppose module P1 has restarted and sends a "canI?" which
eventually arrives at P0. This will be seen by P0 in state N or C (P0 doesn’t enter T while
P1 is down). If Po is in N when it sees Pl’S "canI?", it wll queue it and go to TRYING in
the old way. If P0 is in C when it gets the message, it will simultaneously send a "yes" to

P1 and go to N. When Po gets to N, Px will not be Down and so the normal dialogue will

776 JEROME A. FELDMAN AND ANIL NIGAM

be resumed. The situation when Po dies is even simpler, because P1 will always see its
first "canI?" while in N and resume the normal dialogue. This shows that Fig. 3 is a
correct solution.

Suppose we did not insist that A4 holds. Then Po could send a "yes" to P1 which
took a very long time to get to P. Meanwhile, P could die and the "dead" message get
to Po’s queue. Po will, of course, cycle through C and N until it gets a new message from
P. Suppose P is reborn, sends a "canI?", and waits for a "yes" response. The "yes"
sent by Po to the previous incarnation could arrive at P1 before P’s "canI?" gotto Po. In
this case, both Po andP would simultaneously enter their critical sections. The problem
here is the specious "yes" message to a previous incarnation of P. We can outlaw this
kind of problem with A4, or account for it with a somewhat more complex solution
which doesn’t require A4. In this solution, each module has an extra STARTING state.
A reborn module sends a "canI? start" and waits for a "yes start" before starting its
main body. All non-starting messages are ignored in STARTING state.

In the table below these messages have been abbreviated as "st?" and "ok"
respectively. While in the STARTING state "canI?" and "yes" messages are ignored
(denoted by/Flush), as these are messages that were intended for an earlier incarnation
of the process. A "dead" message may be obtained as a result of trying to send the
"canI? start" message. This is interpreted as an accurate account of the other process
being down.

It should also be noted that startup activity for both processes is identical. This
follows from the fact that no state is saved across failures; i.e., a restarting process has an
empty message queue prior to executing startup actions. In the case of distributed
databases [21 we shall be dealing with cases where some state is carefully saved across
failure. The objective of this example is to demonstrate that the startup actions, coupled
with assumptions A1-A3, provide the effect of A4.

message
state ? Y d

S /Flush]/Flush] N IS/st?

st?

T/ok

/Qe

/Qe

S/ok

START:
ok Send canI? start to P1

Repeat Forever
begin

Receive (message);
If message dead then goto NEUTRAL
else if message yes start

then goto NEUTRALN end Repeat

3. More realistic examples. One problem with all the previous examples is that
modules Po and P wait much more than they should. Suppose P0 sends a "canI?" to P1
while P1 is in its critical section. P0 will wait while P1 finishes its critical section, does its
NEUTRAL section, and sends its own message. Recall that we introduced a Boolean
construct Pending ((message)) which does no waiting but simply returns True if there is
a pending message and False otherwise.

Now consider the following extra statement for PI:

Pending (message) then
If message canI? then

begin
Send yes to Po;
Flush (message);

end
e/se (ignore it)

MESSAGE-BASED SYSTEMS 777

This statement could be put after the critical section or somewhere in the NEUTRAL
section of PI to enable Po to proceed. In fact, one would like to be able to have Po
proceed whenever P1 is not in its critical section.

More generally, one wants to have a module always capable of receiving a (e.g.,
emergency) message and providing a simple reply. This behavior could be modeled by a
polling mechanism, by interrupts, or in a number of other ways. The fundamental model
we will adopt is that each module is a pair of cooperating processes, sharing storage and
communicating by a standard Signal and Wait discipline. Signal, Wait, and the reading
and writing of shared variables are assumed to be indivisible. The processes will be
called the Main processes and the Receiver process for obvious reasons. Some similar
mechanism will be required for any model in which modules both respond promptly to
messages and to independent computation.

Using the Main-Receiver model, we can develop a solution to the critical section
problem which is much better than our earlier ones and which will extend to more
complex problems. For this solution, each module will have a Main process and a
Receiver process which share one variable, State, and one "semaphore", Ok. The
two Receiver processes will each have a variable of type message which can receive
either of the two permissible messages, "yes" and "canI?", as well as the system
message "dead". The allowable values of State are NEUTRAL, TRYING, and
CRITICAL, just as in the simple case. In this case, however, the state is stored explicitly
in a variable rather than being given implicitly by the program counter. There are two
major differences between this and the earlier solution. Each module’s Receiver will
answer "yes" to "canI?" in NEUTRAL and each module will use a Flag to remember a
request that it couldn’t honor and then reply "yes" when leaving CRITICAL. Fig. 3
gives the programs and tables.

The extended notation (ylFlag) means that a "yes" will be sent if Flag is True.
Flag- True is the operation which does this. Sine the tables are to be used as auxiliary
devices, one should not be rigid about the choice of notation for entries. It should be
noted that Flag is a simple instance of information being sent to Main by the Receiver. It
is obvious from the tables and the code that the behavior of P0 and P1 differ only upon
receipt of a "canI?" message in TRYING state.

A complete proof of the correctness of the solution would include showing that the
tables characterize the programs, but we will omit this step. It is not trivial, requiring
proofs involving Signal and Wait, but is straightforward. We will demonstrate that the
two state tables satisfy the three conditions of mutual exclusion, no deadlock, and no
lockout. The programs presented only work on the assumption that the conditional
statements in the main and receiver processes are indivisible with respect to one
another; otherwise one would have to introduce more signal-wait pairs to protect the
shared variables. (Gary Peterson pointed this out.)

Proof. Notice that each module sends a ? only upon entering State T and it remains
in State T until receiving a "yes" response.

No deadlock: If Po is in T, it sent a ?. P1 responds "yes" to ? unless it is already in its
critical section.

No lockout: Both Po and P1 respond to a ? by either an immediate "yes" or by
setting Flag. If Flag is set, then they both respond "yes" at the end of their critical
section. Thus, neither will enter its critical section twice after receiving a ? without
first responding "yes".

Mutual exclusion: Assume that the system has entered the forbidden state (C, C).
The immediate preceding event must have been one of the three cases: (1) (C, T - y);
(2) (T - y, C); (3) (T y, T y). We show that none of these events is possible.

778 JEROME A. FELDMAN AND ANIL NIGAM

Main (same for both Po and P1)
Begin

State NEUTRAL
Top: (non-critical code)

Flag False
State TRYING
Send canI? To P1 (Po respectively)
Wait ok

(critical code)
State Neutral

I[Flag Then Send yes To PI (Po respectively)
Go to Top

Receiver of Po Receiver of P
Repeat Forever Repeat Forever
Begin Begin

Receive (message) Receive (message)
Case State of Case State of
NEUTRAL: NEUTRAL:

If message canI? then If message canI? then
Send yes to P1 Send yes to Po

TRYING: TRYING
If message canI? then If message canI? then

Flag True Send yes to Po
else else
begin begin

State CRITICAL State CRITICAL
Signal ok Signal ok

end end

CRITICAL: CRITICAL:
If message canI? then If message canI? then

Flag True Flag True
EndCase EndCase

End Repeat End Repeat

message message
state ? Y state ? y

SetT Flag C T T /y C T

Set NC ,,Flag (y flag) C Set N/
Flag (Ylflag)

N /y T/? N /y T/?

FIG. 4. Programs and tables [or general critical section solution.

Case (1). Po is in C so that it has sent a ? and received a "yes". But Po cannot send a
"yes" (that P1 is supposedly receiving) after its ? before leaving C.

Case (2). P1 is in C so it received a "yes" from Po while in T. At the time the "yes"
was sent, Po was in N. In going to T, Po sent a ?. Since the "yes" arrived first, P1 was in C
when it saw the ? and couldn’t have sent the "yes" reply.

Case (3). If Po sent "yes", it was in N. But if Po is in N, it has no pending request to

Px which could cause P1 to respond "yes". Once again, the ? sent by Po in going to T
would follow the "yes" it sent and thus P1 could not have sent the "yes" that Po is
supposedly receiving.

MESSAGE-BASED SYSTEMS 779

There are several additional points to be made here. Although we excluded the
consideration of dying modules from the proof, the solution in Fig. 3 can be extended to
dying and restartingmodules. Both receivers, upon receipt of a "dead" message, treat it
as "yes" if in T, set Flag- False in C, and ignore the message in N. Notice the form of the
solution almost totally isolates the Receiver from the Main program; either could be
changed significantly without much effect on the other. In particular, one could code
Receivers which modeled the state variables of Peterson and Fischer [23]. The mes-
sages would be of the form "what is your state?", "it’s T", and "it’s F", and "it’s t".

The solution and proof techniques described above for the two-module critical
section problem can be extended to the purely synchronization issues for a wide range
of two-module problems. It is not obvious, however, how to handle larger collections of
modules or how to prove the correctness of computations that actually do something.
Let us first consider the N-module critical section problem.

Several researchers have tackled the distributed mutual exclusion problem, with
different objectives. A circulating control token algorithm [19] has been developed for
handling failures in a ring, Ellis 10] has reported a multiple copy update algorithm that
uses a ring topology; evaluation nets are used as a specification formalism. A distributed
algorithm using time-stamps (and distributed clocks) [18] has been presented for the
ordered mutual exclusion problem, i.e., requests are granted in the order in which they
were initiated.

Peterson and Fischer [23 present a tournament model for their flag-based solution
and their ideas carry over to our solution of Fig. 1 or Fig. 4. One can image the N
modules in a binary tree of log N levels. At each level, k, pairs of processes compete as
Po or P1 depending on ordering induced by process number (or module identifier). For
example, process Pi competes as P1 at level k if the kth bit of the binary representation
of is 1. The winner at each level goes on to the next level and the champion gets to enter
its critical section. We will only sketch the message form of this algorithm because it isn’t
very informative.

The easiest way to extend the solution of Fig. 1 to N modules is to add a new kind of
arbiter module for the tournament; the winner of the pair-wise competitions at the
bottom level passes its name to the second level arbiter and waits for a "yes". Arbiter
modules choose their winners by alternation with lexical preference, just as in Example
1. The top arbiter sends a "go" to the winner. When the winner finishes, it sends a
message to its arbiter and the whole arbitration process recycles. With a little more
trouble, one can extend the modules of Fig. 1 or Fig. 4 to do the arbitration themselves.
The main trick is that you must have the same module always be the arbiter at level
(independent of which won at level l-1) because modules must know whom to
communicate with. Extending this solution to dying modules isn’t too hard, but a
module can get locked out if it is always the case that one of its superiors is dead. A
solution which avoids this difficulty would involve redundant communication links and
would be considerably more complex.

There is an alternative solution to the N-module critical section problem for
message systems which can be considered. In this scheme, the modules are assumed to
be organized in a ring, with each module normally sending messages to its right. A
request by some module to enter its critical section must be approved by all the other
modules who might compete for the resource controlled by the critical section. Each
module will have a Main-Receiver pair as in Fig. 4, but the Receivers will be more
sophisticated. Each will maintain a queue of requests and will forward only the highest
priority requests to the next module. We will first present a detailed solution assuming
no module dies, but including some extra information for that case, and then extend

780 JEROME A. FELDMAN AND ANIL NIGAM

the solution. From the foregoing discussion, it should be sufficient to describe and prove
the solution in terms of state-message tables without explicitly laying out the code for
the modules.

The state-message table for the immortal case is given in Fig. 5.

message

state ?(x)

/Queue (x);T
Forward

N

/Queue (x)

/Queue (x)"
Forward

N/Finish;
Forward

T/Queue
(own)

where
?(x):
y:
Queue(x):
Forward:
Finish:
Blank:

Request other than my own.
Return of my request, i.e., ?(own).
Puts the request x (possibly my own) in queue; duplicates are ignored.
Sends all requests in queue that have priority higher than my own request (if any).
Deletes own request from queue.
Semantics unspecified (discard, report error, etc., are possible choices).

FIG. 5

The critical data structure is the queue maintained by the Receiver of each module.
Each element of the queues is a pair

(Requester, Seq #

where Requester is the module number of’the initiator of the request and Seq # is
defined below. We assume that Seq # is initially zero for all modules. When a module
initiates a request, it uses the Seq# one greater than any it has received and/or
forwarded.3 The priority of requests is by lowest Seq #, with ties resolved to favor the
lower numbered (lefterly) initiator. Each module keeps a copy of its own request and
waits for.an input identical to its request ("y" in the table).

Proof for solution o) Fig. 5. At each point in time, there is a unique request of
highest priority in the system. The crucial fact is that no request of lower priority (higher
numbers) will be satisfied before the highest priority request. This follows directly from
three facts:

(1) A module initiates lower priority requests than it has passed on;
(2) Each request must pass through every module;
(3) The module that initiated the highest priority request will not pass on any

request worse than its own.
It is not true that the instantaneously highest priority request will be the next one
executed, because another module can start a better request. (Let us consider the case
where modules P1 through PN have come up but no requests have been initiated. P4
then initiates the request (P4, 1). If P1 initiates a request later, but before Pn’s request
reaches P1, then P’s request is (P1, 1). As P1 has higher priority than P4, and both

This specification is semiformal; it can be formalized further by providing a formal definition of data
structures (including variables), functions, and predicates in base language for each table.

Each module can be postulated to maintain a local integer MaxSoFar, which is initialized to zero. Upon
receiving a request MaxSoFar is reset to greater of MaxSoFar and the Seq # of the request. Thus to initiate a
request, the module increments its MaxSoFar by one and uses it as the Seq # for the request.

MESSAGE-BASED SYSTEMS 781

requests have the same Seq #, Pl’s request (though temporally later) is granted first.)
This can happen at most N-1 times, however. We now present a more formal
correctness argument.

We define a total ordering << on requests. A request is characterized by two pieces
of information" the identity of the initiator and a Seq #. Priority decreases with
increasing value of Seq #. To handle ties in Seq #, a static ordering is imposed on
modules in the ring. Priority is given to the lefterly module, i.e.,

Pi > Pi+l, where 1 -< <N and increases clockwise along the ring.

Now request Ri(Pi, Si) has a higher priority than Rj(Pj, S.); i.e., Ri >> R iff

Si < Sj or (Si Si and Pi > Pi).

LEMMA. A module Pk forwards a request Ri(Pi, Si) iff one of the following holds:
Pk does not have a request in the ring;
Ri >> Rk where Rk is the request of Pk currently somewhere in the ring.

Conversely Pk blocks a request Ri(Pi, Si) iff Pk has a request Rk in the ring and Rk >> Ri.
LEMMA. When Pi enters its critical section, i.e., Ri is satisfied, then Ri >> Rk for all

requests Rk present in the ring at that instant.

Proof. As Ri has successfully circulated through the ring, Ri >> Rk, for all requests
Rk of modules that forwarded Ri. However, requests might have been created while Ri
was circulating in the ring. Any request initiated in the wake of Ri has a lower priority,
as it will have a higher Seq #. A module downstream of Ri could initiate a request of
higher priority. If such a request Rk had been initiated then Ri would have been blocked
as Rk >> Ri. However, Ri is not blocked so such an Rk was not present.

Mutual exclusion: Let two modules Pi and P be in the critical section; i.e., the
associated requests Ri and Rj are satisfied simultaneously. This would require that
Ri >> R and Ri << R; hence the contradiction.

No deadlock: Deadlock would arise if every request in the system was blocked. As
there can be at most N requests in the system, this would require that

R1 >>R >>R3 >>" >>RN >>R.

This again implies at R1 >> RN and Rl<< RN; hence the contradiction. So R1 will go
through thereby breaking the deadlock.

No lockout: This follows from the argument for deadlock freeness. A request can
be blocked at N- 1 points in the ring. However, upon exiting the critical section, all
blocked messages are forwarded before the module can put a new request in the ring.
Thus a request will have to wait at most for N- 1 cycles, through critical section, of its
superiors.

In order to extend this solution to the case where modules die at arbitrary places,
we need one new state, START, and one new message, "Starting(x)", plus the system
message "dead". The extended solution is abstracted in Fig. 6. (The upper left-hand
3.3 array is identical .to Fig. 5.)

There is one extra table (or function) needed for each module. This table, Next, is
the module’s internal model of who is to its right in the chain. This gets updated in the
obvious way when a module receives a "starting(x)" or "dead(x)" message. When a
living module receives a dead(x) message, it also flushes any request initiated by the
deceased module, x. If a module receiving a "dead" has sent out any requests of its own,
it sends the request again. Notice that its own request must be the best one in the queue
of the initiating module.

782 JEROME A. FELDMAN AND ANIL NIGAM

N

START

?(x) y Dead

/Queue (x);
Forward

/Queue (x)

/Queue (x);
Forward

/Forward N

N/Finish;
Forward

T/Queue
(own)

START

/Update (x);
Retransmit

/Update (x)

/Update (x)

/Update (x);
Retransmit

Starting (x)

/Update (x);
Forward

/Update (x
Forward

/Update (x);
Forward

/Update (x);
Forward

where
:(x):
y:
Queue(x):
Update(x):
Forward:

Finish:
Retransmit:

Request other than my own.
Return of my own request, i.e., ?(own) or starting(own).
Puts the request X (possibly my own) in queue; duplicates are ignored.
Updates "Next" table and flushes requests (if any) for the dead module.
Sends all requests in queue that have priority higher than my own request (if any); also
"Start(ng" request is provided with a Seq #.
Deletes own request from queue.
Marks own request as unsent and then Forward.

FIG. 64

Assuming (for the moment) that no module restarts, we can show that the
argument for Fig. 5 extends to dying modules. When any module dies, each other
module which had sent a request sends it again. There are two cases to consider: the
original request was either being held in the dead module or it was not. If a request was
lost in the dead module, its copy will proceed as in Fig. 5. Otherwise an equivalent
request is introduced in the ring.

These equivalent requests can be viewed as new requests with the same descriptors
as that of an earlier request (i.e., the original). Consequently the duplicate elimination
assumption in A1 does not rule out equivalent requests (later referred to as "repeats").
The "repeats" chase the original along the ring. If the original gets blocked en route,
then the "repeats" catch up and are eliminated via the uniqueness requirement for
queues. The other possible cases are:

(i) the initiator dies: "repeats" are flushed upon receipt of the pertinent dead
message.

(ii) the initiator is in critical section" "repeats" are eliminated upon being
enqueued on the initiator’s queue.

(iii) the initiator has exited the critical section and is quiescent: "repeats" are
detected, as ?(own) is received while there is no ?(own) in the queue, and
discarded.

(iv) the initiator has introduced a new request: the "repeat" ?(own) has a Seq #
smaller than that of the ?(own) in the queue, and is discarded.

Hence our solution handles the equivalent requests satisfactorily. Finally, the three
properties used in establishing the correctness of Fig. 5 continue to hold.

The problem of reincarnated modules is a little more complex. We don’t have to
worry about requests from a previous incarnation of x because they are flushed from all.
queues upon receipt of a dead(x). We do have to ensure that the reincarnated module
will get into synchronization with the others before initiating a request for the shared

4 "Repeats" of ?(x), y and Starting(x) can be created as a consequence of deaths. These are flushed
irrespective of the state in which they are received.

MESSAGE-BASED SYSTEMS 783

resource. This is accomplished by having the new module first circulate a "starting(x)"
message. Each module that forwards this message puts in it the highest Seq # it has seen
(including here). When this returns to x, the new incarnation is known and in place and
can enter state N and beyond. Once again, it is not hard to see that the basic argument
for the correctness of Fig. 5 carries over.

Several remarks are in order. Fig. 6 is even more abstracted than previous ones
because we did not explicitly put in the initial sending of a "starting" message. To do so
would have meant adding a PRESTARTING state which would never be re-entered
during execution.

More interestingly, the style of solution used in Fig. 6 can be extended to make only
those modules interested in a resource pass on the requests of others. One simply has a
module circulate a "starting" message when it is interested in some resource and drop
out when it is finished. This means that the requests must circulate only among modules
actively seeking a shared resource.

Although we described the values of Seq # as increasing without bound, they need
only cycle through the numbers 0 to 2N. The comparison between Seq # ’s would be

if (larger-smaller)< N, then smaller has priority.

This accounts for the wrapping around and works because all of the Seq # ’s in use are
within a range of N (usually less) at a given instant. From this, we can see that the length
of each message is about 3 log N bits. There are, of course, a wide variety of other
efficiency and elegance issues that could be investigated. Notice also that we introduced
parameterized message classes in a natural way and that this caused no extra difficulty in
the proofs.

This is clearly only a beginning in the study of the distributed computing problem.
We have found, however, that even the level of formalization obtained so far has been
useful in considering our more applied efforts in the area. The central question is the
extent to which the methodology described here precludes good solutions to prob-
lems-it is simply too early to know. Judging from the past efforts of others and
ourselves, there are probably cases for which this paper is wrong or underspecified.

Most recently, we have been applying these methods to proving correctness of
distributed programs for problems like stable marriage [3] and eight queens. One
interesting result is the appearance of a division that parallels the partial correctness-
termination split in sequential code proofs. Our proofs have one part that shows that the
collection of modules will reach the desired configuration and a separate argument (and
often extra states and messages) for showing that the modules will know that the global
configuration is correct. Our additional main concern is to integrate this work with
conventional verification methods and with the relevant part of the PLITS effort,
especially assertions and exception handling.

Acknowledgment. Mike Fischer, Jim Low, Jose Nabielsky, Gary Peterson, and
Paul Rovner all found important flaws in earlier versions of this paper.

REFERENCES

[1] A. K. ARYA AND J. R. Low, SAIL-PLITS Manual, Internal Memo, Computer Science Dept., Univ. of
Rochester, Rochester NY, January 1979.

[2] E. BALL, J. FELDMAN, J. LOW, R. RASHID AND P. ROVNER, RIG, Rochester’s intelligent gateway:
system overview, TR5, Computer Science Dept., Univ. of Rochester, Rochester NY, April 1976.
Also appeared in IEEE Trans. Software Engineering, vol. SE-2, No. 4 (1976).

784 JEROME A. FELDMAN AND ANIL NIGAM

[3] C. J. BARTER, Communications between sequential processes, TR34, Computer Science Dept., Univ. of
Rochester, Rochester NY, November 1978.

[4] P. A. BERNSTEIN, J. B. ROTHNIE, N. GOODMAN AND C. A. PAPADIMITRIOU, The concurrency
control mechanism of SDD-1, IEEE Trans. Software Engineering, 3 (1978), pp. 154-168.

[5] G. V. BOCHMANN AND J. GECSEI, A unified method]:or the specification and verification ofprotocols,
Information Processing 77, B. Gilchrist, ed., 1977, pp. 229-234.

[6] Z. H. BREDT AND J. MCCLUSKEY, Analysis and synthesis ofcontrol mechanisms for parallel processes,
in Parallel Processor Systems, Technologies and Applications, L. C. Hobbs, ed., Spartan,
Washington, DC, 1970, pp. 287-296.

[7] J. E. BURNS, M. J. FISCHER, N. A. LYNCH, P. JACKSON AND G. L. PETERSON, Data requirements for
implementation ofN-process mutual exclusion using a single shared variable, School of Information
and Computer Science, Georgia Institute of Technology, GIT-ICS-79/02, May 1979.

[8] E. E. COFFMAN, M. J. ELPHICK AND A. SHOSHANI, System deadlocks, Computing Surveys, vol. 3,
No. 2 (1971), pp. 67-78.

[9] E. W. DIJKSTRA, Solution of a problem in concurrent programming control, Comm. ACM 8 (1965), p.
569.

[10] C. A. ELLIS, Consistency and correctness ol duplicate database systems, Proc. 6th ACM Symp. on
Operating Systems Principles (1977), pp. 67-84.

[11] J. A. FELDMAN, High level programming for distributed computing, Comm. ACM, 22 (1979), pp.
353-368.

[12] I. GERTNER, Performance evaluation of communicating processes, Proc. Conf. on Simulation,
Measurement, and Modelling of Computer Systems, Boulder, Colorado, August 1979.

[13] C. HEWlTT AND H. BAKER, Lawsfor communicating parallel processes, Information Processing 77, B.
Gilchrist (ed.), August 1977.

[14] C. A. R. HOARE, Communicating sequential processes, Comm. ACM, 21 (1978), pp. 666-677.
[15] R. E. KAHN AND W. R. CROWTHER, Flow control in a resource-sharing computer network, IEEE

Trans. Comm., COM-20 (1972), pp. 539-546.
[16] G. KAHN AND D. B. MACQUEEN, Coroutines and networks of parallel processes, IFIP Congress

Proceedings, 1977.
17] L. LAMPORT, A new solution ofDifkstra’s concurrent programming problem, Comm. ACM, 17 (1974).
[18] L. LAMPORT, Time, clocks, and the ordering of events in a distributed system Comm. ACM, 21 (1978),

pp. 558-565.
[19] G. LELANN, Distributed systems--towards a formal approach, Information Processing 77, B. Gilchrist,

ed. (1977), pp. 155-160.
[20] J. M. McQUILLAN, W. R. CROWTHER, B. P. COSELL, D. C. WALDEN AND F. F. HEART,

Improvements in the design and performance of the ARPA network, Proc. of Fall Joint Computer
Conf., AFIPS Press, 1972, pp. 741-754.

[21] A. NIGAM, Specification formalisms and proof methodologies for distributed database algorithms,
forthcoming Ph.D. thesis, Computer Science Dept., Univ. of Rochester, expected Nov. 1980.

[22] S. OWICKI AND D. GRIES, Verifying properties of parallel programs: an axiomatic approach, Comm.
ACM., 19 (1976), pp. 279-285.

[23] G. L. PETERSON AND M. J. FISCHER, Economical solutions for the critical section problem in a

distributed system, Proc. SIGACT Conf., Boulder, Colorado (1977).
[24] J. L. PETERSON, Petri nets, Computing Surveys, 9 (1977), pp. 223-252.
[25] R. L. RIVEST AND W. R. PRATT, The mutual exclusion problem for unreliable processes: preliminary

report, Proc. 17th Annual Symp. on Foundations of Computer Science, 1976.
[26] C. A. SUNSHINE, Formal techniques for protocol specification and verification, IEEE Computer (Sept.

1979), pp. 20-27.
[27] D. C. WALDEN, A system for interprocess communication in a resource sharing computer network, Comm.

ACM, 15 (1972), pp. 221-230.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0012 $01,.00/0

EFFICIENT ON-LINE CONSTRUCTION AND CORRECTION OF
POSITION TREES*

MILA E. MAJSTER AND ANGELIKA REISERt

Abstract. This paper presents an on-line algorithm for the construction of position trees, i.e., an
algorithm which constructs the position tree for a given string while reading the string from left to right. In
addition, an on-line correction algorithm is presented which--upon a change in the stringmcan be used to

construct the new position tree. Moreover, special attention is paid to computers with small memory.
Compactification of the trees and transport costs between main and secondary storage are discussed.

Key words. Pattern matching, position tree, on-line algorithm

Introduction. Text editing systems, symbol manipulation problems, as well as a

number of other computer applications, often require a search function which locates

instances of a given string within a larger main string (P1). In some applications all

positions, in others the leftmost position, have to be found. Other pattern matching
problems are to search for the occurrences of the elements of a set of pattern strings
within a given main strink s (P2), to find the longest repeated substring of the main
string s (P3), the internal matching problem, i.e., to find for each position in
s sl’"sn another position/" in s such that the common prefix of sisi/"’sn and
sisj/ s is not shorter than the longest common prefix of si s, and sk s, k # i,
k # (P4). For the external matching problem (P5) we consider two strings, s s s

and a position in s, and search for a position] in s’ such that theand s’ s
longest common prefix of si s,, and sj s,, is not shorter than the longest common
prefix of si’" s, and s: s’,,, k #/’. Another problem is concerned with finding the
longest common substring of two strings s and s’ (P6).

A naive algorithm for the solution of problem P1, where all possible alignments are
tried successively, takes O(n rn) steps, where n is the length of the main string and m
the length of the pattern. In 1970 [3] showed how to solve P1 in time proportional to
(n + rn). This algorithm basically involves a preprocessing of the pattern string in order
to construct a table which stores information of how far the pattern can be shifted
against the main string if a mismatch at position] in the pattern occurs. This table is then
used as a data structure in the algorithm. If we consider P2 where the k patterns
p,..., pk are searched for in the same string s consecutively, the above algorithm
would take O(k. Isl / levi /’" / Ip l), This is one of the reasons which led in [5] to the
development of an auxiliary data structure, the prefix tree, storing information about
the main string. The prefix tree is called a position tree in 1]. Once a compacted version
of the tree is constructed in O(n) steps, where n is the length of the main string, a single
search for a pattern costs time linear in the length of the pattern.

In [4] a similar data structure, serving the same purposes as the position tree, i.e., to
reduce the complexity of pattern matching algorithms, is introduced. In addition this
data structure is space economical.

At this point it is now important to note that the position tree construction
algorithm processes the main string s from right to left. This feature presupposes that
the whole text must be known before we can start to build the position tree. Similarly,
another solution for the pattern matching problems P1, P2, [2] presupposes that at least
the length of the main string and the set of patterns are known in advance.

* Received by the editors August 31, 1978, and in revised form November 30, 1979.

" Technische Universitiit, Institut fiir Informatik, 8 Munich, West Germany.
: Technische Universitit, Institut fiir Informatik, 8, Munich, West Germany. The work of this author

was supported by the Sonderforschungsbereich 49 in Munich-Programmiertechnik of the Deutsche For-
schungsgemeinschaft.

785

786 MILA E. MAJSTER AND ANGELIKA REISER

If we have to wait with the construction of the position tree until the whole main
string is known, we must face some considerable drawbacks: (D 1) It is not possible to
answer pattern matching problems and perform corrections, if necessary, for that part
of the main string which has been already read in. This is particularly annoying if we
consider, for example, a text editing system where the pattern matching is used to find
those positions in the text which have to be corrected. Here, one would like to process
that part of the string which is already known. In a typical text editing system with a
usually small computer dedicated to the text editing job, we must face further
considerable drawbacks; namely, (D2) the processing unit keeps waiting until the input
device has scanned the last symbol of the input, (D3) as the main store will usually be too
small, a considerable part of the text has to be transported on to secondary storage until
it is going to be processed. The position tree construction algorithm of [5] constructs the
position tree for s... s from the position tree for si+’" s. In general the position
tree Tg+a, for s/ s,, will be too large to be kept as a whole in the main store. So we
have to decompose the tree and shift parts of it to secondary store. Unfortunately, as the
letter si will not be koown in advance, one cannot predict which parts of the tree T/
will be needed for the construction of the tree T, for s s,. Therefore, we have the
problem (D4) of transferring considerable amounts of data betw.een main and secon-
dary storage. Hence, we are looking for a possibility to construct the position tree in an
on-line way. Moreover, we are interested in answering pattern matching questions and
in the possibility of "updating" or "correcting" that part of the string which has been
already read. And last, we want to get rid of problem D4.

To solve D1 arid D2 there is an immediate solution. Instead of treating the string
s s s,, we consider the reversed string s, s for which the position tree can be
constructed from right to left as usual. This solution is hardly acceptable for two
reasons. First, it does not solve D3 and D4. Second, it can be only used under the
assumption thatfor the problems P1, P2the pattern can be reversed before the
request. It is then not possible to start a search before a pattern is completely given. In
particular, requests which are looking for a prefix pl of the pattern p pip2, and if this
can be located, ask for the rest of the pattern, cannot be treated in this way. Moreover,
the pattern matching problems P4, P5 cannot be solved with the position tree for the
reversed string.

1. Preliminaries. In this paper we will use the following notation. An alphabet is
a finite set of symbols. A string over an alphabet E is a finite-length sequence of symbols
from E. The empty string denoted by e is the string with no symbols. If x and y are
strings, then the concatenation of x and y is the string xy. If xyz is a string, x, y, z E*,
then x is a prefix, y a substring and z is a suffix of xyz. The length of a string x, denoted by
Ix], is the number of symbols in x.

A position in a string of length n, n => 1, is an integer between 1 and n The symbol
a X occurs in position of string x if x yaz, with [Yl i- 1. Let $.1

A position identifier for position in x $2 is the shortest substring u of x $ such that
(i) x $ yuz, lyl i- 1;
(ii) if x$ y’uz’, then y y’, z z’.

A E-tree is a labeled tree T such that for each node N in T the edges leaving N have
distinct labels in E. If the edge (N, M) in T is labeled by a, we call M the a-son of N.

A position tree for a string x$ x x,+, where xg e :, 1 -<_ -<_ n, is a (1 t_J {$})-
tree T such that

We use $ as an endmarker for strings over :.
The endmarker is needed to guarantee the existence of a position identifier for each position.

ON-LINE CONSTRUCTION OF POSITION TREES 787

(i) T has n + 1 leaves labeled 1,..., n + 1. The leaves of T are in one-to-one
correspondence with the positions in x $.

(ii) The sequence of labels of edges on the path from the root to the leaf labeled is
the position identifier for position i.
Note that there is exactly one position tree for each string.

Example. The position tree for the string abba $ is given in Fig. 1.

a
$

4 3 2

FIG.

2. On-line construction of position trees. The problem which we are going to solve
in the following is: let a string x xlx2 be read from left to right without knowing the
whole string in advance and construct after the reading of each letter the position tree
for the actual prefix. The problem with the construction of the position tree when
reading the text from left to right is based on the fact that we need an endmarker $ for
each string in order to guarantee that there exists a position identifier for each position
in the string. This has the consequence that reading from left to right means the
transition from

XlX2" Xi$ to Xl XiXi+l$.

The efficiency of Weiner’s algorithm stems from the fact that the changes which are
caused by updating the tree reading the text from right to left are "local." If we work
from left to right, changes are no longer "local." In particular, we have to solve the
following two problems:

(i) A position identifier may become invalid by reading a new symbol, as, e.g., the
position identifier for position 1 in

abcb $ --> abcba $.

(ii) All position identifiers which contain the endmarker have to be changed
whenever a new symbol is read in, e.g., the position identifier for position 4 in

abcb $ abcba $.

In the following we describe how to construct the position tree for a string xa $ from the
position tree for x S, where x 6 Z*, a 6 Z.

Algorithm: Position tree on-line.
(1) For each node N that has a $-son N’ the following steps have to be performed.

The order in which the nodes with S-sons have to be processed is given in
Lemma 1 below.
(a) If N does not have an.a-son, then replace the S-symbol by a.
(b) If N has an a-son N" that is.not a leaf then remove the edge between N and

N’ and make N’ the S-son of N" (together with the position number of N’).

788 MILA E. MAJSTER AND ANGELIKA REISER

(c) IfN has an a-son N" that is a leaf, then remove the edge betweenN and N’
and make N’ the S-son of N" together with the position number associated
with N’. Moreover, attach a new son to N", transfer the position number/"
of N" to the new son; label the edge between N" and its new son by the
(/" +/)th letter in xa$, where is the length of the position identifier for
position/" in x $.

(2) Attach a S-son at the root and give it the next position number.
Example. Consider the string x $ abbab $. We construct the position tree for xa $

from that for x $. The position tree for x $ is shown in Fig. 2.
The father of leaf 4 falls into case (a). The father of leaf 5 falls into case (c), the

father of leaf 6 falls into case (b). Performing the algorithm for the father of leaves 4, 5, 6
(in that order) yields Fig. 3.

a

$ $

3 b a

5

FIG. 2 FIG. 3

We now want to make sure that the algorithm works correctly.
LEMMA 1. Assume that step 1 ofthe above algorithm is performed successively for all

nodes N with a S-son in such a way that if a node is processed then all its descendants
have been processed previously. Then the algorithm constructs the position tree for xa $

from the position tree for x $.

Proof.
1) Let us first make sure that for each node M in the tree constructed by the

algorithm and for each tr E there is at most one edge with label tr starting in M. This is
true by the observation that steps l a, l c evidently result in a tree with the requested
property. For step lb we must show that N" does not have a S-son before this step is
performed. This is guaranteed by the fact that N" is a descendant of N and is--by
assumption--processed before N. Step 1 removes in each case the S-edge from the
considered node. Hence, step 2 also results in a tree with the requested property.

2) The next fact to be verified is that for each position identifier which is affected by
the new letter a there is a change in the tree reflecting this change. There are three
possibilities for a position identifier to be affected.

(a) The endmarker $ is part of the position identifier. Let xi"" x,$ be the
position identifier for position in Xl’" x,$; hence there must be positions jh,
1-<h _-<k, with position identifier xixi+l""Xmri l<-h <-k, rs. E*/{e}. If rs. {a}E*,
for all h, 1 _-< h -<_ k, the new position identifier for position will be xi x.,a, which is
achieved by step l a of the algorithm. If there is ho, 1 <-ho <-_ k, where r. aSi.o, the
position identifier for becomes xi x.a $ by step lb or lc.

(b) For a position j with identifier xi xi+r-xa, there is a position with identifier
xg x., $ such that xi xi+-x xi x.. The position identifier for position/" must
be prolonged, to xi xi++l which is achieved by step lc.

ON-LINE CONSTRUCTION OF POSITION TREES 789

(c) The position identifier for a position in xa $ starts with the letter a. Then either
a occurs only once in x $ then the position identifier for is obtained by step l c, or a
occurs more than once in x $ then the position identifier for position is obtained by lb,
or a does not occur in x $ then the position identifier for the new letter a is obtained by
step 1 a.

LEMMA 2. LetL N1, , Nk be a list of all nodes that have a S-son in the position
tree for x$, but ordered such that (*)Ni is a descendant of N <]. If we perform the
algorithm processing the nodes that have a S-son in the order given by L, then we can
sequentially update L to get a new list L’ that contains all nodes that have a S-son in the
position tree]:or xa $ and that fulfills (,). The cost]:or constructing L’ from L is O(k).

Proof. Let L N1, Nk be a list for the position tree for x$ fulfilling (,). Let us
perform step I of the algorithm according to this list; i.e., we start with N1, continue with

N2 and so on. To manipulate the list we perform the following steps.
(a) If step l a is performed with Ni just remove Ni from the list.
(b) If step lb is applied to Ni then replace Ni by its a-son.
(c) If step lc is applied to Ni then replace Ni by its a-son.
(d) If step 2 is performed attach the root at the end of the list.

Let L’ be the list obtained by the above steps. Let N,M be two nodes with a $-son in the
tree for xa$. Let M root and N be a descendant of M. Then the father of N is a
descendant of the father of M. The only possibility for a node (except the root) to be
inserted into the list is to be a substitute for its father. Hence the list L’ fulfills (,). The
cost for updating L is obviously O(k) as each node has to be processed and the cost for
each node is constant.

3. Costs of the algorithm. In order to be able to analyze the costs of the algorithm
we assume that

(1) we hold the text that has been already Lead in an array,
(2) we represent the tree in the following form.
Each node is represented by a natural number; in particular the root is represented

by 0. We associate with each node three fields. The first contains the position number m,
if the node is a leaf corresponding to position m. If the node is not a leaf then this field
contains a list of the sons3, each given by its number and the label of the edge leading to
it. The second field contains information about the depth of the node. The depth of the
root is 0. The third field serves for linking those nodes that have a S-son into a list. For
example, the tree for abbabb $ is shown in Fig. 4, which is represented by Table 1.

$

a 7

6

4 2 5

FIG. 4

We will assume that the S-son--if any--is always the first in the list of sons.

790 MILA E. MAJSTER AND ANGELIKA REISER

TABLE

successor
NR son or p.n. depth in list

0 (12, $) (1, a), (2, b) 0
(6, b)

2 (9, $), (3, a), (4, b) 0
3 3 2
4 (7, $), (11, a) 2 2
5 4 4
6 (8, b) 2
7 5 3

Head of list 8 (5, $), (10, a) 3 4
9 6 2
10 4
11 2 3
12 7

Based on this representation the costs for step 1 a, lb, 1 c for each node in the list is
O(number of sons), as we first check if the node has an a-son. The test whether or not a
node is a leaf and the update can be done in constant time; in particular the search for
the letter following the position identifier in the text for step lc can be performed by
selecting the (m + h)th component of the array where m is the position number of the
leaf and h its depth. Hence step 1 takes for each node o(Isl), where S is the set of its
sons. Step 2 costs constant time. Hence, the cost for constructing the position tree for
xa$ from the position tree for x$ can be bounded above by O (-’/k= [Si[-[- 1), where Si is
the set of sons of the ith node Ni in the list" L N1, , Nk. This cost can be bounded
above by O(lLI / 1), The cost of the on-line construction of the position tree for x $,
x En-1, can be given by O((’=1 [pi(x)l). I[), where pi(x) is the position identifier for
the position in x$. This is based on the fact that for each position the identifier pi(x)
has to be updated as often as]pi(x)l. Hence, the father of the leaf with position number
can occur at most as often as Ipi(x)l in the disjoint union of all lists Lj, where L. is the
list of nodes with S-sons in the/’th application of the algorithm.

In terms of the average length lx for a position identifier in the string x $, x En-l,
i.e.,

Ip,(x)l
i=1

the cost of the algorithm for constructing the position tree for x$ can be given by
O(Zx, n,

4. Compactification. Concerning the space used by the algorithm we note that the
position tree for a text of length n may have O(n 2) vertices, as can be seen from the
example a ibiaibi$. However, one can show that there is a compacted form of the
position tree which needs only O(n) space [5]. Here, compacted means that successive
edges corresponding to single sons are contracted into one edge named by a string, as
shown in Fig. 5.
The question how such string-labeled trees can be efficiently represented is discussed
in [4].

ON-LINE CONSTRUCTION OF POSITION TREES 791

is compacted into

FIG. 5

The compacted position tree can be constructed in the same way as the noncom-
pacted one. This can be seen as follows: if we start with an already compacted tree for x $
and want to construct the compacted tree for xa $, then at most those nodes which are in
the list L are candidates for compactification.

We only sketch the algorithm for the on-line construction of compacted position
trees and do not want to go into implementation and analysis details.

The following algorithm takes as input a compacted tree T for x $. Each node in the
tree T that has a single son is marked. In steps 1 and 2 the algorithm manipulates the
tree basically in the same way as in the noncompacted case. In addition we have to take
care of the marks: a mark has to be removed from a node if this node gets a second son
and a mark has to be attached to a node if the node has lost all but one son. After the
steps necessary to reflect the new identifiers in the tree there may exist two successive
nodes with marks, which means that the tree is no longer compact and has to be
compactified in step 3.

Algorithm: compacted position tree on-line.
(1) For each node N that has a S-son N’ do: (The order in which the nodes with

S-sons are processed is given in Lemma 1.)
(a) IfN does not have an ar-son, r ,*, then

(al) change the label of the edge (N, N’) from $ to a.
(b) IfN has an ar-son N", r E*, then

(bl) remove the edge (N, N’),
(b2) mark N by * if there is exactly one son left,
(b3) if r e (this implies that N" is not a leaf), then create a new node

NN, make the sons of N" the sons of NN, make NN the r-son of N";
if N" was marked by * transfer the mark to NN, change the label of
the edge (N, N") from ar to a; if r e and N" is not a leaf, then
remove mark at N", if any; if r e andN" is a leaf, then attach a new
son to N", transfer the position number/" of N" to the new son, label
the edge between N" and its new son by the (]+/)th letter in
xa$(where is the length of the position identifier for position/" in
x$).

(b4) attach N’ as S-son to N" (together with the position number of N’).
(2) Attach a S-son to the root, give it the next position number, remove mark at

root, if any.
(3) For all pairs of adjacent nodes marked by * compactify.
Let us briefly consider how we can find two adjacent nodes marked by *. New

marks are only introduced in step (1.b2) at the node N if it has only one son, namely N".
If N" was marked, the mark is either removed or transferred because N" gets a new son,
N’. Therefore, only if the father ofN was marked, we get two adjacent marked nodes by

792 MILA E. MAJSTER AND ANGELIKA REISER

FIG. 6

10

FIG. 7

a/ x12

b
$

a

3

7

FIG. 8

a

FIG. 9

FIG. 10

ON-LINE CONSTRUCTION OF POSITION TREES 793

the introduction of new marks. Existing marks are only transferred to new created sons
which cannot result in two adjacent marked nodes. Thereby it is sufficient to maintain
for each node which has a S-son (members of the list L) the father if it is marked. This
information can be easily obtained at the time when a node becomes a member of the
list because it gets there as a substitute for its father.

Example. We start with the compacted tree for a3b3a3b $ x$. We mark nodes
with single sons by *, see Fig. 6, and read the letter b; i.e., we consider xb$
aaabbbaaabb $. Steps 1 and 2 of the algorithm yield Fig. 7.
Then we compactify and get Fig. 8. We continue with xbb $ a3b3a3b 35. Steps 1 and 2
yield Fig. 9. Then we compactify to get Fig. 10.

5. Main store and transport cost. Let us now consider the problem D4; i.e., given a
small computer, we consider the question how we can keep the cost of main store low
and how we can reduce cost for transport between main and secondary storage. We
shall assume a paging system in the following.

Let us first see which parts of the tree are actually involved if we construct the
position tree’for xa $ from that for x $. First we need all nodes N with $-sons together
with the information which sons N has. Second, if N has an a-son, this son is needed,
and third, the S-son is needed.

A first but, as we will see, not efficient approach to our problem could be to store
the tree structure without the links for the list L in secondary store and to hold the
information about the nodes with a S-son in main store. This is done by maintaining a
list of references to the nodes with S-son. The ordering given by this list should
correspond to the one given by L.

If we look closer at this solution we find that the following steps have to be
performed:

(la) If a S-son of N is transformed into an a-son
(i) the node N must be removed from the list. Its predecessor in the list. must

be linked with its successor. This step does not cause any page transfer
because L is held in main store.

(ii) in the list of references to sons ofN the $ must be replaced by an a. Hence
the page containing the list of references to sons ofN has to be rewritten.

(lb) If a S-son has to be transferred fromN to its a-son which is not a leaf, we have
(i) to change the list of references to sons of N;
(ii) to change the list of references to sons of the a-son;
(iii) to change the height of the S-son of N;
(iv) to change the reference from the predecessor of N to N (in the list of

nodes with S-sons) into a reference from the predecessor of N to the
a-son of N;

(v) to erase the reference of N to its successor;
(vi) to write a reference from the a-son of N to the successor.

Hence, the page containing the list of references to sons of N, the page containing the
list of references to the sons of the a-son of N and the page containing the S-son of N
have to be rewritten. In addition the list in main store is manipulated.

(lc) If a S-son has to be transferred from N to its a-son which is a leaf we have
(i)-(vi) to change as above;
(vii) to read one of the pages on which the text is situated;
(viii) to create a new son for the a-son of N.

Here, in addition to the changes of (1 b), we have to read one text page, to write the new

794 MILA E. MAJSTER AND ANGELIKA REISER

node on some free space and to insert a reference to this new node into the list of
references to the sons of the a-son of N.

If we assume that the references to the sons of a node are all stored on one page,
(la) causes 1 page transfer, (lb) may cause 3 page transfers, and (lc) may cause 4 page
transfers, disregarding the cost of writing the new node. In order to reduce the number
of page transfers we propose to modify slightly the representation of the position tree in
the following way:

A We do not store the $-sons in the tree representation but keep them separately.
B For each S-son we store a reference to its father.
C Instead of maintaining the list of references to nodes with $-sons, we maintain a

list L$ of S-sons which is kept in main store.
With this choice we get for our example abbabb $, Fig. 11 and Table 2, plus the list in
Table 3.

0

b

a

FIG. 11

Nr.

TABLE 2

references to sons
or p.n. depth

0 (1, a)(2, b) 0
(5, b)

2 (4, b)(3, a)
3 3 2
4 (7, a) 2
5 (6, b) 2
6 (8, a) 3
7 2 3
8 4

Nr.

TABLE 3

father next pos. nr.

6 II 4
II 4 III 5
III 2 IV 6
IV 0 7

ON-LINE CONSTRUCTION OF POSITION TREES 795

Assuming this representation we review the page transports for our algorithm.
As we keep the list of S-sons in main store, we must for each element in the list L$

check if its father has an a-son. This means that we must bring the page p containing this
information. Then

(la) If the S-son s of N is changed into an a-son, s is removed from the list L$ in
the main store and attached as an a-son to N. As we already brought in the page
containing the list of references to sons of N, we try to store s on this page, if possible. If
this is not possible we must bring a page with free space and write s on it.

(lb) If the S-son s of N is transferred to the a-son of N which is not a leaf, we just
look on the page p for the reference to this a-son and modify the reference to father of s.
This step does not cause any additional page transport.

(1 c) If the $-son s of N is transferred to the a-son of N which is a leaf, we proceed
as in (lb). In addition we must read one of the pages on which the text array is situated.
As one may easily see, (la) causes 1 page transfer, (lb) causes 1 page transfer, and (lc)
causes 2 page transfers, again disregarding the cost of writing a new node and assuming
that all son references of a node can be stored on one page. Only in (la) do we have to
write on a page. The pages which are transferred for (lb) and (lc) are read only.
Compared with the previous solution we have gained by reducing the number of page
transfers and by reducing the number of write accesses.

6. Correction algorithm. The substitution of a substring within a main string is a
common operation in string manipulation systems. Hence, we are interested in a simple
algorithm that performs this substitution and manipulates the position tree in the
corresponding way. A correction algorithm for suffix trees has been given in [4]. This
algorithm is rather complicated and presupposes a link structure which is constructed
while the tree is built up by the tree construction algorithm [4]. In the following we are
going to describe an algorithm which constructs the position tree for x,r$ from that for
xr$, x, %/3, r *,/ e. Before we present the algorithm we have to say some words
about position numbers. If the lengths of /and/ are different, then not only are position
identifiers invalidated but also the position numbers for the text that follows/ are
affected. To circumvent the need to renumber the text that follows/3 we will assume in
the following that our string positions are numbered in a Dewey-Decimal scheme as
follows" let a string

a b b c d
1 2 3 4 5

with annotated position numbers be given. Let us substitute bb by efg. The result is

a e f g c d
1 2 3.1 3.2 4 5

A substitution of f by hl yields

a e h g c d
1 2 3.1.1 3.1.2 3.2 4 5

Substituting c by the empty word yields

a e h g
1 2 3.1.1 3.1.2 3.2

796 MILA E. MAJSTER AND ANGELIKA REISER

The position number scheme corresponds to the following string scheme for the text
array.

a b b c d is stored as

2 3 4 5

a e f g c d is stored as

2 3.1 3.2 4 5

Next,
a e h g c d is given in

2 3.1.1 3.1.2 3.2 4 5

and finally

a e h g

2 3.1.1 3.1.2 3.2

d is given in

5

In the following we describe an algorithm which takes the string xr$, x, , r Z*,
/ 7 6,

4 the position tree for xr$ and the string y E* as input and constructs the
position tree for xyr$. For simplicity we will first assume that the position numbers for
the input string are the natural numbers 1, 2,. ., [x/3r$]. The position numbers of the
corrected string will be Dewey-Decimal numbers. We denote the sequence of Dewey-
Decimal numbers for xyr$ by dl, d2,’" ", dlxvr$1.

The algorithm makes use of a marking operation. This operation will be restricted
to nodes that are different from the root. In addition we will use the following notation:

Ni- the node that carries position number i,

height of Ni, h (N)= height of N,

Item=m, I l-z, xl=n.
Let us briefly explain how the algorithm works. The algorithm performs seven steps. In

The restriction is only introduced to avoid a large number of subcases in the algorithm The restriction is
not harmful as the transition from xl"’" xnr$ to Xl’" x,,yr$ can be always treated by considering the
substitution of xn by x,,y or by taking a right context if n 0.

ON-LINE CONSTRUCTION OF POSITION TREES 797

step 0 the leftmost position i, if any, is determined for which 1 -<_ -<_ n and for which the
position identifier "ends" in/. For example, in the string dabcab $ with x dab, c,
r ab, the position identifier for position 2 is abc, i.e., it "ends" in/. In the string dabc $
with x dab, /3 c, r- e, there is no position i, 1-< _-< n, for which the position
identifier "ends" in . We let i0 be the leftmost position in x for which the position
identifier "ends" in/, if any, else io is set to n + 1. i0 will be used in step III. In step Ia all
leaves carrying a position number j, n + 1 _-< j <_-n / m, are removed. These position
numbers belong to ft. After the removal of these leaves it may be that a node N lost all
sons. This situation occurs if two or more positions in/9 have a common prefix that does
not occur outside/3. The path from such a node N to its youngest ancestor that has more
than one son has to be removed. This is performed in Ib.

As a result of Ia and Ib it may be the case that a father is left with one son and this
son is a leaf with position number 1. This situation occurs if the position and some
positions in fl had a common prefix but the prefix did not occur at another position
outside ft. Then the path to the leaf has to be shortened. This is done in II. In step III we
treat all positions i, io _<- <= n. The path to the node with position number is shortened
by pushing the position number stepwise upwards. Whenever the node, from which
the position number is being passed to its father, is a leaf this leaf is removed. We stop
moving the position number upwards if the current node has height n- + 1. This
corresponds to cutting off that suffix of the identifier for that is a prefix of . At the
same time, however, we take care of all positions k, with k i0 or k n + m. This is
achieved by marking a node if it has exactly one son left and this is a leaf with position
number I. If io--< -<_ n, the position will be processed anyway by III. Otherwise, in step
IV the path leading to the leaf is shortened until the point is reached where a prefix
common to and another position is encountered. In step V the position numbers for y
are attached to the root. In step VI the position identifiers for y are built up;
simultaneously, a path to a node with position number l, 1 _-< l_-< n or n + m, is
prolonged, if necessary; i.e., the position number is pushed downwards.

Correction algorithm.
(0) := n while (i + hi > n + l ^ >- l do U := l_3 io := + l
(Ia) For i= 1,... m do

V-remove the leaf with position number n + i; mark the father if there is
exactly one son left and this is a leaf_3

(Ib) Choose a marked node without sons;
remove node;
it father has no more sons left, mark father;
if father has only one son left and this is a leaf, mark father;
if there are marked nodes without sons goto Ib;

(II) Choose a rharked node R; co R has exactly one son and this is a leaf co
remove mark;
give position number of the son of R to R;
remove son;
if R is the only son, mark its father;
if there are marked nodes left goto II.

(III) Fori-n,n-1,...,i0do
7-while / hi - n + 1 do
(-give position number to father of N -Ni and remove it at N;
co now father- Ni co
if N is a leaf then
[-remove N;

798 MILA E. MAJSTER AND ANGELIKA REISER

if N has exactly one son left and this is a leaf mark N/;
if/V is a leaf and the only son mark father of Ni;_l_l

if Ni is a leaf remove mark--if anymelse underline Ni. __1

(IV) Choose a marked and not underlined node R;
remove mark;
give R the position number of its son;
remove son;
ii R is the only son, mark its father;
if there is a marked and not underlined node left goto IV.

(V) If _-< m give position number n + 1, , n + 1 to the root else give position
number n + 1,. ., n +m-l, (n +m). 1, (n +m). 2,. ., (n +m). l-m +1
to the root; underline root co Dewey-Decimal numbers used co

(VI) For each underlined node N do
?-For each position number at N do
7-remove position number from N;
follow path beginning at node N as long as the word of labels from the
root to the current node coincides with a substring beginning at the
position numbered in xyr$.
Let Nlast be the last visited node.
|f Nlast is not a leaf then
V-attach a new son to Ntas,; give the new son the position number i; label
the edge by the h(Nlast)th letter following the position in xyr$_J

If Nlast is a leaf with position number/" then
-remove position number/" from Nlast; let a be the h(Nlst)th letter
following position in xyr$; let a’ be the h(Ngt)th letter following
position in xyr$; while a a’ do
7-attach a new son NS to. Nla,; label the edge by a(=a’) and set
Nlast := NS__I
attach two new sons NS1 and NS2 to Ntas,; label the edge to NSI by a
and giveNS the position number]; label the edge to NS2 by a’ and give
NS2 the position number i__d__J

remove underlining and marks, if any, at N__J
Let us illustrate the algorithm by the following example.
Example. Consider the string abcabc$ with position numbers 1, 2,..., 7. The

position tree is shown in Fig. 12.
Let x ab, fl c, r abc, y e. Step 0 yields io 1. Let us now perform step I of

the algorithm. Hence we remove the leaf with position number 3 and mark its father as
there is only one son left. There are no marked nodes without sons, hence we can skip Ib
and get Fig. 13 as result of step I.
Performing step II yields Fig. 14. Starting step III with n 2 (n Ixl) and step IV yield
the tree Fig. 15. Step V is not performed as 0. Step VI yields Fig. 16, for the string
xyr$ a b a b c $ with annotated position numbers which are interpreted as Dewey-

12456
Decimal numbers.

In order to prove the correction algorithm correct we need some auxiliary
definitions.

A reduced identifier for position in xflr$, i {n + 1, , n + m} is a prefix pi of the
position identifier such that pi does not occur at another position], /" i, /’ {n +
1,. ., n +m} in xr$.

Clearly, the position identifier for position i, i {n + 1,..., n + m} is a reduced
identifier.

ON-LINE CONSTRUCTION OF POSITION TREES 799

$
7

FIG. 12

$

c

b

6

a $
5

4

FIG. 13

$

6

b

5

4

FIG. 14 FIG. 15

$
c

b
a

4

FIG. 16

A partial identifier for i, 1 -< -< n, in xr$ is a word pi such that
(I) pi is a prefix of xi... xn;

(II) pe is a prefix of the position identifier for in xlgr$;
(III) Pi does not occur at/’, j i, j {n + 1,. n + m} in xBr$.

If there is such a pi, then the shortest word fulfilling I, II, III is called the shortest partial
identifier, else xg... xn is called the shortest partial identifier.

800 MILA E. MAJSTER AND ANGELIKA REISER

A partial identifier for/’, n + m + 1-<_ _-< n + m + [r[, in xr$, is a prefix pj of the
position identifier such that

(I) pj does not occur at position k, k _>-n + m + 1, k /’;
(II) if pi occurs at k-<_ n then

Ip .l > Ishortest partial identifier for k[.
The above declared notions correspond to the different steps of the algorithm, which is
shown in the following.

LEMMA 3. After step Ia of the algorithm the following holds:
(i) There may be leaves without position number.
(ii) A leaf is without position number if and only if it is marked.
(iii) If a node is marked then either it is a leaf and has no position number or it has

exactly one son. This son is a leaf. If a node N has a single son and this is a non-marked
leaf, then N is marked.

Proof.
(i) If a node has only sons which are leaves with a position number

{n + 1, , n + m}, then by step Ia this node becomes a leaf without position number.
(ii) If a leaf L has no position number, then it was the father of leaves with a

position number i, n + 1 _-< _-< n + m. The node L had at least 2 sons before step Ia, as the
input of the algorithm is a position tree. After the removal of the next to last son of L, L
has been marked by the algorithm. If a leaf is marked after Ia then it must have been an
inner node before Ia and did not have any position number.

(iii) Let the nodeN be marked as a result of Ia; then it was at some step the father of
a leaf L which was the only son. In the sequel either this leaf is removed andN becomes
a leaf without position number and is marked or the leaf remains there. If N has a single
son which is a leaf and unmarked then N must have had another son, as the input of the
algorithm is a position tree. After the removal of this son N has been marked.

LEMMA 4. After step I of the algorithm the following holds:
(i) Every leaf has a position number.

(ii) A node is still marked iff it has exactly one son left which is a leaf.
(iii) Each path from the root to a leaf corresponds to a position identifier. For each

position i {n + 1,. , n + m} the position identifier is still in the tree.

Proof.
(i) This is obvious as every leaf without position number has been marked

(Lemma 3). The marked leaves are removed by Ib.
(ii) Let a node be marked as a result of I; then it must have a son, otherwise it

would have been removed by Ib. Moreover only nodes are marked which have a single
son that is a leaf.-Let a node be given that has a single son that is a leaf. Then by (i) this
leaf has a position number. Hence N must have had at least another son before I has
been performed. At the removal of the next to last son, N has been marked.

(iii) Obvious, as only leaves with position number {n + 1,..., n + m} are
affected by step I.

Remark. In step I of the algorithm all and only those nodes root are removed
which (1) lie on a path from the root to a leaf with position number i, i
{n + 1, ., n + m}, and (2) do not lie on a path from the root to a leaf with position
number {n + 1,. , n + m}.

LEMMA 5. After step II of the algorithm
(i) Each leaf has a position number.
(ii) There are no marks left.
(iii) Each path from the root to a leaf corresponds to the shortest reduced identifier.

ON-LINE CONSTRUCTION OF POSITION TREES 801

Proof.
(i) Obvious by Lemma 4.
(ii) Obvious.
(iii) By Lemma 4, the position identifier is still contained in the tree before II. We

may distinguish two cases. Either the leaf is a single son in which case its father is
marked and will be processed by step II. The path is shortened as long as the respective
father becomes a single son. After this the path reflects the shortest reduced identifier,
as any shorter prefix would occur at least at one other position. In the other case the
position identifier cannot be reduced any further.

LEMMA 6.
(i) If after step III a node is underlined then it has at least one son.

(ii) After step III
iil) Each path from the root to a non-leafnode with position number corresponds

to a shortest partial identifier;
ii2) Each path from the root to a leaf corresponds to a partial identifier.

Proof.
(i) Obvious, since nodes which are leaves are not underlined.
(iil) Let Pi be the word of labels from the root to the inner node with position

number i. Then -< n and pi occurs at least at another position; hence pi is not a partial
identifier. But Pi--Xi’’’Xn as step II is performed until + hi n + 1; hence pi is a
shortest partial identifier by definition.

ii2) Let the word of labels from the root to a leaf ni with position number be to
If <- n, then hi =< n + 1 and pi is a prefix of the position identifier for position in xr$
and pi is a prefix of xi’"xn. Moreover, ni is a leaf and hence pi does not occur at
another position , {n + 1, , n + m}. Hence, pi is a partial identifier. If > n + m,
then the path from the root to ni yields the shortest reduced identifier which is a partial
identifier by definition.

Remark. After step IV for each i {n + 1, , n + m} the path from the root to the
node with position number corresponds to the shortest partial identifier. This is clear,
as an identifier is shortened in this step until a node is reached which has more than one
son.

Finally, in step V the new position numbers are attached at the root and in step VI
the position identifiers are built up.

In order to be able to perform the above algorithm we need the following
information for each node"

(1) a list of sons,
(2) the position identifiers associated with the node,
(3) the height of the node,
(4) the father of the node.

In addition we have to maintain a list of underlined nodes and a list of marked nodes.
Moreover, in order to guarantee random access to the leaves of the tree for step Ia, we
store--in the array containing the textnfor each position number a reference to the leaf
with position number i.

Based on this representation the cost of step (0) is O(n- io + 2), where

rain {i" 1 -< _-< n and pos. identifier for is longer than n + 1},
i0 if this set is not empty;

n + 1 else.

Step Ia costs O(m) steps, where m is the length of/3.

802 MILA E. MAJSTER AND ANGELIKA REISER

Steps Ib and II can only be performed at nodes that lie on the path from a leaf with
position number n + i, 1 -< -< m, to the root (in the tree for xflr$). The number of nodes
on the path from the leaf with position number/" to the root (excluding the root) is given
by Ipi(xr)l, where pj(xflr) is the position identifier for position] in xflr$. Hence the total
number of nodes which will be affected by steps Ib, II can be bounded above by

[p,,+i(xr)[.
i=1

Each node is processed at most once and the operations for each node cost constant
time; hence steps Ib, II cost

Let TI be the tree resulting from step II. Step III can affect only such nodes in the
tree TII that lie on a path from a leaf that has a position number i, io _-< _-< n, and fulfills
h + > n + 1 to the ncestor A of that leaf for which

h (Ai)-t- n + 1

holds. The path in TII from the root to the leaf contains (without root) at most Ipi(xCr)l
nodes; hence the path from the ancestor Ai to the leaf contains at most

IPi(xr)] h (Ai) --Ipi(xr)[- (n + 1 i)

nodes. As the loop in step III manipulates the nodes with position numbers io,

i0 + 1,. ., n, the total number of nodes affected by step III can be bounded above by

([pi(xflr)l-(n + 1- i)).
i=io

A lesser upper bound for the number of nodes affected by step III can be given in
terms of the shortest reduced identifier. Let shri be the shortest reduced identifier for
position in xflr$..As a result of step III every path from the root to a leaf corresponds
to the shri. Hence, the total number of nodes affected by step III is

max (0, [shril- (n + 1- i)).
i=io

Here, we have to use max(0, Ishril-(n + 1 -i)) because [shril may be less than n + 1 -i.
If this is the case for leaf then step III will not be performed for the position number i.

The cost for manipulating a node is constant, hence the total cost of III can be given
by

O(max(0, [shril-(n+ 1-i)))
i=io

<--0((Ipi(xr)[--(n+l--i))).
i=io

As a result of III for each position number i, i0 <= <_- n, there is at most one marked
node left the marking of which was caused by i; if in TII the node Ni carrying the
position number is a leaf (TIn is the result of III), then the father of Ni may be marked.
If Ni is not a leaf and hence underlined, then it may be marked. If Ni is not a leaf and
hence underlined then it may be that there is a successor of Ni which was marked as the

ON-LINE CONSTRUCTION OF POSITION TREES 803

leaf with position number was removed. If the position number was not processed by
III because + hi -< n + 1, then did not cause any marking. If Ni is a leaf as a result of
III, at most the nodes on the path between the root and Ni can be affected by step IV. If
Ni is not a leaf, then at most the nodes between Ni and the possibly existing marked
successor can be affected by step IV. Hence we can bound the total number of nodes
affected by step IV,

2 (n-i + 1)+ (Ishpl-(n + 1-i)),
iIx iI2

where shpi is the shortest partial identifier for in xr$ and

I1 {i: i0 =< -<_ n and + hi > n + 1 in TII and Ni is leaf in Tin},

I2 {i: i0 <- <- n and + hi > n + 1 in TII and Ni is not a leaf in TIII},
where TII is the tree resulting from step II and TnI is the result of step III.

Step (V) costs O(1) time.
For step VI we note that an underlined node is either the root and carries position

numbers or it is an inner node and carries exactly one position number. The total cost of
step VI can be bounded above by

o(d{dn+l,’" ",dn+l}
Ip(x,r)l + (Ipi(x,yr)l Ishpil)),

io

where shpi is the shortest partial identifier for in xflr$, pi(xyr) is the position identifier
for position in xyr$, and dn+," ", dn+l are the (Dewey-Decimal) position numbers
for the (n + 1), , (n +/)th letters in xyr$. This can be seen by the fact that the inner
loop of VI executes for d {dn+l, dn+}, as many steps as the length of Pcl(XTr). In
the case of {i0, n}, the shortest partial identifier for position is prolonged to
become pi(xyr).

The above algorithm and its cost considerations work under the condition that the
position numbers of the input string x3r$ are the natural numbers 1, 2,...,
However, as we may want to apply the correction algorithm repeatedly, we have to give
some consideration to the general case where the input may be numbered by Dewey-
Decimal numbers. There is one obvious approach: after an application of the correction
algorithm all positions that are situated to the right of the correction position n are
renumbered resulting in position numbers 1, 2,. , Ixyr$ I. This solution corresponds
to shifting text in the text array.

In general if there is no restriction as to when corrections can be made, this solution
will not be feasible. Hence, we have to find out which changes have to be made to our
correction algorithm in order to allow for input with Dewey-Decimal position numbers.
Let

dl, d2, ", dlxt3r$

be the Dewey-Decimal position numbers for xflr$. Let Ixl- n, It l m 0, as before.
We call the text array with pointers to substrings (as explained in the beginning of

6) an extended array. Let the position number of the first letter of/3 be d, i.e.,
dt dn+l.

In general we will have to deal with the case that the input of the algorithm consists
of the position number d, the strings/3, y, the position tred for x3r$, and the extended
text array for xr$. The size of n, i.e., the length of the text to the left of/3, will not be
given as input in general (even though it could be determined by traversing the extended
text array).

804 MILA E. MAJSTER AND ANGELIKA REISER

We will use the following notations and operations. Let

dl, dlw

be the Dewey-Decimal position numbers for the text w. We define

pred(di) di-, for > 1,

succ(di) di+l, for < Iwl;

di is the position number of the ith letter in w, pred(d) determines the position number
of the position left of d, succ(d) determines the position number of the position right
of d.

Moreover we define an addition between Dewey-Decimal numbers and natural
numbers by

di+h:=di+h, ifi+h<=lw[.
The order between Dewey-Decimal numbers is the lexicographical order.

Let us now consider the position tree for xr$ with position numbers
d,. ., dlxr$I. As before, let Na be the node carrying the position number d and let
h (d) be the height of Nu. We consider the modifications which have to be made to our
original correction algorithm in order to allow for Dewey-Decimal position numbers
for the input.

One can immediately see that steps Ib, II, IV, VI of the correction algorithm can
remain unchanged if we want to use Dewey-Decimal numbers for the input. Steps 0, Ia,
III and V have to be substituted by

(0’) If d > d then
7-d := pred(d’);
while d + h(d) > d ^ d > d o
7-d := pred(d)_3
If d d ^ d + h (d) > d’ then do := d
else do := succ(d)_]

(Ia’) d := d;
For 1,. ., m do
Wremove leaf with position number d; mark father if there is exactly one son

left and this is a leaf; d := succ(d)_3
(III’) If d’ > dl then

Wd:=pred(d);
while d => do do
Wwhile d + h (d) > d do
F-give position number d to father of N N and remove it at N;
co now father Naco
if N is a leaf then
Wremove N;

if Na has exactly one son left and this is a leaf then mark Na;
if Na is a leaf and the only son then mark father of Na/l
if Na is a leaf then remove markif anyelse underline Na;
if d dx then exist else d := pred(d)_]l

(V’) If I_-< m give the position numbers d,+,..., d,,+l to the root else give the
position numbers d+, ., d+_, d,+ 1, d,,+, 2,. ., d+, (l-m +
1) to the root.

As one can see, the correction algorithm using Dewey-Decimal numbers for the
input can be obtained by minor modifications of the original algorithm. It should be

ON-LINE CONSTRUCTION OF POSITION TREES 805

noted, however, that this new algorithm is more expensive. This can be seen from the
following observations. (i) Given a position number d, there is no immediate access to
the next smaller or next greater position number. We have to find these position
numbers in the extended array. This costs at most as many steps as there are levels of
references to substrings in the extended array. (ii) In order to calculate d + h (d) for steps
(0’) and (III’) we have to find the h (d)th position number following d. (III) To determine
the h(Nlast)th letter following position d in step VI we have to traverse parts of the
extended array.

The costs for (ii) and (iii) can be reduced if we maintain information about the
length of the substrings that are pointed at from the main array. Work is in progress that
investigates some time-space tradeoffs of the above sketched solution and investigates
garbage collection problems caused by replacing/3 by 3’ with

Let us finally consider the correction problem in compacted trees. For compacted
trees there is a simpler solution to the correction task which will be explained in the
following. We assume for simplicity that the position numbers of the input xr$ are the
natural numbers 1, 2, , Ixr$1. The algorithm takes as input the compacted position
tree for xr$. If a node N in this tree has a single son, then N is marked.

For each position number i, let dhi be the length of the word of labels on
the path from the root to the node carrying the position number i. As before,
ix[n, [/31 m >0, and 13’[l. In the algorithm we make use of an auxiliary symbol
t EJ{$}. The position numbers for xyr$ are dl,’", dlxr$1. We write xyr$=
ala2" anan+l an+l alxrl$.

Correction in compacted position trees.
(0) i:=n;

while + dhi > n + 1 ^ _-> 1 do 7-i := i- 1__1;
i0:=i+1

(I) := i0;
while _<- n + m do
l--remove the leaf with position number ;.

if the father F has exactly one son L left and this is not a leaf then
7-mark F;
ii there are two adjacent marked nodes, then
i[the father F has exactly one son L left and this is a leaf then
give F the position number/" of L;
remove L;
if F is the single son of E then
7-give E the position number f;
remove F; remove mark at

else replace the word of labels cl...c, on the edge from E to F by
Cl_A;

i:=i+1_1

(II) attach a _1_ -son to the root with position number do; remove mark at root, if
any

(IIIa) For i0, io + 1, , n + do
V-let a be the/th letter in xw$;

for each node N that has a +/--son N’ do;
(The order in which the nodes are processed is that given in Lemma 1)
-if N does not have an at-son, r e 2;*, then change the label of the edge

(N, N’) from _1_ to a;
if N has an at-son N", r X*, then
V-remove the edge (N, N’);

806 MILA E. MAJSTER AND ANGELIKA REISER

mark N, if there is exactly one son left;
if r # e then
V-create a new NN;
make the sons of N" the sons of NN;
make NN the r- son of N";
if N" was marked transfer the mark to NN;
change the label of (N, N") from ar to al;

if r e and N" is not a leaf then remove mark at N", if any;
if r e and N" is a leaf then
V-attach a new son to N"; transfer the position number j of N" to the
new son; label the edge between N" and the new son by the/th letter
following position j in al,. ", ai+/-r$ (where is the length of the
position identifier for position] in al ai-1 +/-r$)___l

attach N’ as a +/--son to N" together with the position number_J__J;
attach a +/--son at the root; give it position number di+l; remove mark at
root, if any;
for all pairs of adjacent marked nodes: compactify_j

(IIIb) remove +/--son of root
(IV) i:=n+l+l:

while there are nodes with a 2_-son do
V-let a be the/th letter in x3,r$;
for each node that has a +/--son do: (order given in Lemma 1)
?- as in step IIIa_J;
for all pairs of adjacent marked nodes;
compaetify;
i:=i+1/

The algorithm basically words as follows. In step 0 the leftmost position io is
determined by the position identifier of which "ends" in /3. In step I the position
identifiers for all positions i, i0 =< _-< n + m are removed from the tree. The tree is now a
compacted position tree for Xl Xio-lr$. In step II we attach an auxiliary Z-son with
position number dio to the root; this corresponds to work with the string Xl Xio-l+/-r$.
In step III we use the on-line construction algorithm for compacted position trees for
al ao+/-r$, , al an+l+/-r$. In step IV we continue to use the on-line algorithm
until the +/- does not occur any more as part of any position identifier. In contrast to step
III we do not introduce any new position numbers in step IV, as the position numbers
for the positions right of 3 are already in the tree.

The costs of the algorithm are as follows" let x* Xio"" xn and let r* r r.o,
where Tlrl’’’rio is the longest prefix of "ylr$ that occurs twice in x/r$. Step 0 costs
O([x*l). Step I costs O(Ix*[+ I/3 [), because the number of iterations is Ix*l + Ifll and each
iteration costs constant time. Step IIIa basically applies the on-line construction
algorithm for compacted trees (Ix*l + Ifl])-times, step IV applies the on-line construction
algorithms It*l- times.

Acknowledgment. The authors would like to thank Prof. R. Bayer for pointing out
the problem to them and for many useful discussions.

One application of the on-line construction algorithm costs O(Y.i [Si + 1), where the list of nodes with
a &-son is {N}., and Sg is the set of sons of iV/.

ON-LINE CONSTRUCTION OF POSITION TREES 807

Note added in proof. In the above we use the notions "height of a node" and
"depth of a node" synonymously.

REFERENCES

[1] A. AHO, J. HOPCROFT AND J. ULLMANN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading MA, 1975.

[2] R. COHEN AND M. CIMET, A scheme for constructing on-line linear time recognition algorithms,
Conference on Theoretical Computer Science, Waterloo, Ontario, Canada, 1977, pp. 70-80.

[3] D. E. KNUTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings, this Journal, 6
(1976), pp. 262-272.

[4] E. M. MCCREIGHT, A space-economical suffix tree construction algorithm, J. Assoc. Comput. Mach., 23
(1976), pp. 262-272.

[5] P. WEINER, Linear pattern matching algorithms, IEEE 14th Annual Symposium on Switching" and
Automata Theory 1973, pp. 1-11.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0013 $01.00/0

PERFORMANCE BOUNDS FOR LEVEL-ORIENTED
TWO-DIMENSIONAL PACKING ALGORITHMS*

E. G. COFFMAN, JR.’, M. R. GAREY:I:, D. S. JOHNSON:I:, AND R. E. TARJAN

Abstract. We analyze several "level-oriented" algorithms for packing rectangles into a unit-width,
infinite-height bin so as to minimize the total height of the packing. For the three algorithms we discuss, we
show that the ratio of the height obtained by the algorithm to the optimal height is asymptotically bounded,
respectively, by 2, 1.7, and 1.5. The latter two improve substantially over the performance bounds for
previously proposed algorithms. In addition, we give more refined bounds for special cases in which the widths
of the given rectangles are restricted and in which only squares are to be packed.

Key words, level-oriented packing algorithm, bin-packing, two-dimensional packing

1. Introduction. We consider the following two-dimensional packing problem,
first proposed in [1]: Given a collection of rectangles, and a bin with fixed width and
unbounded height, pack the rectangles into the bin so that no two rectangles overlap
and so that the height to which the bin is filled is as small as possible. We shall assume
that the given rectangles are oriented, each having a specified side that must be parallel
to the bottom of the bin. We also assume, with no loss of generality, that the bin width
has been normalized to 1. Fig. 1 provides an illustration, where the first dimension

rl ///.i r5

Dimensions for ri, - <= 6’ , o 1/4, , 1/4 , 1/4 , x o
FIG. 1. A packing of oriented rectangles in a unit-width bin.

specified for each rectangle corresponds to the side that must be parallel to the bottom
of the bin (we use this convention throughout the paper).

This problem is a natural generalization of the one-dimensional bin-packing
problem studied in [9]. Indeed, if all rectangles are required to have the same height,
then the two problems coincide. On the other hand, the case in which all rectangles have
the same width corresponds to the well-known makespan minimization problem of
combinatorial scheduling theory [3]. Both these restricted problems are known to be
NP-complete [3], [7], from which it follows trivially that the two-dimensional packing

* Received by the editors February 9, 1979, and in final revised form February 4, 1980.

" Bell Laboratories, Murray Hill, New Jersey 07974. The work of this author was supported in part by
the National Science Foundation and Bell Laboratories.

Bell Laboratories, Murray Hill, New Jersey 07974.. Stanford University, Stanford, California. The work of this author was supported in part by the
National Science Foundation under Grant MCS 75-22870-A02, the U.S. Department of Naval Research
under Contract N 00014-76-C-0688, a Guggenheim Fellowship, and Bell Laboratories.

808

TWO-DIMENSIONAL PACKING ALGORITHMS 809

problem is also NP-complete. For this reason we shall focus on fast heuristic algorithms
for solving this problem, seeking to prove close bounds on the extent to which they can
deviate from optimality. Those readers unfamiliar with this "approximation
algorithms" approach may wish to consult one or more of [4], [6], [7], for general
background and for examples of other problems to which it has been applied.

For L an arbitrary list of rectangles, all assumed to have width no more than 1, let
OPT(L) denote the minimum possible bin height within which the rectangles in L can be
packed, and let A (L) denote the height actually used by a particular algorithm when
applied to L. The results in [1] are concerned primarily with demonstrating absolute
performance bounds for various algorithms A, i.e., bounds of the form

A(L) _-< ft. OPT(L)
for all lists L. In contrast, we will be interested in proving asymptotic performance
bounds of the form

A(L) _-</3. OPT(L) + 3’

for all lists L. This is of interest because in many cases the worst absolute performance
can be achieved only by highly specialized, "small" examples. The constant fl in such an
asymptotic bound is intended to characterize the behavior of the algorithm as the ratio
between OPT(L) and the maximum height rectangle in L goes to infinity. For this
purpose, we may, without loss of generality, normalize the height of the tallest rectangle
in L to 1. (Of course, any height other than 1 would serve just as well for this
normalization; a different choice would affect only the additive constant 3’ in our
bounds, leaving the multiplicative constant fl unchanged.)

The difference between these two types of bounds is illustrated by the Next-Fit
Decreasing Height (NFDH) algorithm, to be defined in 2, where it is known [2], [8]
that

NFDH(L) _-< 3. OPT(L)

for all lists L, and that there exist lists L for which NFDH(L) is arbitrarily close to
3. OPT(L). We shall show, however, that if the height as well as the width of each
rectangle is no more than 1, then

NFDH(L) _-< 2. OPT(L) + 1,

for all L, and the multiplicative constant 2 cannot be improved upon. In the case of
NFDH, as with the other algorithms we shall consider, asymptotic performance bounds
seem to provide more accurate and useful information, properly relegating "transient"
effects to the additive constant. (However, as we note in the conclusion, many of our
asymptotic results also provide good absolute bounds.)

In addition to proving asymptotic bounds that hold for all lists L, we will also be
interested in proving such bounds for special cases in which the rectangles in L satisfy
additional width restrictions or all are required to be squares. Section 2 examines
several approximation algorithms that are natural analogues of the one-dimensional
packing algorithms considered in [9], and provides best possible performance bounds
for them. Perhaps surprisingly, these bounds turn out to be essentially the same as those
for the one-dimensional case. In 3 we propose a new algorithm for the two-
dimensional packing problem, and prove tight bounds on its performance. These
bounds demonstrate that the new algorithm is a substantial improvement over the
algorithms in 2.

810 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

Finally, in 4, we compare the performance bounds for our algorithms with those
for the non-level-oriented algorithms of [1] and discuss several variants of our
algorithms that might perform somewhat better in practice.

2. The NFDH and FFDH algorithms. The packing algorithms that we analyze in
this section both assume that the rectangles in the list L are ordered by decreasing
(actually, nonincreasing) height, and they pack the rectangles in the order given by L so
as to form a sequence of levels. All rectangles will be placed with their bottoms resting
on one of these levels. The first level is simply the bottom of the bin. Each subsequent
level is defined by a horizontal line drawn through the top of the first (and hence
maximum height) rectangle placed on the previous level. Notice how this corresponds
with one-dimensional bin-packing; the horizontal slice determined by two adjacent
levels can be regarded as a bin (lying on its side) whose width is determined by the
maximum height rectangle placed in that bin. The following two level algorithms are
suggested by analogous algorithms studied for one-dimensional bin-packing"

(1) Next-Fit Dereasing-Height (NFDH). With this algorithm, rectangles are
packed left-justified on a level until there is insufficient space at the right to accom-
modate the next rectangle. At that point, the next level is defined, packing on the
current level is discontinued, and packing proceeds on the new level.

(2) First-Fit Decreasing-Height (FFDH). At any point in the packing sequence,
the next rectangle to be packed is placed left-justified on the first (i.e., lowest) level on
which it will fit. If none of the current levels will accommodate this rectangle, a new level
is started as in the NFDH algorithm.

Fig. 2 shows the results of applying the two packing rules to the same list. The
essential difference between them is that whereas FFDH can always return to a previous
level for packing a new rectangle, NFDH always places subsequent rectangles at or
above the currrent level.

Some notation will be useful for conducting our analysis of these two algorithms.
Let the list L be given as rl, r2, , rn, and let w(r) and h(r) denote the width and height
of rectangle r. By our previous assumptions we have 0<_- w(r) <- 1 and O<-_h(r)<-_ 1, and
we have h(rl)>-h(r2)_>-’" _-> h(rn). The space between two consecutive levels will be
called a block. Packings will be regarded as a sequence of blocks B, B2, , Bk, where
the index increases from the bottom to the top of the packing. Let Ai denote the total
area of the rectangles in block Bi, and let Hi denote the height of block Bi. Note that, by
the manner in which these algorithms define levels, we have H _-> H2 _->" _-> Hk.

Consider a particular rectangle r packed in block Bi. If block Bi+ was nonempty at
the time r was packed, then we say that r is a fallback item. If, on the other hand, block Bi
was the highest nonempty block at the time r was packed, then r is called a regular item.
Note that all rectangles in an NFDH packing are regular items, and in any block in an
FFDH packing all regular items are taller than and appear to the left of any fallback
items in that block.

Our first result provides a tight bound on the performance of the NFDH algorithm.
THEOREM 1. For any list L ordered by nonincreasing height,

NFDH(L) _-< 2. OPT(L)+ 1.

Moreover, the multiplicative constant 2 is the smallest possible.
Proof. Consider the NFDH packing of such a list L, with blocks Bx, B2,’’’, Bt.

For each i, let x be the width of the first rectangle in Bi, and yi be the total width of
rectangles in Bi. For each < t, the first rectangle in Bi+l does not fit in B. Therefore
yi + xi+a > 1, 1 <_ < t. Since each rectangle in Bi has height at least Hi+, and the first

TWO-DIMENSIONAL PACKING ALGORITHMS 811

B5

B

r2

NFDH(L) =1/4

FFDH(L) 13
20

FIG. 2. NFDH and FFDH algorithms applied to the listL (rl, r2, r3, r4, rs, re,), with the dimensions o[ri as
given in Fig. 1.

rectangle in Bi+l has height Hi+l, Ai+Ai+l>--ni+l(Yi+Xi+l)>ni+l. Therefore, if A
denotes the total area of all the rectangles,

t--1

NFDH(L) H <-Hi + Ai + Ai
i=1 i=1 i=2

-<H + 2A
-< 1 + 2 OPT(L),

which is the desired bound.
Examples showing that the coefficient of 2 is smallest possible are derived trivially

from the corresponding examples for the Next-Fit algorithm of one-dimensional
bin-packing. The list L has n rectangles, where n is a multiple of 4. All the rectangles
have height 1, the odd numbered ones have width 1/2, and the even numbered ones have
width e, for a suitably small e > 0. The optimum and NFDH packings of L are shown in
Fig. 3. In this case we have NFDH(L)= n/2 and OPT(L)= n/4+ 1, so the ratio
NFDH(L)/OPT(L) can be made arbitrarily close to 2 by choosing n suitably large and e
suitably small.

812 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

L +/-. ?.

FIG. 3. Worst-case examples for Theorem 1.

It is perhaps surprising that the multiplicative constant of 2 in Theorem 1 is the
same as the multiplicative constant for Next-Fit in the one-dimensional case. One might
expect the two-dimensional algorithm to perform more poorly, since only the first item
in a block need have height equal to the block’s height, and there may be wasted space
above the subsequent items that does not correspond to any waste in the one-
dimensional case.

This wasted space, however, can only affect the additive constant in our result.
Every item in Bi, 1 <- <= t, must have height at least Hi+l (set Ht+l 0 by convention).
Thus the total wasted space in Bi above items in Bi is at most H/-H+I. The cumulative
waste is consequently bounded by

(Hi -Hi+l) HI-Ht+x HI 1
i=1

(by our normalization assumption on heights). This same "collapsing sum" principle is
at work in all results of this paper, and helps explain why in general the multiplicative
constants do not change as we go from the one- to the two-dimensional case (although
the proof techniques certainly do).

We turn now to the FFDH algorithm. It is routine to prove that FFDH(L)=<
NFDH(L) for all lists L. In the following we show that the worst-case bounds are
significantly lower for the FFDH algorithm. We first prove the bound for the general
case, and then we consider the special cases in which all rectangles have width no more
than some fixed a < 1 and in which all the rectangles are squares. The multiplicative
constants we obtain in all three situations are best possible, and equal (when relevant)
the corresponding constants in the one-dimensional case [9].

TWO-DIMENSIONAL PACKING ALGORITHMS 813

THEOREM 2. For any list L ordered by nonincreasing height,

FFDH(L) _-< 1.7. OPT(L) + 1.

Furthermore, the multiplicative constant 1.7 is the smallest possible.
Proof. The proof is based on the analogous proof for the First-Fit algorithm of

one-dimensional bin-packing [5], [9]. We begin by defining the following weighting
function.

W(x)

6
3x if 0<x <

9
5x- if<x_-<,

56-x+ if 1/2<x<=1/2,

56-x+ if1/2<x<-l.

We extend this function to rectangles r by writing W(r)= W(w(r)), and set

A= , h(r). W(r).
teL

It is proved in [5] that no collection of numbers x summing to 1 or less can have
W(x) summing to more than 1.7. We can apply this result to our case by cutting the
optimal packing into horizontal slices, formed by drawing a line through the top and
bottom of each rectangle. Summing over all the slices, we have A <- 1.7 OPT(L).

Thus, all that remains is to show that A -> FFDH(L) 1. Let T1 be the set of blocks
in the FFDH packing whose first rectangle has width at most 1/2, and T2 the set of blocks
whose first rectangle has width greater than 1/2. For 1, 2, let H(T/) be the total height
of blocks in T/. Since the first item in block B/has height Hi, and since W(x) > 1 for x > 1/2,
we have

Y. Y. h(r). W(r) >=H(T2).
BT rB

We will show that

E E h(r). W(r)->H(T1)- 1.
BT feB

Consequently A >=H(T1)+H(T2)- 1 FFDH(L)- 1, as desired.
Let L1 be the sublist of L consisting of the rectangles in blocks of T1. Note that the

FFDH packing of L1 would yield a set of blocks identical to T1. Let B1, B2,’.., Bt
denote these blocks, with index increasing from the bottom to the top of the packing,
and let Hi be the height of Bi, 1 <-i <-_ t, with Ht+l --0 by convention. Classify items as
regular items or fallback items according to their roles in the FFDH packing of L1. Let fi
be the first regular item in Bi, and let R be the set of all regular items in Bi. For 1 < =<
and 1 -<] < i, define Fii to be the set of fallback items packed in Bi after the last regular
item was packed in Bi- but before the first regular item was packed in Bi. For 1 < -<
and 1-<] < i, define Sii to be the set of all fallback items packed in Bi after the first
regular item was packed in Bi but before the last regular item was packed in B. See Fig.
4. Note that the sets F/i and Sii are all disjoint, and that F/,i_I , 1 < _<- t. Moreover,
we have

814 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

Bi

Bi-I

\ /

fi-I

Ri-i Si,i-i

Bj

Rj Fij Sjj

FIG. 4. illustration [or proo[o[Theorem 2 (blocks have been separated]:or display purposes). Note that all
items in Fii come between xi-1 and fi, while all items in Sii and Si,i-1 come between fi and xi in the list.

For each i, 1 < N_ t, and each , 1 _<-j < i, define the coarseness cii to be the width of
the empty space at the bottom right end of B. when the last regular item is packed in Be.
Again see Fig. 4. Note that the following rdlations hold:

(2.1) w(fi)>-ci+ w(r), l<i<-t, l<-j<i,

(2.2) Ci] Ci-l,!" E w(r), 2 < <- t, 1 <= / < i.
SUF

Let us define Ci-" maxi<i cii for 1 < i-< t, with C 0. We .claim that for every i,
1 < < t, there exists an i’< such that

(2.3) E W(r) +- E w(r) 1 + (Ci--X Cii’).
Ri-1 fii’[-J Sii,

Using this claim (to be proved later), we can complete the proof as follows: We first
observe that

E h(r). W(r) > H+x ., W(r)+ i W(fi)(Hi-Hi+l)
rL i=1 rRi i=1

+ E Hi E W(r)+ i Hi+l E W(r).
=2 reFii, =2 rSii’

This is because every regular item in Bi has height at least n/+l, 1 -< =< t (recall that by
convention Ht+l 0), while the first item in Bi has height Hi, and all elements of F/r and
Sir have heights at least Hi and Hi+l, respectively, 1 < <= t.

TWO-DIMENSIONAL PACKING ALGORITHMS 815

Now we use (2.1) and the fact that for all rectangles r, W(r)>--w(r), to conclude
that the above sum is at least as large as

=2 rRi_
W(r)+-}(Hi-Hi+l)(Cu,+ w(r))+-Hi w(r)+-}Hi+ w(r)]

rSii, rFii’ rSii,

i=2 rRi-1
W r + - Hi Hi+1)c -1 -Hi 2]

rFii,USii,

> L [Hi "k- Hi(ci-i Cii’) + (Hi -’Hi+l)Cii’],
i=2

by (2.3). We thus conclude that

2 h(r). W(r) >- 2 [Hi-Hi+lCii’q--Hici-1]
rL =2

t--1

>=H(T1)-HI- Hi+ICii’-- 2 Hi+lCi
i=2 i=1

t-1

>=H(T,)-H+ E Hi+l(Ci-Cu’)>=H(T1) -1,
i=2

as desired, since cicii, and c =Ht+ =0 by definition, and since H1---1 by our
normalization assumption (the tallest item has height exactly 1).

Thus it only remains to prove the claim, i.e., to show that for any i, 1 < =< t, there
exists an i’ < such that (2.3) holds. First, suppose YrR,_, W(r) >= 1. If ci >= ci-, then for
some i’ < i, ci c, >- ci-1, yielding

2 W(r) + 2 w(r) >- 1 >- 1 + (c,_ cii,),
rRi-1 rFii,USii,

as desired. If ci <c_, then Ci--1 >0 and hence i-1 2>-2, so for some i’< i-1 < i,
c-1 ci-,i,. Then by (2.2) F,, S,, contains items of total width at least ci-l,i,- c,,, and
once again (2.3) follows.

Now suppose rR,_l W(r) < 1. We apply Lemma 4 of [5], which says that if B is a
set of one or more numbers x satisfying c < x -< 1 andxB W(x) < 1, then either IBI 1
and the single element x B satisfies x -< 1/2, or else

2 x<-l-c-(1- Y W(x)).xB xB

Consider the set Ri-. By the definition of the packing T, the first item in Ri-1 must
have width 1/2 or less, which implies by (2.1) that c-1 =<1/2. Since every item in Ri-1 must
have width exceeding ci-, the hypotheses of the lemrna apply to the set of widths of
items in Ri-1, with c ci-1, and so one of the two possibilities must apply. The first
possibility cannot occur since it would imply that w (f) > 1/2, contrary to the definition of
T. Thus we conclude,

w(r)<-_l-c,_--(1 W(r)).
rRi-1

816 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

Letting i’= i- 1, we have

Cu’= l- w(r)- Z w(r)
rRi-1 rFii,l_JSii,

rRi-1
2 w(r)

Fii,[-J Sii,

Ri-1 Fii,l.J Sii,

which once again implies (2.3), as desired. This completes the proof of the claim and
hence of the performance bound for FFDH.

Examples showing that the multiplicative constant 1..7 is the smallest possible
follow immediately from the corresponding examples in [9], simply by taking the sizes
given there to be widths and taking all heights to be 1. [3

THEOREM 3. Let L be any list o] rectangles ordered by nonincreasing height such
that no rectangle in L" has width exceeding 1/m or some fixed m >= 2. Then

FFDH(L) -< (1 OPT(L) + 1.

Furthermore, the multiplicative constant (1 + 1/m) is the smallest possible.
Proof. We would like to argue that for each block Bi of the FFDH packing, the

total area Ai of rectangles in Bi is at least (m/(m + 1))Hi+I. This would imply that

t--1 m t--1 mOPT(L)=> Ai>= /-//1 (FFDH(L)-I),
=1 m+l i=1 m+l

and the performance bound would follow. Unfortunately, it may be the case that for
some < t, Ai < (m/(m + 1))Hi+1. It is the task of our proof to show that such shortfalls
cannot hurt us.

Define A/, and wi], 1 < < and <_-/" < i, to be the total area and width, respectively,
of items packed in B/, when the last regular item is packed in Bi (note that A, and wii are
the total area and width, respectively, of regular items in Bi). Define Ai=
max (0, m/(m + 1)- wi/,). We shall prove that for all i, 1 _-< _-< t,

m
(3.1) Y a/, _-> /-//.+1- AiHi+l,

=1 m+l =
where, as usual, Ht+l -0 by convention.

The proof is by induction. Inequality (3.1) clearly holds for 1, in which case it
reduces to

1-max O, Wll
m+l

which is true since All >n2" Wllo Consider any satisfying 1 < =< t, and suppose (3.1)
holds for i- 1. If Ai_l 0, then we have

i-1 i-1 m i-1

Ai/,--> A-I,/.--> ///+1,
/,=1 /’=1 m + 1/,=1

and (3.1) will follow for arbitrary in the same way it did for 1. So suppose Ai_l > 0.
There remain two cases to consider.

TWO-DIMENSIONAL PACKING ALGORITHMS 817

(i) Bi contains no regular item with width less than 1 /(m + 1). Then since the width
of the first item in Bi is at least 1/(m + 1)+ Ai_l, and there must be at least m regular
items, we have w,>=m/(m + 1)+ Ai_l. We thus can conclude,

"Jr- mi_ Hi+ .-t-- -t-- mi_ (H -Hi+l)
m+l m+l

m
Hi+l q-- Ai_lHi.
m+l

Combining this with (3.1) for i- 1, we obtain

i-1 m. Ai >=Aii + Y: Ai-.,>= E H.+ + Ai_H Ai_Hi,
j=l /=1 m+l I"=

so (3.1) continues to hold for in case (i).
(ii) Bi contains a regular item of width less than 1/(m + 1). This can only happen if

Bi-1 received fallback items of total width exceeding Ai_l before the last regular item in

Bi was packed. We thus have

Ai,i-l-Ai-l,i_l mi_lni+l.

Combining this inequality with (3.1) for i- 1, and the fact that the first item in Bi has
width at least 1/(m + 1)+ Ai_, we obtain

i--1

Aij >= Aii + Ai-ld + (Ai,i-1 Ai-l,i-1)
i=1 i=1

m
-Ai Hi+1-1I- dr- Ai-1 (Hi -Hi+I)-->---- m+l m+l

m i-1

E I-I1+l-Ai-lHim+l ,=1
q- Ai_lHi+

m E /-/+l--mi/-/i+l
-m+l ,.=:

So (3.1) continues to hold for in this case also.
By induction we can thus conclude that

A >- ’. At,j
j=l

m
/-//’+1- AtHt+l

m+l ,=1

mm
/-//+1 (FFDH(L) 1).

m+li= m+l

The desired performance bound follows.
Examples showing that the multiplicative constant of (1 + l/m) is the smallest

possible once again follow in a straightforward way from the corresponding one-
dimensional examples in [9]. I3

Our next result concerns the interesting special case in which only squares are
being packed. Note that this case does not have a nontrivial one-dimensional counter-
partmif all items have the same height they must also all have the same width, and the
problem becomes trivial. Note also that for this special case we can no longer make our
normalizing assumption that the tallest item has height 1, and must settle for assuming
that no square has size (size width height) exceeding 1. Our result for squares is as
follows.

818 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

THEOREM 4. For all lists of squares ordered by nonincreasing size,

FFDH(L) _-< OPT(L) + 1.

Furthermore, the multiplicative constant is the smallest possible.
Proof. We divide the blocks of the FFDH packing into three groups. Ga contains

all blocks up to the highest block that contains a square of size exceeding 1/2 but no square
in the range (1/2, 1/2]. (If no such block exists, G1 is empty.) G2 consists of all blocks above
G1 that contain at least one square in the range (1/2, 1/2]. Note that each block of G2 will
thus contain exactly two items of size exceeding 1/2, except possibly the last block, which
may contain only one. G3 contains all remaining blocks. Note that these blocks are
above all of those of G1 and G2. For 1, 2, 3, let gi denote the total height of blocks in
G1. We consider two cases, depending on the relative sizes of ga and g3.

First, suppose g3 -< gl/2. Let us say that two items "overlap" in a packing if a
horizontal line can be drawn which passes through the interiors of both items. Consider
the first items in all the blocks of G1. Note that none of them can overlap each other in
an optimal packing, since all have size exceeding 1/2. Furthermore, none of the items in all
the blocks of G2 with Size exceeding 1/2 can overlap any of these first squares from Ga in
an optimal packing. For if any such item from G2 did, it would surely fit with the first
square from the top block of Ga, and by definition of Ga no such item did fit. Thus at
least a total of ga of the height of the optimal packing is not overlapped by any item of
size exceeding frown G2. If g’ is the total height of such items, we therefore must have
OPT(L) >= g + g’/2. Since every block of G2 has its height determined by the size of its
first square, which is less than , and since every block except possibly the last has a
second square of size exceeding , we have g’ -> g2 1/2. We thus conclude that OPT(L) ->
gl/-g2 --.

If g3 <-gl/2, then FFDH(L)=ga+g2+g3 <-gl+g2<-(g+-g2-)+1/4 <-

OPT(L) + 1/4, and we are done. So suppose g3) ga/2.
For i= 1, 2, 3, let Ai denote the total area of squares in Gi, and let A

A nu A2 + A3. We will show that FFDH(L) _-<A + 1 -<_ -} OPT(L) + 1, and thus complete
the proof of the performance bound.

We first consider A3. Let p be the size of the first (hence largest) square packed in
G3, and let m be such that 1/(m+l)<p<-l/m. Note that m>-3. Since the widest
square in G3 has width (and height) no greater than 1/m, the proof of Theorem 3 yields

(4.2) A3 >_
m (_) m 1

m+l
g3

m+l
g3

m+l

Now consider A2. Any block of Ga with two squares of width x and y, x -> y , is at
least (x 2 + y2)/x full. Since this expression is minimized at x y , the block is at least }
full. Only the top block of G. may fail to meet these conditions. If so, that block has
height at most 1/2 (or else it would be in G). Thus

(4.3) A2 >- -g2 --(1/2) -g2 .
Finally, consider A1. We claim that each block of G1 is at least (m + 2)/(2m + 2)

full, and hence

m+2
(4.4) A > gl.=2m+2
Let B be a block of Ga, and let x > 1/2 be the size of the first square in B. If m 3, either
x > or B contains a second square of size at least p > 1/(m + 1) and hence is at least

TWO-DIMENSIONAL PACKING ALGORITHMS 819

(x2+(1/(m +l))2)/x full. In both cases it is easy to verify that B is at least (m+
2)/(2m + 2) =- full. For m ->-4, note that B is filled to width at least 1 -p by squares of
size at least p, and is therefore at least (x2+(1-x-1/m)/(m + 1))/x full. Since this
expression is minimized at x 5, we see that the block is at least

1 2(1/2-l/m) m+l+2-4/m m+2
2 m+l 2m+2 -2m+2

full. Thus (4.4) holds. Combining it with the formulas for A3 and A2 and using the fact
that g3 -> gl/2, we obtain

m+2 mAI+A2+A3>g+-}g2-+ g3-=2m+2 m+i
m+2 (m

> gl+-g2+-g3+ g3---
=2m+2 m7-1

>=((m+2 m

\2m +2+1/2(m +1--32-)) gl+(g2 + g3--1)

2m +2 1/2)> g + (g2 + g3 1) (gl + g2 + g3 1
2m+2

-> 32-(FFDH(L)- 1).

The performance bound follows.
The construction of examples showing that the multiplicative constant is the best

possible is quite simple (see Fig. 5). For suitably small e > 0, the list L consists of n

I!! ll !I!
!iliiIIII,,,,,

1111 11II

111III

111111

111111

FFDH(L) _> (3n/4)- e/2 OPT(L) -< (n/2) + ne

FIG. 5. Worst-case examples]’or Theorem 4.

820 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

squares of size 1/2+e followed by Ln(+e)/eJ squares of size e. Then
OPT(L) <_- (n/2) + ne and

FFDH(L) _-> ((n/2) + ne + L---e--J L----J e

>--_(3n/4)--e/2,

so FFDH(L)/OPT(L) approaches as e approaches 0. V1

3. The Split-Fit algorithm. In this section we describe an algorithm which is
slightly more complicated than those analyzed in the previous section but which, as we
shall see, performs significantly better. We call this algorithm Split-Fit (abbreviated SF),
and it operates as follows.

Let m _-> 1 be the largest integer such that all the given rectangles have width 1/m
or less. Divide the given list L of rectangles into two lists L1 and L2, both ordered by
nonincreasing height, such that L1 contains all the rectangles from L that have width
greater than 1/(m + 1) and L2 contains all the ’ectangles from L that have width
1/(m + 1) or less. Then pack the rectangles in La using the FFDH algorithm (note that
there will be no fallback items). Rearrange the blocks of this packing so that all blocks
having total width more than (m + 1)/(m + 2) are below all those blocks that have total
width less than or equal to (m + 1)/(m + 2). This leaves sufficient room that we can
create a rectangle R of width 1/(m + 2) to the right of the latter group of blocks, as
shown in Fig. 6.

m+2 G- m+2

FIG. 6. The rectangle R created in the space left by the rearranged FFDH packing of Lx.

Finally, pack the rectangles in L2 using the FFDH algorithm, allowing new blocks
to be established within R (independently of the blocks in the packing of L) but not
allowing any rectangle to overlap the top of R. For purposes of applying the FFDH
algorithm, blocks within R are regarded as being below those established above the
packing of L1. Thus, in general, some of the rectangles from L2 will be packed in R, and
the remainder (those that fail to fit in R) will be packed above the packing for L.

The following theorem characterizes the worst-case performance of Split-Fit.

TWO-DIMENSIONAL PACKING ALGORITHMS 821

THEOREM 5. For any listL ofrectangles, ifall rectangles in L have width less than or
equal to 1/m (m an integer), then

m+2
SF(L) _-< OPT(L) + 2.

m+l

Furthermore, the multiplicative constant (m + 2)/(m + 1) is the smallest possible.
Proof. Let T denote the region of the SF packing that contains rectangles from L1

(not including R), and let S denote the region above the packing for L1, thus dividing
the SF packing into three disjoint regions, R, S and T. Let H(S), H(R) and H(T)
denote the heights of these regions. Index the blocks within each of these regions from
bottom to top as BI(S), B2(S)," Bk(s)(S); Bx(T), B2(T)," Bk(T)(T); and
BI(R), B2(R), , Bk(R(R). For X e {R, S, T} and 1 <-_ <-_ k(X), let Hi(X) denote the
height of block Bi(X). We divide the proof into two cases, depending on whether S
contains any rectangles of width 1/(m + 2) or less.

Case 1. All rectangles in S have width larger than 1/(m + 2).
In this case, since all rectangles in S also have width at most 1/(m / 1), each block

in S except possibly the last one contains exactly m / 1 regular items (and no fallback
items). The total height of all these rectangles is thus at least

k(S)- k(S)

(m+l) Z H,+I(S) _-> (m + I) Z Hi(S)
i=1 i=2

_-> (m + 1)(H(S)- 1).

Similarly, all rectangles in T have width greater than 1/(m + 1) and no more than
1 /m, so each block in T except possibly the last contains exactly m regular items (and no
fallback items). The total height of all these rectangles is at least

m
k(T)-I k(T)

E Hi+l(Tl>=m E Hi(T)
i=1 i=2

>-m(H(T)-I).

Now consider any optimal packing of L. We can divide this packing into "slices" by
drawing a horizontal line from one side of the bin to the other through the top and
bottom of each rectangle. For 0 =< -< m, let Zi denote the cumulative height of all such
slices that contain exactly rectangles (subrectangles of the original rectangles) of width
exceeding 1 !(m + 1). Notice that

OPT(L)= E Zi.
i=0

The total height of all rectangles from L having width greater than 1/(m + 1) is then
Y" iZi, so we must havei=0

m(H(T)- 1) <_- E iZi.
i=0

Rewriting, we obtain

H(T) <=-- E iZi + 1.
m i=o

822 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

The total height of all rectangles from L having width greater than 1 /(m + 2) but no
more than 1/(m + 1) is at most i=o (m + 1- i)Zi, so we must have

or rewriting,

(m + 1)(H(S)- 1) <= Y’, (m + 1 -i)Z,
i=O

H(S)<=

Combining these, we obtain

1
o(m+l_i)Z+l.m+l=

SF(L)=H(S)+H(T)

1 1<------m i=o iZ +m + l i=,o (m + l i)Zi + 2

Y. +1- Z+2
=-’o m+l

m(E 1+ Zi+2
i=0 m(+l)

m(1)_-<Y. 1+.. Z+2=
i=o m+l

m+2
OPT(L) + 2,

m+l

and hence the claimed bound holds in Case 1.
Case 2. Some rectangle in S has width 1/(m + 2) or less.
.We first claim the following:

m.+.H(T) 1 m
(5 1) A(T) >= H(R)-.

m+ (m + 1)(m +2) m+2

Consider the FFDH packing of the rectangles of L (which we later rearrange to form T
in the process of performing Split-Fit). Index the bins from bottom to top as

B1., B2, , BkT), and denote the height of Bi by Hi, 1 <- <- k(T). Let T’ be the subset

consisting of those blocks which have width less than (m + 1)/(m + 2). Since all items

packed are regular items of width at least 1/(m + 1), and all blocks except possibly the

last have width at least m/(m + 1), we have the following (assuming by convention that

Hk{r)+l =0)"

m + 1 k(T)-I 1 k(T) 1
A(T) H+I ,Y"I-- (Hi -Hi+l) Y Hi++m-rl (m + 1)(m + 2) B,, 7"m+2 i=1

m+l 1 1
>-(H(T)-H)+ H- Y Hi-m +2 m + i (m + 1)(m +2) B,7-,

m+l m 1
>=H(T) H(R),
m+2 m+2 (m + 1)(m +2)

as desired, since H1 1 and H(R) -’,BiT’ Hi.
Our second claim concerns region R"

1
(5.2) A(R)

2(m + 2)
(H(R)-2).

TWO-DIMENSIONAL PACKING ALGORITHMS 823

Since S by assumption contains items of width less than or equal to 1/(m +2) and
rectangle R has width 1 ! (m + 2), we must have yk(R)

i= Hi (R) -> H(R) 1. The packing of
R must contain at least as much area as would its packing under NFDH, so by the proof
of Theorem 1 (normalized to a bin width of 1/(m + 2)) we obtain

A(R >= 1/2 H(R H(R
i=1 m+2

>1/2(H(R) H(R)) .----(H(R)-e),
m +2-2(m +2)

as desired.
Finally, let us turn to region S. This is packed by FFDH using items all of width

1/(m + 1) or less. Thus by the proof of Theorem 3

m+l
A(S) (H(S)-)

m+2

Putting together (5.1), (5.2) and (5.3) we obtain

OPT(L) A(T) +A(R) +A(S)

m+l 1 m 1
H(T)- H(R)- +H(R)
m+2 (m+l)(m+2) m+2 2(m+2)

1 m+l m+l
m + 2

+ H(S)m+2 m+a
m+l
(H(T)+H(S))

m + 1
m + 2 m

(SF(L) 2),

and the performance bound follows.
The fact that the multiplicative constant (m + 2)/(m + 1) cannot be improved for

Split-Fit follows immediately from the examples used to show that the bound of
Theorem 3 is best possible. For a fixed value of m, we simply take the examples having
rectangles of width no more than 1/(m + 1) for which First-Fit achieves ((m + 2)/(m +
1)). OPT(L) and add to the beginning of L, m rectangles of height 1 and width 1/m. The
performance of Split-Fit in region S is the dominant factor in such cases, so it performs
essentially as First-Fit and achieves the same bound.

The overall bound for Split-Fit in the unrestricted case is thus

SF(L) OPT(L) + ,
which compares quite favorably with the corresponding bound for FFDH. Further
improvements may well be obtainable if the idea of "splitting" implicit in Split-Fit is
used in more elaborate ways [2], [8].

4. Discussion. The level-oriented packing methods analyzed here would seem to
be wasteful of space, since they never consider packing rectangles in the space between
the tops of the shorter items in a block and the top half of the block itself. Thus one
might expect that the non-level-oriented Bottom-Left methods of [1], which pack by
always placing the next rectangle from L as low as possible and then as far to the left as
possible, would perform significantly better. However, straightforward extensions of
the "checkerboard construction" from [1] can be used to show that these algorithms
cannot satisfy an asymptotic performance bound better than 2. OPT(L), regardless of

824 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

whether L is ordered by decreasing height, increasing height, decreasing width, or
increasing width. Thus, in contrast to expectations, the Bottom-Left methods turn out
to be substantially worse than the level methods.

In a sense, the wasted space referred to above for level-oriented packing methods
has an effect that is more apparent than real. In each of our proofs, we essentially
showed that it was bounded by a constant, independent of OPT(L), and that is why the
results for the one-dimensional case carried over so nicely. The wasted space does
become significant, however, if we consider absolute bounds, bounds of the form
A(L) -< a. OPT(L), where no additive constant is allowed. Such bounds may well be of
interest in situations where optimal packings are not very tall, so we have proved our
asymptotic results in such a way that absolute bounds can be derived as corollaries.

Note that in each of our proofs except the one for squares, we have assumed the
height of the tallest rectangle to be exactly 1. This means that OPT(L) => 1, and hence a
performance bound of the form

A(L)<-.OPT(L)+y

implies the absolute bound

A(L) _-< (/3 + y). OPT(L).

6

NFDH PACKING
NFDH(L) 3 ----6N

OPTIMAL PACKING
OPT(L)

FIG. 7. Example of a list L with NFDH(L) (3-6e) OPT(L) for any e 1/N. The list consists of one
2e 1 rectangle, one (1-2e)2e rectangle, and 2N-6 pairs of rectangles with dimensions (1/2-e) e and
3eXe.

TWO-DIMENSIONAL PACKING ALGORITHMS 825

Hence we obtain from Theorem 1 the previously known [2], [8] absolute bound
NFDH(L) -< 3. OPT(L) for all lists L. Fig. 7 provides an example to show that this is the
best possible absolute bound (all the other absolute lower bounds we cite can be proved
using the same basic ideas in conjunction with lower bound examples for the cor-
responding one-dimensional algorithms). Theorem 2 yields the absolute bound
FFDH(L)-< 2.7. OPT(L). This bound also can be shown to be tight. Theorem 3 yields
the absolute bound FFDH(L) <- (2 + l/m). OPT(L) for all lists L in which no rectangle
has width exceeding l/m, and this bound is also tight. Theorem 5 yields the cor-
responding absolute bound SF(L)=< (3 + 1/(m + 1)). OPT(L), and although this bound
is not known to be tight for any fixed value of m, both lower and upper bounds approach
3 as m goes to infinity. Thus for all sufficiently large m, Split-Fit is worse than First-Fit in
absolute ratio even though it is better asymptotically. The case for m 1 is less clear.
Our proof of Theorem 5 can be tightened to yield a bound of SF(L)-< 23-OPT(L)+ in
this case, by observing that in region T each block Bi contains a single regular item of
height Hi, and so there is no wasted space above regular items in this region. This yields
an absolute bound of SF’(L)-< 3. OPT(L), but the best lower bound we can prove is
2.7. OPT(L) and we suspect that this, the same bound as for FFDH, is the correct
answer. Sleator [10] has found a method similar to Split-Fit with an absolute bound of
2.5. OPT(L).

The question arises" Are there any techniques which might be used to help reduce
the wasted space in practice? Certain techniques are worth noting.

The first of these is that, instead of packing every block in a left-to-right manner,
one might alternately pack blocks from left-to-right and then from right-to-left. Then
the tallest rectangle in the block will be above the shortest, rath.er than the tallest,
rectangle in the preceding block, and some reduction in total height might be achieved
by dropping each rectangle until it touches some rectangle below it. Another approach
would be to allow more general packings within blocks, say by allowing new, shortened
blocks to be created in the space above the regular items in a block, which otherwise
would remain empty.

However, the essentially one-dimensional nature of the worst case examples
mentioned in the paper show that the asymptotic performance bounds cannot be
improved by these modifications, and so one can only hope that they will do better in
practice.

One possible modification of our basic model deserves mention. Suppose that, in
packing, we are allowed to rotate rectangles by 90 if we so wish. We have not yet
analyzed this variant in detail, but we note that Theorems 1 and 3, depending as they do
solely on area-arguments for their proof, continue to hold even if OPT(L) is interpreted
to be the minimum height packing with such rotations allowed. If we are to make use of
the possibility of rotations in our algorithmic packings, one appealing heuristic would be
to rotate all rectangles so that their width is no larger than their height, and then apply
one of our standard algorithms which, according to Theorems 3 and 5, yield better
bounds for smaller widths. Our result for squares (Theorem 4) indicates the limits of this
approach for algorithm FFDH, but there are no doubt many interesting questions left to
be answered.

Acknowledgment. The authors thank Brenda Baker for her many helpful com-
ments and suggestions. In particular, she greatly simplified our proofs of Theorems 2
and 4, reducing the additive constants in each, and inspired us to derive similar
improvements in the additive constants for Theorems 3 and 5, thus allowing us to make
the above remarks about absolute bounds.

826 E. COFFMAN, JR., M. GAREY, D. JOHNSON, R. TARJAN

REFERENCES

[1] B. BAKER, E. G. COFFMAN AND R. L. RIVEST, Orthogonal packings in two dimensions, this Journal,
this issue, p. 846ff.

[-2] g. BAKER, personal communication.
[3] E. G. COFFMAN, ed., Computer andJob Scheduling Theory, John Wiley, New York, 1976.
[4] M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON, PerC’ormance guarantees]:or scheduling

algorithms, Oper. Res., 26 (1978), pp. 3-21.
[5] M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND A. C. YAO, Resource constrained scheduling as

generalized bin packing, J. Comb. Th., 21 (1976), pp. 257-298.
[6] M. R. GAREY AND D. S. JOHNSON, Approximation algorithms for combinatorial problems: an

annotated bibliography in Algorithms and Complexity: New Directions and Recent Results, J. F.
Traub,.ed., Academic Press, New York, 1976, pp. 41-52.

[7] ., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San
Francisco, 1979.

[8] I. GOLAN, personal communication.
[9] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case

performance bounds]:or simple one-dimensional packing algorithms, this Journal, 3 (1974), pp.
299-325.

[10] D. SLEATOR, A 2.5 times optimal algorithm]’or packing in two dimensions, Info. Proc. Letters, 10
(1980), pp. 37-40.

SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0014 ’$01.00/0

A POLYNOMIAL TIME ALGORITItM FOR SOLVING SYSTEMS OF
LINEAR INEQUALITIES WITt/TWO VARIABLES PER INEQUALITY*

BENGT ASPVALLt AND YOSSI SHILOACH$

Abstract. We present a constructive algorithm for solving systems of linear inequalities (LI)
with at most two variables per inequality. The time complexity of the algorithm is O(mn3I) on a
random access machine, where m is the number of inequalities, n the number of variables, and I
the size of the binary encoding of the input. The LI problem is of importance in complexity theory
because it is polynomial time (Turing) equivalent to linear programming. The subclass of LI treated
in this paper is of practical interest in mechanical verification systems.

Key words, linear inequalities, linear programming, polynomial time, algorithm, complexity,
loop residue, hidden inequality

1. Introduction. In this paper, we give a polynomial time algorithm for solving
systems of linear inequalities where each inequality contains at most two variables.
We start this chapter by introducing the problem and relating it to other problems
and previous results. In Section 1.2, we present the general approach to solving the
problem, and in Section 1.3 we define the representation and the complexity measure
to be used throughout the paper.

1.1. Linear inequalities. Given a rational m n matrix A and a rational m-vector
c, the linear inequalities (LI) problem is to determine whether or not there exists an
n-vector x of rational numbers such that

(1) Ax

_
e.

If such a vector x exists, we say that the system is satisfiable and that x is a feasible
vector; otherwise the system is unsatisfiabIe, and no feasible vectors exist. If the
system is satisfiable, one can also ask for a feasible vector x; the algorithm presented
in this paper does supply a feasible vector if the system is satisfiable.

The LI problem is of importance in complexity theory. It is well-known that the
linear programming (LP) problem--where one wants to maximize a linear function
subject to linear inequality constraints--is polynomial time (Turing) equivalent to the
LI problem [3, pp.287-288], [4], [11]. The complexity of the LP problem was one of
the foremost open problems in theoretical computer science until Leonid Khachiyan
announced in Doklady Akaderniia Nauk SSSR, February 1979, a polynomial time
algorithm for the LI problem (see Chapter 5).

We will use LI(k) to denote the class of LI problems with at most k variables
per inequality. Any instance of the LI problem can be transformed into an equivalent
LI(3) instance by introducing additional variables and constraints. (By using a binary

* Received by the editors February 14, 1979, and in final form March 14, 1980. This work was
performed while both authors were at the Department of Computer Science, Stanford University,
Stanford, California, and was supported by National Science Foundation Grants MCS-75-22870 and
MCS-77-23738, and by a Chaim Weizmann Postdoctoral Fellowship. This paper was typeset by the
authors on an Alphatype CRS phototypesetter via D. Knuth’s and MET=ONT systems.

Department of Computer Science, Cornell University, Ithaca, New York.
IBM Scientific Center, Technion City, Haifa, Israel.

827

828 BENGT ASPVALL AND YOSSI SHILOACH

encoding scheme, the coefficients of the new problem can be restricted to {--1, 0, +1}
[4].) The transformations can be done with at most a polynomial increase in the
number of variables and constraints. Thus an efficient algorithm for LI(3) is also an
efficient algorithm for LP and vice versa.

In this paper, we present a constructive algorithm for LI(2). The time complexity
of the algorithm is O(mn3I) on a random access machine, where I is the size of the
binary encoding of the input. The LI(2) problem has practical applications in, for
example, mechanical verification systems [8], [9], [10].

To denote a typical constraint of an LI(2) problem, we will use

(2) ax + by < c,

where x and y are any two variables, and a, b, and c are rational numbers. Vaughan
Pratt [10] has given an O(n3) algorithm for the case where the inequalities are of the
form x--y < c. Robert Shostak [14] has generalized Pratt’s idea to the general
LI(2) case, but his algorithm has an exponential worst-case behavior. Greg Nelson [7]
has given an O(mn[g+4 log n) algorithm for LI(2), by using a modified Fourier-
Motzkin elimination method.

1.2. Outline of the algorithm. It is well-known that the solution space of a system
of linear inequalities forms a convex polyhedron. Let 2(S) be the projection of the
solution polyhedron on the x-axis for a given system S. We can also view 2(S) as
the set of values of x for which a solution to the entire system can be constructed. If
we can find 2(S), which is a convex interval on the x-axis, we can assign any value
Y 2(S) to the variable x. This reduces the number of variables by one and yields
a new system of inequalities that is satisfiable if and only if S is satisfiable. Hence, if
S is satisfiable, a solution can be constructed by recursively solving systems of linear
inequalities with fewer variables.

Our algorithm is related to a theorem by Shostak. In [14] he shows how to
construct an undirected graph from a given system of inequalities such that the system
is unsatisfiable if and only if the graph has what he terms an infeasible simple loop.
Since we use the same graph construction in our algorithm, we will describe Shostak’s
ideas here.

Let S be a system of inequalities of the form (2), and let Vo be an auxiliary zero
variable that always occurs with zero coefficient--the only variable that can do this.
Without loss of generality, we can thus assume that all the inequalities contain two
variables. We construct the graph G(S) (V, E) with n 1 vertices and m edges
(counting multiple edges) as follows: (a) For each variable x occurring in S, add a
vertex named x to G(S). (We will use x to denote both the variable and the vertex
where no confusion can occur.) (b) For each inequality ax -by < c in S, add
an undirected edge between x and y to G(S), and label the edge with the inequality
(Fig. 1).

Let P be a path of G(S) determined by the vertices Vl, v2,..., V+l and the edges
el, e2,..., ez. We define the triple sequence of P as

(al, 51, Cl >, (a2, b2, c2), (at, bt, ct),

where, for 1

_ _
l, aivi --[-biVi+l ci is the inequality associated with ei. If

ai/l and bi have opposite signs for 1

_
l, then P is called admissible. Define

(ap, bp, cp}, the residue of P, as

(3) {ap, bp, cp) (al, bl, cl ((a2, b, c2 (((al, bl, Cl),

LINEAR INEQUALITIES 829

vo w<
y+z<_O

FIG. 1. G(S) for S-- {w

_
1, w@x _<_ --1,--2w--x <_ O,x--2y

_
1, y--z <_ O,--x-+-z <_ 2}.

where @ is the associative binary operator defined on triples by

(4) (a, b, c) (a’, b’, c’) (kaa’, --kbb’, k(ca’ c’b)) and k a’/la’ I.
Intuitively, the operator @ takes two inequalities and derives a new inequality by
eliminating a common variable; e.g., ax -+- by <_ c and ay -+- ttz <_ d imply --adx -+-
bt/z <_ m(ca--db) if a < 0 and b > 0. Note that the residue imposes a direction on
P even though the graph is undirected and that the signs of ap and a agree, as do
the signs of bp and bz. The significance of path residues is formalized in the following
lemma.

LEMMA 1 (Shostak). IfP is an admissible path with initial vertex x, final vertex y,
and residue (ap, bp, cp), then any point (i.e., assignment of rational values to variables)
that satisfies the inequalities that label the edgesofP satisfies apx -+- bpy <_ cp.

A path is called a loop if the initial and final vertices are identical. (A loop is not
uniquely specified unless its initial vertex is given.) If all the intermediate vertices of
a path are distinct, the path is simple. The reverse of an admissible path is always
admissible, and the cyclic permutations of a loop are admissible if and only if al and
bz have opposite signs. It follows that no admissible loop with initial vertex v0 is
permutable.

An admissible loop P with initial vertex z is infeasible if ap -- bp 0 and cp <
0, since by Lemma 1 any solution of S must satisfy the unsatisfiable loop inequality
(ap -- bp)x <_ cp. Thus if G(S) has an infeasible loop, the system of inequalities S is
unsatisfiable. However, the converse is not true in general. We say that two systems of
linear inequalities S and T are equivalent if they have the same solution polyhedron.
Next we show how to extend S to an equivalent system S such that G(S) has an
infeasible simple loop if and only if S is unsatisfiable.

For each vertex z of G(S), and for each admissible simple loop P of G(S) with
ap -- bp 0 and initial vertex x, add a new inequality (ap + bp)x

_
cp to S. We

will call the new system S the Shostak extension of S.
THEOREM 1 (Shostak). Let S be the Shostak extension of S. The system of

inequalities S is satisfiable if and only if G(S) has no infeasible simple loop.
This theorem can easily be used to design an algorithm for LI(2). However, since

the number of simple cycles in a graph on n vertices can be exponential in n, the
worst-case behavior of the algorithm can be exponential in the number of variables.
We will now outline the method we use in order to avoid examining all the cycles
separately.

830 BENGT ASPVALL AND YOSSI SHILOACH

Assume that G(S) is a graph for S. For each variable x define

(5)

Cp
xmin max{ P is an admissible path from v0 to x in G(S) and bp < 0 },

Cp
xmax min{ - P is an admissible path from v0 to x in G(S) and bp > 0 },

0p

where we define max{ } --oo and min{ } oo. Intuitively, x _> xmin is the most
restrictive lower bound on x that we can derive using a chain of inequalities in S, where
all but the first have two variables; a similar statement holds for xmax. Let xmin(k)

and xmax() be defined in the same way as xmin and xmax but with P additionally
restricted to length at most k. Thus xmin() xmin and xmax() xmax.

A graph G(S)is said to be closed for S if [xmin, xmax] X(S) for all variables
x or if [xmin, xmax] X(S) 0 (the empty set) for at least one variable x. Given a
system S of linear inequalities, let T be a system of linear inequalities with the same
variables as S. We say that the system T is a closure of S if the following is true:
(a) The two systems S and T are equivalent, and (b) the graph G(T) is closed for
T. Thus if we can find a closure T of S in polynomial time and if there is a way
to compute [xmin, xmax] from G(T) in polynomial time, we can construct a solution
to S in polynomial time. In Section 3.1 we show that the Shostak extension S is a
closure of S and [xmin(n), xmax(n)] --[xmin, xmax], so G(S’) can in fact be used to
reduce S to a smaller system. However, constructing G(St) takes exponential time in
the worst case.

We construct in polynomial time a modified extension S* of S. The extension
S* will be a closure of S. Furthermore, we have [xmin(n), xmax()] [xmin, xmax].
This enables us to compute [xmin(),xmax())(S*) X(S) from G(S*) in
polynomial time. (We assume that a solution exists; if no solution exists, it must be
detected eventually.)

In the construction of the Shostak extension S from G(S), many redundant
inequalities are added to S. These inequalities will not be added in the construction
of S*. From the graph G(S), we will compute the non-redundant (i.e., the most
restrictive) inequalities x >_ xlow and x <_ xhigh for each variable x using a binary
search technique. In order to do this, we maintain, for each variable x of S, an interval
[xlow$, xlow$] such that either xlow C [xlow$, xlow$] or xlow --oc. Similarly, we
maintain an interval [xhigh$,xhigh$l such that either xhigh [xhigh$,xhigh$] or
xhigh oe. Initially, the intervals will be set to [--),,),J, where) can be computed
from the input.

The algorithm will guess values for the variables one at a time. A guessed value
of x will be "pushed" through G(S) in a breadth-first manner. This will give new--
but not necessarily true--upper and lower bounds on the variables. By analysing the
outcome of each guess, it is possible to chop the interval for either xlow or xhigh by
at least half. There will also be a way to decide if a new and more restrictive bound
on x can be derived. If this is not the case, the intervals can be coalesced into single
points. After a finite--and in fact polynomial--number of guesses, we will be able to
determine the true values of xlow and xhigh for any variable x of S.

Chapter 2 is devoted to the computation of xlow and xhigh. After computing
the values of xlow and xhigh for each variable x of S from the graph G(S), we
construct the extension S* from S by adding the inequalities x >_ xlow and z _<
xhigh. Given G(S*), it is rather straightforward to compute xmin() and xmax()

using a breadth-first search. This is explained in detail in Chapter 3, where we give

LINEAR INEQUALITIES 831

the LI(2)-Algorithm. In Chapter 4 we analyze the complexity of the algorithm and
show that the number of guesses needed is bounded by a polynomial in the input size.

1.3. Representation and complexity measure. Our algorithm for LI(2) is polyno-
mial in the size of the input. In order to establish exactly what this means, we have
to say a few words about the way the input is represented and how the complexity is
measured.

We assume that an instance of LI(2) is described as a string of inequalities of
the form ax -+-by

_
c. Each rational number is represented as an ordered pair of

integers and each variable by an integer between 1 and n. All integers are written
in binary notation, and just enough additional symbols are allowed to delimit the
input unambigously. The input size is the total length of the string describing a given
instance.

Throughout this paper, we will use a random access machine (RAM) model. (For
a detailed description see [1, pp.5-14].) The complexity measure will be the worst-
case time using a uniform cost criterion, i.e., all elementary arithmetic operations and
comparisons take one unit of time. However, we want to establish that the algorithm
is polynomial also in the Turing machine sense. The following theorem (see, e.g.,
[1, p.33]) relates the complexity for the two machine models.

THEOREM 2. The random access machine under logarithmic cost and the Turing
machine are polynomially related models.

In Chapter 4, where we examine the complexity of the algorithm, we will consider
the logarithmic cost criterion as well. We will show that the intermediate results do
not "blow up", establishing that the LI(2) problem is solvable in polynomial time on
a Turing machine.

2. Finding the extension S*. In this chapter we show how to find S* from G(S)
using a binary search technique. We start by classifying different kinds of admissible
loops and examining their behavior under guesses. In Section 2.2, we describe how to
push a guessed value for a variable through G(S). In Section 2.3, we con.struct the
extension S* and the graph G(S*) using the results from the previous sections.

2.1. Behavior of loops under guesses. From a linear inequality ax + by

_
c, we

can derive an upper bound on y if b 0 or a lower bound if b 0, and the bounds
depend on x if a : 0. Let us see how this can be employed in G(S). Let P be an
admissible path from x to y (x, y = v0) with residue (ap, bp, cp}. If we assign a value
to x, we can get a constant bound on y from apx --bpy cp. The residue of P is
uniquely defined, since the operator is associative. Hence the bound on y is unique
with respect to P. For another path p1 we might get another bound on y. The trouble
is that we do not want to compute the residues for all admissible paths between the
two vertices x and y.

Let us ignore this problem for the moment and turn our attention to admissible
loops, since they play a fundamental role in the algorithm. By making a guess for a
variable x at one end of an admissible loop, we get a bound on the same variable at
the other end of the loop. We now show how the guess and the result are related to
the residue of the loop.

Let P be an admissible loop with residue (ap, bp, cp and initial and final vertex
x =fi v0. We call apx--bpx cp the hidden inequality of the loop. If ap--bp z O, we
can--and often will--write the hidden inequality of P as either x

_
h or x

_
h, where

h cp/(ap -- bp). Without knowing the residue of P, we can obtain information
about its hidden inequality by guessing a value g for x, pushing the guess around P

832 BENGT ASPVALL AND YOSSI SHILOACH

(as described in the next section) and examining the result. There are four classes of
admissible loops, denoted m, =, , and , and distinguished by the signs of ap and
bp (the upper sign corresponds to the sign of ap). We will now classify their behavior
under guesses.

Let h Cp/(ap -bp), r (cp apg)/bp, and # --ap/bp, so that r can
be written as r #g + (1 #)h. The hidden inequality for a : loop is of the form
x _< h. If we guess the value g for x, we get as the result the inequality x _< r. The
situation for loops is similar, but the inequalities are in the opposite directions. For
these loops, we have # <: 0, so either g < h < r, r < h < g, or g- h- r. Since
the guess and the result are on opposite sides of h, we will call them the flipping loops
(Figs. 2 and 3).

z--g z<_h z<_r x<_r z<_h

FIG. 2. Iipping

_
loops.

FIG. 3. FZipping- loops.

The loops are slightly more complicated. We always get a result of the form
x

_
r, but we have to distinguish three different cases for the hidden inequality: (a)

If ap -bp O, we have x

_
h and 0 <: # < 1, so the result lies in the interval

between g and h (the converging case, Fig. 4a). (b) If ap -- bp O, we have x

_
h

and # 1, so h and r are on opposite sides of g (the diverging case, Fig. 4b). (c) If
ap--bp O, the hidden inequality is 0

_
cp; we get r < g if cp 0 (i.e., the hidden

inequality is a contradiction) and r

_
g otherwise (the contradiction and tautology

cases, Fig. 4c).

x<_h x<_h x<_r

FIG. 4a. Converging case for :_ loops.

x<_r z--g x>_h x>_h z--g

FIG. 4b. Diverging case for :: loops.

z<_r z--g z--g

> x

FIG. 4c. Contradiction (left) and tautology cases for :_ loops.

LINEAR INEQUALITIES 833

Class of loop Hidden ineq.

::, ap -bp > 0 X

_
h

::2, ap- bp < 0 X

_
h

::, ap -bp----0 0

_
cp

:7]2, ap -bp < 0 X

_
h

--, ap -bp > 0 X

_
h

:::, ap -bp--O 0

_
cp

TABLE 1.

Result

x<r

Relations between g, r, and h Figure

g<h<r,g--h--r, orr<h<g 2

g<h<r,g--h--r, orr<h<g 3

g < r < h, g--- h r, or h < r < g 4a

r < g < h,g--h=r, orh < g < r 4b

r < g or g

_
r 4c

x>r

x<r

x<r

x

_
r g < r < h,g--h--r, orh <r < g 5a

x

_
r r < g < h, gh--r, orh < g < r 5b

x_ r g < tort_< g 5c

The loops are similar to the :[: loops in their behavior. The difference is that
the inequalities go in the opposite directions. Thus the result is always x

_
r, and

again there are three cases for the hidden inequality (Figs. 5a,b,c).

FIG. 5a. Converging case for -- loops.

x_r x--g x_h c<h x--g x>r

FIG. 5b. Diverging case for

__
loops.

FIG. 5c. Contradiction (left) and tautology cases for -[- loops.

For the converging and diverging cases of the loops and -+- loops, we have
ignored the possibility that g r. In this case, we must have h g as for the
loops and = loops. Table 1 summarizes the loop results for reference in subsequent
sections. Note that the directions of the hidden inequality and the resulting inequality
disagree only for diverging loops.

2.2. Pushing guesses through G(S). In Section 2.1, we saw that we could obtain
partial information about the hidden inequality of a given admissible loop by guessing
a value for a variable, "pushing" it around the loop, and examining the result for the
same variable. We now describe how to "push" the guessed value through G(S) in
order to obtain the resulting inequality.

The hidden inequalities that we want to find are those that give the most restric-
tive lower and upper bounds for each variable; all other hidden inequalities are redun-
dant. The algorithm will find the non-redundant hidden inequalities after examining
only a polynomial number of all the hidden inequalities in G(S).

834 BENGT ASPVALL AND YOSSI SHILOACH

Clearly we do not want to "push" a guessed value for x around each admissible
simple loop with initial vertex xthere might be exponentially many. We will instead
"push" the guessed value in a breadth-first way with at most n stages. This allows us
to find a new and more restrictive hidden inequality involving x if one exists.

We call an edge e labeled ay q-bz <_ c a positive edge for y if a 0 and a negative
edge for y if a < 0. Note that the same edge can, for example, be positive for y and
negative for z. Given a lower bound on y, we can derive a bound (lower or upper) on
z using a positive edge for y. We say that the vertex y sends the lower bound on y
over the edge e; the edge transfers this bound on y into a bound on z, which is then
received by the vertex z. Similarly, a negative edge for y can transfer only an upper
bound on y into a bound (lower or upper) on z.

A guessed value g for x will be spread like a rumor through G(S). Whenever a
vertex y = x receives a new and more restrictive lower (or upper) bound, the vertex
y records it as the current lower (or upper) bound on y. In the next stage of the
algorithm, y sends this new bound out over all its positive (or negative) edges.

ALGORITHM 1 (The Grapevine). The input to the algorithm is the graph G(S)
and a guessed value g for x. The algorithm finds the most restrictive lower and upper
bounds on x, which can be obtained from g using admissible loops of length at most n
and with x occurring only as the initial and final vertex. The algorithm stores enough
information so that the loops corresponding to the most restrictive lower and upper
bounds can be reconstructed.
Step 1. [Send guess from x.] Let - 1. Transfer the guessed value g over all edges

incident to x. For each vertex y x, record the most restrictive lower
and upper bounds received on y; record also the edges over which they were
transferred together with the current stage number 1. (If the same bound was
received over several edges, record one of them.)

Step 2. [Termination?] If < n, set - 1 and go to Step 3. Otherwise the
algorithm terminates and returns the current lower and upper bounds on x as
the result.

Step 3. [Stage i.] For each vertex y x, do the following: (a) If the currently most
restrictive lower bound on y was recorded during stage i 1, send it over all
its positive edges. (b) If the currently most restrictive upper bound on y was
recorded during stage i- 1, send it over all its negative edges.

Step 4. [Record new bounds.] For each vertex y, do the following: If a new, and more
restrictive, lower (or upper) bound on y was received during stage i, record it
as the current lower (or upper) bound; record also the edge that transferred
the new bound together with the current stage number i. (If the same bound
was received over several edges, record one of them.) Go to Step 2.

Later we will need to trace the loop that gave the most restrictive lower or upper
bound on x. This can be done simply by tracing the loop backwards. The algorithm
stores for each vertex y the edges over which the lower and upper bounds were received.
Since only a lower (upper) bound on y can have been sent out over a positive (negative)
edge for y, there is no ambiguity between lower and upper bounds when tracing the
loop backwards.

We call an admissible loop P of length at most n, with x occurring only as th.e
initial and final vertex, and with hidden inequality (ap -- bp)x cp a lower loop for
x if bp 0 and an upper loop for x if bp O. Thus a lower loop is either a loop
or a -+- loop, and an upper loop is either a = loop or a loop. Transferring a guess
around a lower loop for x gives a lower bound on x as the result. Similarly, by using

LINEAR INEQUALITIES 835

an upper loop for x, we get an upper bound on x. A lower (resp. an upper) loop for x
is optimal with respect to g if for all other lower (resp. upper) loops P for x we have
(cp, ap,g)/bp,

_
(cp apg)/bp (resp. (cp, ap,g)/bp,

_
(Cp apg)/bp). Note

that an admissible simple loop is either a lower or an upper loop for some vertex. The
proof of the following lemma is straightforward and left to the reader.

LEMMA 2. Algorithm 1 returns no lower (upper) bound on x if no lower (upper)
loop for x exists. Otherwise there exists an optimal lower (upper) loop P for x with
respect to g, and Algorithm 1 returns x >_ r (x <_ r), where r (cp apg)/bp.

2.3. Constructing S* using binary search. In this section, we show how to
construct the extension S* of S without explicitly examining all admissible simple
loops as is done in the construction of S, the Shostak extension of S. In the
construction of S, an exponential number of inequalities involving the variable x may
be added to S. However, all but at most two of these inequalities are redundant. We
define

(6)
xlow max{ hp P is a lower loop for x with hidden inequality x _> hp),
xhigh min{ hp P is an upper loop for x with hidden inequality x <_ hp }.

By using a binary search technique and the results from the two previous sections, we
can compute the values of xlow and xhigh for all vertices x without examining all
admissible simple loops. To obtain the extension S*, we then add, for each variable
x, the two inequalities x

_
xlow and x

_
xhigh to S.

It is now an easy task to construct G(S*) as follows: For each variable x, add
two edges between x and Vo to G(S) and label the edges x

_
xlow and x

_
xhigh

respectively. The graph G(S*) will be a subgraph of G(S’) in the following sense: (a)
There is an edge between x and y (x, y Vo) in G(S*) if and only if there is an edge
between x and y in G(S) with the same label. (b) If e is an edge between x and
Vo in G(S*) with label x

_
c, then there exists an edge e between x and Vo in G(S)

with label x

_
d, where c

_
d. (c) If e is an edge between x and v0 in G(S*) with

label x

_
c, then there exists an edge e between x and v0 in G(S) with label x

_
c,

where c < d.
In order to find the value of xlow, we maintain, for each variable x of S, an inter-

val [xlow, xlow] such that either xlow E [xlow, xlow] or xlow --o. Similarly,
we maintain an interval [xhigh$, xhigh$] such that either xhigh [xhigh+, xhigh$]
or xhigh oe. Initially, the intervals will be set to I--X, X], where X can be com-
puted from the input as explained in Section 4.1. We should stress that the interval
[xmin, xmax] might be nonempty although S is an infeasible system, but at least for
one variable the interval will be empty.

The intervals [xlow, xlow] and [xhigh$, xhigh] will be identical for some num-
ber of steps of the binary search, and we will use Algorithm 2 to chop their joint
interval by at least half in each iteration. If the intervals become non-identical, we
switch to Algorithm 3 and continue the search. The intervals will either be identical
or have at most one point in common. We will always take the midpoint of an interval
as a guess, and we use Algorithm 1 to provide the most restrictive lower and upper
bounds with respect to this guess.

ALGORITHM 2 (Chop Joint Interval). The input to the algorithm is G(S), a
variable x, and an initial bound X such that either xlow I--X, X] or xlow mOe, and
either xhigh [--),, X] or xhigh oe. In each iteration the algorithm chops the joint
interval for xlow and xhigh by at least half. The algorithm terminates when either

836 BENGT ASPVALL AND YOSS1 SHILOACH

an infeasible loop is found or the two intervals [xlow+, xlowT] and [xhigh$, xhighT]
become non-identical. In the latter case xlow$ xhigh$, xlow E [xlow+,xlow$] or
xlow --c, and xhigh [xhigh+, xhigh$] or xhigh
Step 1. [Initialize.] Let xlow$) and xhigh$
Step 2. [Distribute guess.] Let g (xlow+ -+- xhigh$)/2. Use Algorithm 1 to find

x >_ r and x _< rwthe most restrictive lower and upper bounds on x with
respect to g.

Step 3. [Chop or split?] If x_> randr > g, gotoStep4. Otherwise, if x_< rand
r < g, go to Step 5. Otherwise, go to Step 6.

Step 4. [Use lower result.] Trace the loop giving the bound x

_
r > g and compute

its hidden inequality. If x _> h and h > g, let xlow+ h; else if x _< h and
h ,(g, let xhigh$ h; else terminate the algorithm due to an infeasible loop.
Go to Step 2.

Step 5. [Use upper result.] Trace the loop giving the bound x _< r < g and compute
its hidden inequality. If x _< h and h < g, let xhigh$ - h; else if x _> h and
h > g, let xlow$ h; else terminate the algorithm due to an infeasible loop.
Go to Step 2.

Step 6. [Split interval and terminate.] Let xlow$ +- xhigh$ g. Terminate the
algorithm and return the intervals [xlow+, xlow$] and [xhigh$, xhighT] as the
result.

The following lemma will be very important in the proofs of correctness for
Algorithms 2 and 3.

LEMMA 3. The following two statements are equivalent."

(a) Algorithm i returns either x >_ r g or x <_ r g.

(b) In G(S) there exists a lower loop for x with hidden inequality x >_ h g, or an
upper loop for x with hidden inequality x

_
h < g, or an infeasible loop of length

at most n with initial vertex x.

Proof. From the behavior of different classes of loops (Table 1) and Lemma 2, it
is easy to see that (a) implies (b). We will therefore only show that (b) implies (a).

If there exists a lower loop P for x in G(S) with hidden inequality x _> h g,
we know from Table 1 that we can derive either x _> r > g or x _<: r < g from
P. Since Algorithm 1 finds an optimal lower loop P for x with respect to g, either
x >_ r >_ r > g or x <_ r <_ r < g must be returned. The proof for an upper loop
for x is similar.

If there exists an infeasible loop P of length at most n and with initial vertex x,
we know, from the behavior of the contradiction case for loops and -+- loops, that
either x _> r > g or x _< r < g can be derived from P. Since P is either a lower or an
upper loop for x, Algorithm 1 must return either x _> r _> r > g or x _< r _< r < g
by Lemma 2. []

THEOREM 3. In each iteration Algorithm 2 chops the joint interval for xlow and
xhigh by at least half. Algorithm 2 terminates either because an infeasible loop has been
found or the intervals [xlow+, xlow] and [xhigh$, xhigh$] have become non-identical.
In the latter case xlowT xhigh$, xlow [xlow$,xlowT] or xlow --, and
xhigh [xhigh$, xhigh$] or xhigh

Proof. It is easy to see that each time the algorithm returns to Step 2 the interval
[xlow$,xhighT] has been chopped by at least half. Furthermore, the new endpoint
corresponds to a bound on x that has been obtained from a new hidden inequality.
Since the algorithm has to go to Step 2 in each iteration, and since there are only
finitely many lower and upper loops of length at most n in G(S), the algorithm must

LINEAR INEQUALITIES 837

terminate. Clearly, if the algorithm terminates in Step 6, the two intervals for xlow
and xhigh have only one point in common.

Let us now show that if the algorithm terminates in Step 4, then an infeasible
loop has been found. Suppose the algorithm terminates in Step 4 without having
found an infeasible loop. The loop that gave the result x

_
r g must then have

either x :> h g or x

_
h g as its hidden inequality according to Lemma 3. But

in this case we do not terminate the algorithm, so we have a contradiction. The proof
for termination in Step 5 is similar.

Finally, we show that if the algorithm terminates in Step 6, then either xlow E
[xlow, xlow] or xlow --oc. Suppose to the contrary that xlow [xlow$, xlowT]
and xlow --oc. Then either --oc xlow xlow$ or xlow xlow g, where
g is the last guess used in Step 2. By assumption xlow

_
xlow or xlow --oc

after Step 1. The only statements that change xlow$ are xlow h in Steps 4 and
5, and at those points we know that x

_
h. Thus the first case is not possible. If

xlow xlow g there must be a lower loop with hidden inequality x

_
h g.

According to Lemma 3, Algorithm 1 must return either x

_
r g or x

_
r g. But

in this case we do not go to Step 6 from Step 3, so we have a contradiction. Hence
we conclude that xlow [xlow$, xlow] or xlow --oc. We omit the corresponding
proof for xhigh; it is analogous to the one for xlow. F

By using Algorithm 2, we can compute an interval [xlow$, xlow$] such that xlow
[xlowJ, xlow$] or xlow moo, and xhigh

_
xlowT. We now show how to use this

result to compute the correct value of xlow with an iterative technique similar to the
one used in Algorithm 2. The main difference is the termination criterion. Guessing
xlow$, the left endpoint of the interval for xlow, allows us to determine if there exists
a lower loop with hidden inequality x

_
h xlow$. If this is not the case, we can

coalesce the interval [xlow$, xlow$] into the sing!e point xlow$.
The idea behind the termination test is actually the same as the idea for deter-

mining how to chop an interval. If we guess the midpoint of an interval, the derived
inequality tells us whether the interval can be chopped by at least half; if we guess an
endpoint, it tells us whether it can be chopped at all.

ALGORITHM 3 (Chop Lower Interval). The input to the algorithm is the graph
G(S), a variable x, and an interval [xlow,xlow] such that xlow [xlow$,xlow]
or xlow --oc. Furthermore, xlow

_
xhigh is assumed. In each iteration, the

algorithm chops the interval [xlow, xlow] by at least half. The algorithm terminates
if either an infeasible loop is found or xlow is determined to be either xlow xlow
or xlow- --oc. In the latter case the point xlow is returned.
Step 1. [Chop or coalesce interval?] Let g - xlow. Use Algorithm 1 to find x

_
r

and x

_
r--the most restrictive lower and upper bounds on x with respect

tog. Ifx_randr g, orx_randr g, gotoStep3.
Step 2. [Coalesce interval and terminate.] Terminate the algorithm and return xlow$

as the result.
Step 3. [New guess.] Let g (xlow$ xlow)/2. Use Algorithm 1 to find x

_
r and

x r--the most restrictive lower and upper bounds on x with respect to g.
Step 4. [Which end to chop?] If x :> r and r g, go to Step 5. Otherwise, if x

_
r

and r g, go to Step 6. Otherwise, set xlow g and go to Step 3.
Step 5. [Use lower result.] Trace the loop giving the bound x

_
r > g and compute

its hidden inequality. If x :> h and h g, let xlow. h and go to Step 1.
Otherwise, terminate the algorithm due to an infeasible loop.

Step 6. [Use upper result.] Trace the loop giving the bound x

_
r g and compute

838 BENGT ASPVALL AND YOSSI SHILOACH

its hidden inequality. If x _> h and h > g, let xlow h and go to Step 1.

Otherwise, terminate the algorithm due to an infeasible loop.
LEMMA 4. Algorithm 3 terminates," furthermore, in each iteration the interval

[xlow, xlow] is chopped by at least half.
Proof. The test in Step 1 guarantees (according to Lemma 3 and the assumption

that xhigh >_ xlow) that whenever we get to Step 3 there exists either a lower
loop for x with hidden inequality x

_
h > xlow$ or an infeasible loop of length at

most n with initial vertex x. If there is an infeasible loop or h is in the right half
of [xlow$,xlow], this will be detected in Step 4 (according to Lemma 3), and the
algorithm will proceed to Step 5 or 6. Otherwise the right half of [xlow$, xlow] will
be chopped, and the algorithm will return to Step 3. Thus h must fall in the right half
of [xlow$, xlow] after finitely many executions of Steps 3 and 4, and the algorithm
will proceed to Step 5 or 6.

To show that Algorithm 3 terminates, it remains to be shown that it cannot return
to Step 1 infinitely many times. It is easy to see that each time the algorithm returns
to Step 1, the interval [xlow$, xlow] has been chopped by at least half. Furthermore,
the new left endpoint corresponds to a bound on x that has been obtained from a
new hidden inequality. Since there are only finitely many lower loops in G(S), the
algorithm must terminate.

THEOREM 4. !f there exist an infeasible loop of length at most n with initial vertex x
in G(S), then Algorithm 3 finds one and terminates. Otherwise the algorithm terminates
and returns xlow$ such that either xlow xlow$ or xlow

Proof. From Lemma 4, we know that Algorithm 3 terminates. Let us first show
that if the algorithm terminates in Step 5, an infeasible loop has been found. Suppose
the algorithm terminates in Step 5 without having found an infeasible loop. The loop
that gave the result x _> r g must then have either x _< h < g or x _> h g as
its hidden inequality according to Lemma 3. By assumption xlow$ <_ xhigh at the
beginning of the algorithm and xlowT is never increased, so x _< h < g cannot be the
case. If x _> h > g is the case in Step 5, we do not terminate the algorithm. Hence
we have a contradiction. Termination in Step 6 is handled similarly.

We now show that if there exists an infeasible loop of length at most n with initial
vertex x, then the algorithm terminates in Step 5 or 6. Suppose to the contrary that
the algorithm terminates in Step 2 despite the fact that such a loop exists. Let g be
the last guess used in Step 1. Lemma 3 tells us that Algorithm 1 must return either
x _> r > g or x _< r < g in Step 1. But if this is the case, we do not go to Step 2.
Hence we have a contradiction.

It remains to be shown that if the algorithm terminates in Step 2, then either
zlow xlow$ or xlow --c. In order to prove this, we need the following claim,
which is proved below.

Whenever the algorithm gets to Step 1, we have either xlow E [xlow$, xlowT] or
xlow

Let us assume that the algorithm terminates in Step 2, but neither xlow xlow$ nor
xlow --oc is true. From the claim above, we conclude that xlow xlow g,
where g is the last guess used in Step 1. Thus there must be a lower loop P for x with
hidden inequality x

_
h g. Algorithm 1 would therefore, according to Lemma 3,

return eitherx

_
r gor x r gin Step 1. But in this case we do not go to

Step 2, so we have a contradiction.

Proof of claim. By assumption, the claim is true the first time the algorithm
reaches Step 1. Suppose the claim is violated for the first time when the algorithm

LINEAR INEQUALITIES 839

returns to Step 1 the ith time. Then either --oc xlow xlow or xlow xlow.
The only statements that change xlow are xlow$ - h in Steps 5 and 6. At those
points we know that x

_
h, so the first case is not possible. Thus xlow xlow,

which implies that there exists a lower loop P for x with hidden inequality x
xlow. Hence xlow must have been erroneously changed since the previous execution
of Step 1. The only statement that changes xlow is xlow - g in Step 4, where
g is the last guess used in Step 3. From existence of the lower loop P with hidden
inequality x

_
h xlow g, we know that Algorithm 1 must (according to Lemma

3) return either x

_
r g or x

_
r :> g as the result in Step 3. But then we would

not change xlowT in Step 4, so we have a contradiction.
After using Algorithm 3, we know that either xlow xlow$ or xlow

but we do not know which alternative is the true one. However, if), is sufficiently
large, so that initially xlow --oc or xlow E (--),)), then xlow --oc if and only
if xlow$

We now know how to compute the correct value of xlow. The algorithm for
computing xhigh is almost identical to AJgorithm 3 and is therefore omitted. Given
the values of xlow and xhigh for each variable x of S, we can construct the extension
S* and the graph G(S*) as described at the beginning of this section.

3. The LI(2)-algorithm. The LI(2)-Algorithm is presented and proved to be
correct in this chapter. We start by showing that the Shostak extension S is a closure
of S. In Section 3.1, we also show that [xmin(n), xmax(n)] [xmin, xmax] for G(S).
In Section 3.2, we use these results to show that the extension S* is a closure of S and
that [xmin(n), xmax(n)] [xmin, xmax] holds for G(S*). This allows us to present
the polynomial algorithm for LI(2).

3.1. The Shostak extension S is a closure of S. In this section, we show that
S’ is a closure of S and that [xmin(n),xmax(n)] [xmin, xmax] for G(S). If an
infeasible simple loop in G(S) is found during the construction of S, we know that S
is unsatisfiable (Theorem 1) and define [xmin(n), xmax(n)] to be equal to the empty
set O. The following lemma is immediate from the proof of Theorem 1.

LEMMA 5 (Shostak). Let xmin and xmax be defined with respect to G(S), let x
be any variable in S, and let be any value such that [xmin, xmax]. The system
of inequalities S is satisfiable if and only if S [.J{x

_ , x

_
} (i.e., S with x) is

satisfiable.
We call an algorithm for LI(2) constructive if it supplies a feasible vector when-

ever the system of inequalities is satisfiable. Lemma 5 does not directly lead to a
constructive algorithm for LI(2). We now give three preliminary lemmas that allow
us to prove Lemma 9--the constructive version of Lemma 5.

LEMMA 6. Let S be satisfiable. The Shostak extension S is a closure of S.
Proof. In order to establish the lemma, we have to prove that S and S are

equivalent systems and that G(S’) is closed for S. From Lemma i and the construction
of the extension S’, it is easy to see that S and S are equivalent.

From Lemma 5, we have [xmin, xmax] C_ Z(S). Thus G(S’)is closed for S’
if we can show that Z(S) [xmin, xmax]. Let Z(S). If xmin --oc, then
obviously

_
xmin. If xmin --oc, we know from the way S is constructed that

the inequality x

_
xmin can be derived from S and that therefore any solution must

satisfy it. Thus

_
xmin. In the same way, we can show that _(xmax; hence

Z (S) C_ [xmin, xmax]. [2

LEMMA 7. If there is an admissible path P from Vo to x in G(S), there is an

840 BENGT ASPVALL AND YOSSI SHILOACH

admissible simple path Q from vo to x in G(S’) such that the sign of bQ agrees with the
sign of bp.

Proof. Given bp, let Q be a shortest admissible path from Vo to x in G(S) such
that the sign of bQ agrees with the sign of bp. We claim that Q is simple. Suppose to
the contrary that Q is not simple. By the admissibility of Q, the intermediate vertices
of Q are distinct from v0. Thus Q can be expressed as Q1Q.Qa, the concatenation
of three admissible paths Q1, Q2, and Q3, where Q. is a simple loop. Let (ai, bi, ci),
1 _(i _(3, be the residues of the three paths and let laQ, bQ, CQ) be the residue of Q.
We have two cases to consider, depending on whether Q is permutable.

(a) If Q. is permutable, then a.b. 0 (i.e., a. and b are of opposite signs). Since
Q is admissible this implies that bla3 O, so Q-- Q1Q3 is also admissible. Let
atx bty (_ ct be the inequality labelling the last edge of Q and recall that the
signs of bQ and b agree. Since ax by <_ c also labels the last edge of Q,
the signs of bQ and bQ, agree, which contradicts the choice of Q as a shortest
admissible path.

(b) If Q2 is not permutable, then a2b: O. By the definition of S, there exists an
edge e labelled (a2 -+-b2)y <_ c2 from Vo to y in G(S’), where y is the initial vertex
of Q2. Since Q is admissibile, we have ba3 O, which implies that Q eQ3
is-also admissible. The two paths Q and Q both end with the same edge, so the
signs of bQ and bQ, agree. Thus, we have again a contradiction to the choice of
the path Q.
LEMMA 8. If G(S) has no infeasible simple loops, then xmin(n) xmin and

xmax(n) xmax for each variable x.

Proof. We show that xmin(n) xmin; the proof of the other case is similar.
Trivially, xmin(n) <_ xmin; it remains to be shown that xmin() >_ xmin. If there is
no admissible path from Vo to x in G(S) with bp O, then xmin xmin()

Let us therefore assume that such paths exist and let P be one for which cp/bp
xmin. According to Lemma 7, there exists an admissible path Q of length at most n
from v0 to x in G(S) such that the signs of bp and bQ agree. Let Q be one for which
CQ /bQ xmin(n).

Add a new edge e between x and Vo to G(S) and label the new edge x <_ xmin().
The only admissible loops of length at most n formed by adding this edge are of the
form Qe (or eQ), where Q is an admissible path of length at most n--1 from Vo to x
with bQ, < 0. From the edge e, we have x <_ xmin(n) CQ/bQ; from the path Q, we
have x >_ CQ,/bQ,, where CQ/bQ >_ cq,/bQ, by the definition of Q and Q. This implies
that the hidden inequality 0 _< CQ/bQ- CQ,/bQ, of Qe is a tautology. By assumption
G(S) did not contain any infeasible simple loops, and adding the edge e did not
introduce any; thus the modified graph has no infeasible simple loops. It follows from
Theorem 1 and Lemma 1 that x <_ xmin(n) CQ/bQ and x >_ xmin cp/bp must
be satisfiable simultaneously. We therefore have xmin <_ xmin(n).

LEMMA 9. Let S be the Shostak extension of S. If S is satisfiable, then we have
[xmin(n),xmax(n)] X(S) for each variable x; otherwise, there exists a variable x
such that [xmin(n), xmax(n)])((S) O.

Proof. From Lemmas 6 and 8 it follows that this lemma is true when G(S) has
no infeasible simple loops, so let us assume that G(S) has an infeasible simple loop
P. Thus S is unsatisfiable (Theorem 1) and therefore X(S) O. We have two cases
to consider depending on whether the initial vertex of P is v0. If it is, then there
exists a vertex x such that x >_ xmin(n), x <_ xmax(n), and xmin(n) xmax();
thus [xmin(n), xmax(n)] O. Otherwise, G(S) has an infeasible simple loop and by

LINEAR INEQUALITIES 841

definition [xmin(n), xmax(n)] . [2

3.2. Constructing a solution. We will now show how to compute xmin(n) and
xmax() from the graph G(S*) and how to use them to construct a feasible solution
assuming that one exists. If the system of inequalities S is unsatisfiable, then no
feasible vector exists and we will detect that during our construction. Before we
describe the algorithm, we need the following theorem.

THEOREM 5. Let xmin(n) and xmax(n) be defined with respect to G(S*). If S is
satisfiable, then [xmin(n), xmax(n)] Z(S) for each variable x; otherwise, there exists
a variable x such that [xmin(n), zmax(n)] Z(S) .

Proof. From Lemma 1 and the construction of the extension G(S*), it is easy to
see that S* and S are equivalent systems.

From the definition (6) of xlow and xhigh, we see that the inequalities x

_
xlow

and x (_ xhigh are as restrictive as any hidden inequality of an admissible simple loop.
Thus the inequalities added to S in the construction of S* are at least as restrictive as
those added to S in the construction of St. Hence, if xmin(n) and xmax(n) are defined
with respect to G(S*), then [xmin(), xmax()] is a subinterval of the corresponding
interval defined with respect to G(St). But x

_
xmin(n) and x (_ xmax(n) can be

derived from S*, so they must clearly be satisfied in any feasible solution. The theorem
thus follows from Lemma 9. [2

In the algorithms presented in Chapter 2, the auxiliary zero variable v0 has never
had any significance since it always occurs with zero coefficient. Thus all inequalities
in S with only one variable have been ignored so far. Now is the time for Vo to play
its role.

The algorithm to compute xmin() and xmax() will be quite similar to Algorithm
1. It works on G(S*) instead of G(S). The algorithm starts by sending the guess
Vo 0 (any other value will do) from v0 and recording the most restrictive lower and
upper bounds received at vertices adjacent to Co. What this intuitively means is the
following" If x is adjacent to Co, the lower (or upper) bound on x received is the most
restrictive lower (or upper) bound obtained from the original inequalities with only one
variable and from the inequality x

_
xlow (or x (_ xhigh) added in the construction

of G(S*). The algorithm then proceeds to transfer new and more restrictive bounds
on variables other than v0 in a breadth-first way with n stages.

ALGORITHM 4 (The Projector). The input to the algorithm is the graph G(S*).
The algorithm finds xmin() and xmax(n) for each variable x v0.
Step 1. [Send guess from Vo.] Let i +- 1. Transfer the value g 0 over all edges

incident to v0. For each vertex x Co, record the most restrictive lower and
upper bounds received on x.

Step 2. [Termination?] If n, set i - i 1 and go to Step 3. Otherwise, the
algorithm terminates and returns for each variable x v0 the current lower
and upper bound on x as the result.

Step 3. [Stage i.] For each vertex x Vo do the following: (a) If the currently most
restrictive lower bound on x was recorded during stage i- 1, send it over all
its positive edges. (b) If the currently most restrictive upper bound on x was
recorded during stage i 1, send it over all its negative edges. (c) Record
new, and more restrictive, bounds on x. Go to Step 2. [2

LEMMA 10. Algorithm computes xmin(n) and xmax(n) for each variable x Co.
The proof of Lemma 10 is essentially the same as the proof of Lemma 2 and is

omitted. Having found the values of xmin() and xmax(), we can use Theorem 5 to
construct a feasible solution if one exists. The theorem and the definition of Z(S) tell

842 BENGT ASPVALL AND YOSSI SHILOACH

us that if x is any variable of S and is any value such that E [xmin(n), xmax(n)],
then S is satisfiable if and only SJ{x _< ,x _> } is satisfiable. Adding the two
inequalities x _< and x _> forces x to be equal to in any solution, so we have the
following constructive algorithm to decide whether S is satisfiable.

ALGORITHM 5 (LI(2)-Algorithm). The input to the algorithm is the system of
inequalities S. The algorithm determines whether S is satisfiable. If S is satisfiable,
the algorithm supplies a feasible vector.
Step 1. [Construct G(S).] Construct the graph G(S) for S as described in Section 1.2.

Compute), from S as described in Section 4.1. Mark all variables unassigned.
Step 2. [Construct S*.] Use Algorithms 1, 2, and 3 to compute xlow and xhigh for

each variable x v0. Add the corresponding inequalities x
xhigh to S.

Step 3. [Construct G(S*).] For each variable x v0, add two edges between x and

v0 to G(S) and label the edges x >_ xlow and x <_ xhigh respectively.
Step 4. [Compute Z(S).] Use Algorithm 4 to compute [xmin(n),xmax(n)] for each

variable x v0.
Step 5. [Terminate?] If all variables are marked assigned, terminate the algorithm

and return the constructed feasible vector. Otherwise, let x be any variable
marked unassigned.

Step 6. [Assign value to x.] If the interval [xmin(n), xmax(n)] is empty, terminate the
algorithm and return unsatisfiable. Otherwise, mark x assigned and let x
where E [xmin(n), xmax(n)].

Step 7. [Reduce the system.] Add two edges between x and Vo to G(S*) and label the
edges x _> and x _< respectively. Go to Step 4.

4. Complexity. In this chapter we analyze the complexity of the LI(2)-Algorithm.
We first show how to compute), which is needed as an initial bound in the algorithm
and also enters into the analysis. In the same section, we show that the algorithm
runs in O(mn3]II) time on a random access machine, where III is the input size. We
then turn to the Turing machine model in Section 4.2 and show that the algorithm is
also polynomial time on a Turing machine.

4.1. Random access machine model. In this section we show that the LI(2)-
Algorithm runs in polynomial time on a random access machine. We start by showing
how to compute), which is needed in the algorithm and also enters into the complexity
analysis.

Let I denote an instance of LI(2), and let III be the length of the string encoding
I. Let a be the largest absolute value of an integer used to represent the rational
coefficients in the input. Clearly, log2 <

We will now determine) such that either xlow
(the reason for dividing by two will be explained below). If xlow (--)/2,)/2), then
by (6) there exists a lower loop P for x with hidden inequality x >_ hp Cp/(ap--bp).
Since a lower loop is of length at most n, it follows from (3), the definition of a, and
the fact thai the coefficients are rational numbers that ap 0 or --n

_
lapi

_
n,

bp 0 or a--n <_ ibpi

_
En, and Cp 0 or E-3n ICpI

__
nan. Since ap--bp O,

we have a--2n _< laP

__
bp 21n. Thus, --4n/2 <_]hpI---]Cp/(ap--bp)

_
n3n

if hp O. Let) 3na3n; we have either xlow
Obviously, either xhigh (--),/2,)/2) or xhigh oc for the same choice of).

From the previous chapters, we know that the LI(2)-Algorithm terminates, but
we do not know how many iterations are performed in Algorithms 2 and 3. We now

LINEAR INEQUALITIES 843

bound the total number of iterations in the two algorithms. Let x

_
h cp/(ap--bp)

and x

_
h Cp,/(ap,--bp,) be the hidden inequalities of two lower loops for x. By

using our previous bounds on ap, bp, and cp (again together with the fact that they
are rational numbers), we find that h and h must be equal if Ih- hl (-4n/2)2.
Clearly, this argument does not depend on the fact that we have two lower loops--it
holds as well for two upper loops, or one upper and one lower loop. Let
If h and h correspond to lower and/or upper loops for some variable, then h h
implies Ih- h’

_
e.

We know that in each iteration of Algorithm 2 the joint interval for xlow and
xhigh is chopped by at least half and that the new endpoint is obtained from a hidden
inequality of a lower or an upper loop. Thus, if the interval is of size less than e, the
algorithm must terminate. Initially the interval is of size 2X, so the maximum number
of iterations in Algorithm 2 is [log2(2X/)l O(log n + n log)

Let us now turn to Algorithm 3. From Lemma 4, we know that each time
Algorithm 3 returns to Step 3 the interval [xlow$,xlow$] has been chopped by at
least half and that there exists a hidden inequality x

_
h with h xlow$. We also

know that xlow$ has been obtained from a hidden inequality of a lower loop for
unless xlow$ --X. By the choice of X, we can only have xlow$ --X the first time
the algorithm gets to Step 3. This follows since initially the interval [xlow$, xlow$] is
of size at most X. Therefore g (xlow$ - xlow)/2

_
--)/2 in Step 3 if xlow$

--X. By definition h --X/2. Thus h lies in the right half of [xlow,, xlowT], and
xlow, ,-- h will be executed in Step 5 or 6 during the first iteration.

We conclude that Algorithm 3 returns to Step 3 at most Ilog.()/e))l O(log n
nloga) O(nllI) times; the same bound holds when computing xhigh. Thus the
total number of iterations to compute xlow and xhigh is at most O(n II). It is
straightforward to see that Algorithm 1 takes O(mn) time to perform the n stages
of the breadth-first pushing of the guess. For both Algorithms 2 and 3 the amount
of work in each iteration is dominated by the call of Algorithm 1. Hence the time to
compute xlow and xhigh is at most

Let us now bound the amount of time necessary to reduce the number of variables
by one using Algorithm 5. The time to construct the graph G(S) from S is O(m - n).
Since there are n different variables the total time to compute xlow and xhigh for all
variables x (i.e., to find S*)is O(mn31II). We can then construct G(S*) from G(S)in
O(n) time. To compute xmin(n) and xmin(’) for each variable x requires one call of
Algorithm 4, which is of complexity O(mn) (the same as Algorithm 1). The remaining
steps of Algorithm 5 take O(m n) time, so the total time to reduce the number of
variables by one is at most O(mn31II). Since the construction of the extension S* only
has to be done once and the total contribution to the running time from the other
steps is O(mn2), we have the following theorem.

THEOREM 6. The time complexity of the LI(2)-Algorithm is O(mn3]II) on a
random access machine with uniform cost criterion.

4.2. Turing machine model. Since the Turing machine model is polynomially
related to the RAM model under the logarithmic cost criterion, we will start by
examining the complexity of the algorithm on a RAM under logarithmic cost. In order
to simplify the discussion, we assume that all the coefficients in the input are integers;
otherwise, we multiply through by their least common denominator
We will also make one assumption on the way we choose E [xmin(n), xmax(n)] in
Step 7 of the LI(2)-Algorithm. Let be a finite endpoint of [xmin(), xmax()] if one
exists; otherwise, let 0. (Without any restriction, one could choose a value that

844 BENGT ASPVALL AND YOSSI SHILOACH

requires an exponential number of bits to represent.)
The number of memory cells required by the LI(2)-Algorithm on a RAM is at

most O(m n), where the non-linear term comes from Step 4 of Algorithm 1. We
will now bound the size of the numbers that can occur. It is enough to consider
results from operations involving multiplication. From (3) it follows that ap, bp, and
cp are integers if the coefficients in the input are integers. Since we only consider
paths of length at most n in the algorithm, we know that ap, bp, and Cp are bounded
in magnitude by nn. Thus the bounds on the variables obtained from lower or

upper loops can be represented as pairs of integers whose magnitudes are bounded
by nn. The only other intermediate results obtained using multiplications are the
bounds resulting from guesses in Algorithm 1 and in Algorithm 4. A guessed value
can always be represented by a pair of integers whose magnitudes are bounded by
),. It is easily seen that the results obtained can be represented as pairs of integers
whose magnitudes are bounded by nn)x. We conclude that all operands are of size

O(logm+lognn log +log ,log-) O(nlII) bits. Thus the LI(2)-Algorithm runs
in polynomial time on a RAM under the logarithmic cost criterion, and by Theorem 2
we have the following theorem.

THEOREM 7. The time complexity of the LI(2)-Algorithm is polynomial in the size

of the input on a Turing machine.

5. Conclusions. We have presented a new technique for tackling the LI(2) prob-
lem. As we have pointed out, extending our method to systems of linear inequalities
with three variables per inequality will yield an algorithm for LP. Therefore this ex-
tension is apt to be quite hard to find. Another possible extension is to allow a fixed
number of inequalities with more than two variables.

Our main concern has been that the algorithm runs in polynomial time, so we
have not mentioned several short-cuts that can reduce the practical running time.
One of them is to use inequalities of the forms x

_
c and x _(ct, which are given

in the system S, as initial bounds for xlow$ and xhigh$ instead of the theoretically
derived)x. Other modifications that make the algorithm more practical and reduce
the time bound to O(rnnlII) are discussed in [2]. For example, it is possible to avoid
computing xlow and xhigh and instead compute xmin and xmax directly using an
iterative method similar to the one presented in this paper. One advantage of this
approach is that a value E [xmin$,xmax$] can be substituted for the variable x
without first having to compute the exact values of xmin and xmax.

Recently, Leonid Khachiyan has determined the complexity of the LI problem
by presenting a polynomial time algorithm [6]. His algorithm is based on the method
of shrinking ellipsoids by Shor [12], [13] and Judin and Nemirovskii [5]. In the worst
case, Khachiyan’s algorithm requires O(n3(m n2)I) arithmetic operations (, --,, /, and v/-); each operation is carried out to O(nI) bits of accuracy. Khachiyan’s
algorithm is a beautiful theoretical discovery; however, early reports indicate that it
is not a practical algorithm.

Although the LI(2) algorithm and Khachiyan’s algorithm use different approaches,
they are both iterative methods using the fact that the input coefficients are rational
numbers. (For the LI(2) algorithm, this fact is used only to establish the time bound
and not validity; i.e., the algorithm is valid in exact real arithmetic). This means that a
solution vector cannot have arbitrarily large entries (unless they are unbounded); com-
pare) in the presented algorithm with Khachiyan’s initial hypersphere. Furthermore,
the rational coefficients add a certain "discreteness" to the problem; compare e with
Khachiyan’s lower bound on the volume of the solution space.

LINEAR INEQUALITIES 845

REFERENCES

[1] A. V. AHO, J. E. HOPCIOFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] B. ASPVALL, Efficient algorithms for certain satisfiability and linear programming problems,
Ph. D. dissertation, Dept. of Computer Science, Stanford University, 1980.

[3] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, W. H. Freeman and
Company, San Francisco, 1979.

[4] A. ITAI, Two-commodity flow, J. Assoc. Comput. Mach., 25 (1978), pp. 596-611.
[5] D. S. JUDIN AND A. S. NEMIROVSKII, Informational complexity and effective methods for the

solution of convex extremal problems, Ekonomika Matematicheskie Metody, 12 (1976),
pp. 357-369; [English translation in Matekon: Translations of Russian and East European
Matematical Economics, 13:3 (1977), 25-45].

[6] L. G. KHACHIYAN, A polynomial algorithm in linear programming, Doklady AkademiFa Nauk
SSSR Novaia Serii’a, 244 (1979), pp. 1093-1096 [English translation in Soviet Mathematics
Doklady, 20 (1979), pp. 191-194].

[7] C. G. NELSON, An nlgn algorithm for the two-variable-per-constraint linear programming
satisfiability problem, Technical Report AIM-319, Dept. of Computer Science, Stanford
University, 1978.

[8] C. G. NELSON AND D. C. OPPEN, Simplification by cooperating decision procedures, ACM
Transactions on Programming Systems and Languages, (1979), pp. 245-257.

[9] D. C. OPPEN, Convexity, Complexity, and Combinations of Theories, Theoret. Comput. Sci.,
to appear.

[10] V. R. PRATT, TwO easy theories whose combination is hard, unpublished manuscript (1977).
[11] S. P. REISS AND D. P. DOBKIN, The complexity of linear programming, Theoret. Comput.

Sci., 11 (1980), pp. 1-18.

[12] N. Z. SHOR, Convergence rate of the gradient descent method with dilatation of the space,
Kibernetika, No. 2 (1970), pp. 80-85 [English translation in Cybernetics, 6 (1970), pp. 102-

108].
[13] N. Z. SHOR, Cut-off method with space eztension in convez programming problems,

Kibernetika, No. 1 (1977), pp. 94-95 [English translation in Cybernetics, 13 (1977), pp.

94-961
[14] R. SHOSTAK, Deciding linear inequalities by computing loop residues, Proe. Fourth Workshop

on Automatic Deduction, Austin, Texas, 1979, pp. 81-89; J. Assoc. Comput. Maeh., to
appear.

SIAM J. COMPUT.

Vol. 9, No. 4, November 1980
(C) 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0902-0015501.00/0

ORTHOGONAL PACKINGS IN TWO DIMENSIONS*

BRENDA S. BAKERt, E. G. COFFMAN, JR. AriD RONALD L. RIVEST

Abstract. We consider problems of packing an arbitrary collection of rectangular pieces into an
open-ended, rectangular bin so as to minimize the height achieved by any piece. This problem has
numerous applications in operations research and studies of computer operation. We devise efficient
approximation algorithms, study their limitations, and derive worst-case bounds on the performance of the
packings they produce.

Key words, two-dimensional packing, bin packing, resource constrained scheduling

1. Introduction. Efficiently packing sets of rectangular figures into a given rectan-
gular area is a problem with widespread application in operations research. Thus, one
is inclined to attribute the scarcity of results on this problem, and others of its type, to
inherent difficulty rather than to lack of importance. Motivated by the intractability
of these problems, we define and analyze certain approximation algorithms. These
algorithms are natural in the sense that they would probably be among the first to
occur to anyone wishing to design simple, fast procedures for determining easily
computed packings. The analysis of these algorithms leads to bounds on the perfor-
mance of approximate packings relative to the best achievable.

In the remainder of this section we define the model to be studied and introduce
notation. At that point we examine in more detail the applications which are served
by the model, and we review the literature bearing on this and similar models. In 2
the main results of the paper are presented and proved. Concluding remarks and a
discussion of open problems are given in 3.

As illustrated in Fig, 1, we consider an "open-ended" rectangle, R, of width w
and a collection of rectangles, also called pieces, organized into a list L--
(Pl,P2,’" ", Pn). Each piece is defined by an ordered pair pi=(xi,Yi),l <i<=n, corre-
sponding to the horizontal (xi) and vertical (Yi) dimensions of the rectangle.

We are concerned with the packing or assignment of the pieces in L into R so as
to minimize the height, h, of the packing; i.e., the maximum height, measured from
the bottom edge of R, of the space occupied by any piece in the packing (see Fig. 1).
In addition to the implicit requirement that the spaces occupied by distinct pieces be
disjoint, we restrict attention to packings that are orthogonal and oriented. An
orthogonal packing is one in which every edge of every rectangle is parallel to either
the bottom edge or the vertical edges of R. An orthogonal packing is also oriented if
the rectangles are regarded strictly as ordered pairs; i.e., a rectangle (xi,yi) must be
packed in such a way that the edges of length x are parallel to the bottom edge of R.
Thus, rotations of 90 (which preserve orthogonality) are not allowed.

Returning to applications we see that our model applies to industrial or commer-
cial situations in which objects are to be packed on floors, shelves, truck beds, etc.,
where concern is limited to the objects in two prespecified dimensions. Another
important application concerns systems containing a shared resource. A prime exam-

*Received by the editors July 3, 1978, and in final form March 28, 1980.
Bell Laboratories, Murray Hill, New Jersey 07974.
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.

846

ORTHOGONAL PACKINGS IN TWO DIMENSIONS 847

pie is the main memory resource in multiprogrammed computer systems. In such
systems a number of tasks compete for a resource which they can share, but only
within the limit provided by the total amount of resource available.

This application of the model was defined almost 20 years ago by E. F. Codd [1]
in a study of multiprogramming systems. More recently, Garey and Graham [2]
considered a related problem oriented to multiprocessor systems. In their study
arbitrary numbers of processors and additional resources were considered. The
analysis focused on worst-case bounds on the ratios of schedule-lengths (packing
heights) for arbitrary lists; approximation algorithms were not considered. Moreover,
the model of resources is basically different: Whenever an amount of the resource is
available, no matter how it is configured, it can be used to satisfy any demand no
greater than this amount; i.e., fragmentation of the resource is not a consideration.

Little else appears to have been published which bears on the packing problem
we have defined. Erd6s and Graham [3] have shown that orthogonal packings of
squares into rectangles are not always optimum; i.e., there exist examples for which all
orthogonal packings have greater height than the minimum achievable by exploiting
the ability to rotate the squares. Based on earlier work of Meir and Moser [6],
Kleitman and Krieger have considered the problem of finding a smallest rectangle
into which a collection of squares can be packed [4], [5]. Specifically, they prove that a

V 2/ rectangle is always sufficient to pack a set of squares whose cumulative
area is unity, and that no rectangle of smaller area can have this property.

Even when xi=xj for all and j, our packing problem is intractable; it can be
shown that it becomes the NP-complete make-span minimization problem [7]. Hence,
we are moved to consider fast heuristics and how closely the packings they produce
approach optimum packings. For this purpose we define the following class of
packing algorithms, to be called bottom-up left-justified (or simply BL) algorithms.
(Recall that pieces must be packed so as to preserve oriented, orthogonal packings.)
Each such algorithm packs the pieces one at a time as they are drawn in sequence
from the list L. When a piece is packed into R it is first placed into the lowest possible
location, and then it is left-justified at this vertical position in R. In the sequel R will
also be referred to as a bin.

Fig. shows a BL packing. Note that from a combinatorial point of view our
problem remains essentially unchanged if we replace left-justification by right-
justification and consider BR packings instead. Note also that two BL algorithms
differ only in the ordering of L.

Pl

P3

P2

L=(pl,P2,Pa,P4,Ps)

x1:381141
y:64435

FIG 1. Two-dimensional packing.

848 B.S. BAKER, E. G. COFFMAN AND R. L. RIVEST

2. Pedormance bounds for BL packings. We shall see that the basic BL algorithm,
using a poorly ordered list L, can perform arbitrarily badly relative to an optimization
algorithm. Thus, it is natural to inquire about the improvement possible by ordering L
on the basis of some simple measure of piece size. Some obvious orderings to consider
are increasing height, decreasing height, increasing width, and decreasing width. With
the proper ordering the improvement can indeed be striking, as we shall see. However,
with a badly chosen ordering, we can be just as poorly off as before. In particular, this
will be true if we order pieces by increasing width (or decreasing height).

As a matter or notation let hBL and hopa. denote the respective heights of a BL
and optimum packing of a list L which will always be clear by context.

THEOREM 1. For any M> O, there exists a list ofpieces ordered by increasing width
such that hBL/hoPT > M.

Proof. We shall define a class of lists which proves this result. First, let k__> 2 be
given and define ri=max(mli=--O mod kin), i>0. Thus, ri= if is a multiple of 4 but
not 16, r 2 if is a multiple of 16 but not 64, r 3 if is a multiple of 64 but not 256,
etc.; ri =0 if is not a multiple of 4.

Let the bin width be w= kk and let s=kk- 1. Rectangles are packed in the order
given. Along the bottom row we pack k k unit-width pieces, the ith of which has height
1- re, where e is much smaller than 1. The remaining rectangles all have unit height
but widths in the order given by

s of width

s/k of width

s/k 2 of width

’/k-l-- Of width k

(the second row)

(the third row)

(the fourth row)

(the k + 1)st row).

Since r,. =0 for not a multiple of k, one obtains the "notching" structure
illustrated in the first row of Fig. 2; i.e., every k th piece is lower than the intervening
k-1 pieces of unit height. Thus, the s=kk-1 unit squares of the second row are
placed on top of every k th piece of the first row. Now every k th piece of the second
row corresponds to every (k2)th piece of the first row and reaches a height at most
2-2e which is less than that of the intervening k-1 pieces of the second row, all at
height 2-e. Thus, the third row left-justifies pieces of width k over each of the lower
pieces of the second row. Note that a width exceeding k-1 is necessary so that the
piece width exceeds the width of spaces in the second row.

A similar pattern applies to the heights reached in the third row: The height
reached by every kth piece is determined by that of every (k3)th piece of the first
row. Thus, in the third row every k th piece achieves a height at most 3- 3e while the
remaining pieces all achieve a height of 3-2e. It follows that the fourth row
left-justifies pieces of width k 2 over each of the lower pieces of the third row. In
general, then, the spaces in the (j+ 1)st row (j__> 1) all have width kJ(k 1), the s/kj

pieces have width kj, and every kth piece reaches a height less than the others. Thus,
when the next s/kj/ pieces of width ky+ are added, they are placed on top of every

ORTHOGONAL PACKINGS IN TWO DIMENSIONS 849

/f kx

i/I’/(/ / / /l,l
I I 1 , I

Fo 2,

1X (1- rie)

The increasing widths example.

kth piece in the (j+ 1)st row and each abuts the piece to the left in the (j+ 1)st row.
Overall, the pattern looks like Fig. 2, drawn for k =4. (Distinctions of O(e) are not all
represented, because of scaling.)

Since there are k+ rows, we see that haL=k+ 1-O(ke). But a different packing
can be found which packs rows 2 through k + into one row of height 1. (Note that
the sum of widths of all pieces in rows 2 through k+ is kk-x +kk-2xk+ +
kk-l=kk=w.) Therefore, an optimum packing has a height not exceeding 2.
Hence, we obtain a BL packing at least k/2 times higher than an optimum packing.
Since k is arbitrary, the result follows. [--]

A dramatic improvement in the performance of BL packings is obtained when
the list of rectangles is ordered by decreasing width. In fact, the ratio of BL to
optimum packing height is guaranteed to be no worse than 3 when L is in decreasing
order by width. For the case of squares, where decreasing width is equivalent to
decreasing height, the bound is further reduced to 2. First, we shall show that the
bounds of 3 and 2 can be approached as closely as desired; thus, these bounds are
best possible.

THEOREM 2. For any i > 0 there exists a list L of rectangles ordered by decreasing
width such that the BL packing gives a height haL for which

hBL > 3--6.(1)
hoPT

If the pieces are restricted to squares then an L can be found such that for any > 0

haL > 2-6.(2)
hoPT

Proof. We shall prove the second result first, since the first result is but a slight
modification.

The list proving (2) corresponds to the "checkerboard" packing in Fig. 3. The
pieces are all either unit squares or approximately 22 squares. In particular, the
larger squares are disposed on the bottom of the bin with the dimensions stepping
down by e from piece to piece. Hence the assignment of pieces in the second row must
be made from right to left according to the bottom-up rule. Since two unit squares
exceed the dimension of any larger square and squares are left-justified, only one unit
square is placed on each large square. Except for the first and last pieces, this type of
assignment repeats on the second row since the "holes" in the second row all have
width less than and squares to the right are lower than squares to the left. In general,

850 B.S. BAKER, E. G. COFFMAN AND R. L. RIVEST

FIo 3. The checkerboard example.

the th row of unit squares alternates holes and pieces except for at most the initial
and final i- pieces of the row. Note that an optimum packing can be found which,
except for possibly the last row, is within O(e) of being fully occupied.

The edge effects inhibiting the waste of half the space in the BL packing consist
of

1. the row of larger pieces on the bottom, and
2. the triangular-shaped solidly packed collections of squares on the left and

right of the packing.
Holding piece sizes constant, the influence of the first edge effect is reduced by
increasing the height of the packing, while the second is attenuated by widening the
bin. Let k be two greater than the number of rows of unit squares. If the width of the
bin is selected to be k -, then the area of the bottom row and side edge effects is
O(k2). Thus, ignoring O(e) terms, we can find a list such that

hBL k

horr k3/2+O(k2)

In the limit k-->o, we have the bound of 2.
For the case of rectangles, it is only necessary to augment the list for Fig. 3 by

adding as a new, last piece a rectangle of unit width and a height which equals the
height of the optimum packing corresponding to the new list. Omitting the details, the
BL packing will correspond to Fig. 3 with the new piece placed on top. It is easy to
verify that the height ratio can now be made to approach 3 as closely as desired.

THEOREM 3. Let L be a list of rectangles ordered by decreasing widths. Then

haL <=3.(3)
hoPT

This bound is. best possible in the sense of Theorem 2.
Proof. Let h* denote the height of the lower edge of a tallest piece whose upper

edge is at height haL. If y denotes the height of this piece, then hBL=Y+h*. Let A
denote the region of the bin up to height h*.

Suppose we can show that A is at least half occupied. Then we have hOpT__>
max{y,h*/2); hence, y > h*/2 implies

hal < y+h* <y+2y_______ 3,
hozr Y Y

ORTHOGONAL PACKINGS IN TWO DIMENSIONS 851

and if y =<h*/2, we have

hBL < h*/2+h* =3.
hovr h*/2

The result will thus be proved. It remains to show that A is at least half occupied.
Any horizontal cut or line through A can be partitioned into alternating segments

corresponding to cuts through unoccupied and occupied areas of the BL packing. We
shall show that the sum of the occupied segments is at least the sum of the unoccupied
segments. For convenience we may restrict ourselves to lines which do not coincide
with the (upper or lower) edges of any piece. Since the set of such lines is of measure
zero, ignoring them will not influence our claim that A is at least half occupied.

Initially, consider the partition of a given line just prior to when the first
rectangle, say q, is assigned with a lower edge at a height exceeding the height, h, of
the line. The piece q need not be in A; its existence is guaranteed by the fact that there
is a piece packed above A. We claim that at that point in the assignment sequence the
line is "half occupied."

First, bottom-up packing implies that all lines must cut through at least one
piece. Second, all lines must cut through a piece abutting the left bin edge. For
suppose not; then the left-most piece, say q’, cut by the line must abut another piece,
say q", to the left and entirely below the line. Thus, the length, x, of the unoccupied,
initial segment of the line must be at least the width of q". But since q" was packed
prior to q, the width of q must be less than that of q" and hence less than x. Since at
the point in time we are considering, no piece has been assigned entirely above the
line, the space vertically above the initial segment must be completely unoccupied.
Thus, we have the contradiction that q would have fit into the space above q" in such
a way that its lower edge is at a height less tha,n h.

Now consider any segment, S, of the line which cuts through an unoccupied
space. Let p be the piece bordering S on the left. Since when q is assigned, it is placed
above the line, q must be wider than the length of S. (Once again, at the time q is
assigned its height could not prevent its placement in a sufficiently wide unoccupied
space cut by the line.) But q is packed later than p; consequently, p is at least as wide
as q. It follows that for each segment representing unoccupied space along the line
there is a longer segment representing occupied space immediately to its left. Clearly,
for any given line, the sum of the segment lengths corresponding to unoccupied space
must be monotonically nonincreasing as the packing sequence progresses. Therefore,
the line continues to be at least half occupied. Finally, "integration" over the height of
A verifies that A is at least half full.

COROLLARY 1. If L in the statement of Theorem 3 consists only of squares, then

hBL <2.
hoPT

This bound is best possible in the sense of Theorem 2.
Proof. First, define A’ as the area extending from height y to height hsL--y, where

y is the size of the tallest rectangle (now square) assigned above A in Theorem 2. Letp
denote this square. As in Theorem 2, A’ cA is shown to be at least half occupied. But
now, if w denotes the width of the bin, we observe that the cumulative occupied area
of the upper and lower wy slabs of the packing is at least wy and hence they are
(when considered together) half occupied. This follows from the facts that p is at most

852 B.S. BAKER, E. G. COFFMAN AND R. L. RIVEST

as large as any square on the bottom of the bin, the bottom of the bin is full except
possibly for a space at the right end, and the area of p must exceed y times the width
of this space. Hence, the entire packing is at least half occupied from 0 to haL. It
follows immediately that haL < 2hop.r.

We have seen that a BL algorithm can yield reasonably good packings when the
list of pieces is sorted into decreasing order by width. That is, Theorem 3 shows that
the bin height used is no more than three times the optimal bin height, and if the
pieces are squares, then the packing can be no more than twice as high.

A natural question to ask next is, "For every set of pieces, is there some ordering
of those pieces into a list such that the BL rule, when applied to that list, yields an
optimal packing?" Our checkerboard example, which showed that a list of squares
sorted into decreasing order by size can use up to twice as much space as an optimal
packing, can be packed optimally by the BL algorithm if the list is sorted into
increasing order by size. While it might be difficult in practice to actually determine
an ordering for which the BL rule produces an optimum packing, it would be
comforting to know that one was not excluding the possibility of finding an optimum
packing by considering only bottom-up packings.

Unfortunately, there are sets of pieces for which no BL packing is optimal. That
is, no matter what ordering is used, the BL algorithm will produce a suboptimal
packing. In fact we shall present an example using squares only, which demonstrates
that an optimal packing can be as little as the height of the best bottom-up
packing.

THEOREM 4. There exist sets of squares such that the ratio of the bin height used by
the best bottom-up packing to that of an optimum packing is at least 12/(11 + e) for any
sufficiently small e > O.

Proof. Consider the set of squares of sizes (6,6,5,5,4,4,3,1,1) and a rectangle of
width 15. An optimum packing, of height 11, is shown in Fig. 4. We first demonstrate
that (up to obvious left-right symmetries) this is the only optimum packing, and then
we modify the example slightly to obtain the theorem.

Since Fig. 4 is a tight packing, any optimum packing must have height 11. For an
arbitrary optimum packing consider the 15 x 11 rectangle A that it packs to be divided
into 15 disjoint x 11 vertical slabs. Let the type of a slab be an ordered list of the
sizes of the squares that the slab intersects. The only possible types are:

(a) 6-5
(b) 6-4-1
(c) 6-3-1-1
(d) 5-5-1
(e) 5-4-1-1
(f) 4-4-3

Let a denote the number of slabs of type (a), etc. The following equations must then
hold, for a,b,c,d,e,f nonnegative integers:

a+ b+c +d +e +f=15
a+ b+c 12
a + 2d+ e 10

b+ e +2f= 8
c +f= 3

b+2c+d +2e 2

ORTHOGONAL PACKINGS IN TWO DIMENSIONS 853

FIG 4.

w=15

Optimum vs. best BL packings.

The first equation reflects the fact that there is a total of 15 slabs; the remaining five
equations account for the presence of the squares of sizes 6,5,4,3,1 respectively. For
example, the second equation states that the presence of exactly two 6 6 squares
requires 12 slabs of types with 6’s in them. By the last equation we have that either
c=0 or c= 1. Choosing c-1 yields a contradiction, and c=0 gives us the unique
solution to the above equations:

a=10
b=2
c=d=e=O

f=3.
Any solution having the slab types in the above numbers must look like either Fig. 4
or its reflection. This can be proved by observing that (since a= 10), each 55 is
entirely above or below a 6 6. Take a particular 5 5 and consider the slab which
intersects the adjacent 6 6 but does not contain the 5 5. This must be of type 6-4-1
or 6-5 (using the other five). The 6-5 possibility can’t happen (since there would be a
6 3 unfilled space next to the other 6 6), and the pieces of the 6-4-1 must occur in
the order 6,1,4 to prevent an unfillable gap between the 4 4 and the edge of A. The
4-4-3 slabs must come next: the pieces must be in the order 4,3,4 to leave room for the
6 6. Finally, the 6-4-1 and 6-5 slabs complete the picture. Thus, Fig. 4 represents the
only way to pack the given squares into a 15 11 rectangle.

We now modify things so that (i) the 3 3 now has size (3 +e) (3 + e) and (ii) the
bin now has width 15 + e. The preceding proof shows that (to within e) the packing in
Fig. 4 is still optimum. However, we note that in the modified packing there must be
gaps on the bottom row between the 5 5 and 4 4 and between the 4 4 and 6 6
which add up to e; otherwise the and (3 +e) (3 + e) will not be able to fit on top
of the 4 4. Since no BL rule can produce those gaps, the optimum packing of Fig. 4
is unachievable. The best that such an algorithm can do is a packing of height 12.
Thus we have

haL > 12

hoPT ll+e

for this example.

854 B.S. BAKER, E. G. COFFMAN AND R. L. RIVEST

As a final technical result we make an observation also made by R. E. Tarjan;
viz., that the example of Theorem can be modified to show that ordering the list by
decreasing height can also lead to packings that are arbitrarily bad relative to the
optimum.

THEOIEM 1’. For any M> O, there exists a list ofpieces ordered by decreasing height
such that

haL >M.
hoPT

Proof. Let k > be given and let the bin width be w=k k. We shall define the BL
packings proving the theorem by specifying the pieces row by row. The first two rows
will each consist of w unit-width pieces. We shall define sequences (ii) and {/’) such
that the heights of pieces in the first row are given by

ai= +i, <=i<=w,

and the heights of pieces in the second row are, indexed from left to right,

bi- +6i <i<w.

The i and /’ sequences are defined below so that a <at+ b and

(4) a>=a2 > >a >b>b >... >b >0.t’-- t--l-- l--

Thus, the pieces will be packed in the order given by (4), the piece of height b
will be on top of the piece of height ai, < <= w, and the cumulative heights achieved
in the second row will be hi 2 + 6i "" ;, < < w.

As in the proof of Theorem 1, define ri=max{mlk" divides i). Thus, if is a
multiple of k but not k 2, then ri-- 1; if is a multiple of k 2 but not k 3, then ri 2; etc.
Clearly, r=0 if is not a multiple of k. Note that max<=g<=w(ri)=rw=k. Next, define

i"- 1--i/2w, i<_i<w,_

6 =i/2w-rie, <i<w

where O<e<l/2wk, and hence 6.>0, l<=i<__w. Note that 6>6+, l<i<w, and
16w=i=6=i-rwe. Since 6i+-6i 1/2w-(ri+-ri)e>-_ 1/2w-ke>O, the ordering

in (4) follows. Moreover, the cumulative heights in the second row are hi=3-rie.
Note that these heights have the same notching effect as the heights of the first row of
pieces in Theorem 1.

Let s= w/k---k- 1. As in Theorem the remaining rectangles will be of height 1,
with widths in the order given by"

s of width 1,
S- of width k,

s__ of width k 2

k 2

s
of width kk- 1.

The pieces pack in a pattern similar to that of Theorem 1, using a total height of
k+3-O(ke).

ORTHOGONAL PACKINGS IN TWO DIMENSIONS 855

Note that a different packing could pack all the pieces in rows 3 and above into
one row of height 1, and the remaining pieces into two rows of height 3 as in the
above packing. Thus an optimum packing has a height no greater than 4. Therefore,
the bottom-up packing is at least k/4 times higher than an optimum packing. Since k
is arbitrary, the result follows.

3. Conclusions. This paper is but a beginning in the study of fast, effective
approximation algorithms for packing pieces in two dimensions. We have seen that,
although performance of these algorithms can be very poor, simple measures such as
ordering on piece size can produce algorithms with much more reasonable perfor-
mance. Indeed, with such algorithms it appears that worst-case performance can only
be approached by essentially pathological cases.

Subsequent to the work [8] on which this paper is based, considerable activity has
arisen in two-dimensional bin-packing. Performance bounds have been found for
so-called level-oriented algorithms [9], [10], which in terms of worst-case performance
are superior to the bottom-up algorithms. Also, examples have been found [11] which
show that a best BL packing can be as much as 5/4 worse than the optimum packing.

Many open problems related to our models remain for future research. Questions
that should be resolved are those connected with the specialization to squares and
those arising from list orderings we have not considered. For example, what is a tight
bound for the special case of increasing squares? Another question concerns the
implementation of the BL algorithms. The complexity of such algorithms for decreas-
ing widths is open. How does one efficiently maintain the structure of available space
as the packing sequence progresses?

REFERENCES

[1] E. G. CODD, Multiprogram scheduling, Comm. of the ACM, Parts and 2, 3 (1960), pp. 347-350, Parts
3 and 4, 3 (1960), pp. 413-418.

[2] M. R. GAREY AND R. L GRAHAM, Bounds on multiprocessing scheduling with resource constraints, this
Journal, 4 (1975), pp. 187-200. (See also Chap. 4 of [7]).

[3] P. ERDS AND R. L. GRAHAM, On packing squares with equal squares, Tech. Rep. STAN-CS-75-483,
Computer Science Dept., Stanford University, March, 1975.

[4] D. J. KLEITMAN AND M. M. KRIEG.R, An optimal bound for two-dimensional bin-packing, Proc. 16th
Annual Symposium on Foundations of Computer Science, Los Angeles, Oct. 1975.

[5] D. KLEITMAN AND M. KRIEGER, Packing squares in rectangles; I, Annals of the New York Academy of
Sciences, Vol. 175, Article 1, pp. 253-262, July, 1970.

[6] A. Mv.m AND L. MOSER, On the packing of squares and cubes, Journal of Combinatorial Theory, 5
(1968), pp. 126-134.

[7] J. D., ULLMAN, Complexity of sequencing problems, Computer and Job-shop Scheduling Theory, E. G.
Coffman, Jr. (ed), John Wiley and Sons, New York, 1975.

[8] B. S. BAKER, E. G. COFFMA, JR., AND R. L. RIVEST, Orthogonal packings in two dimensions, Proc.
Allerton Conf., 1978 University of Illinois, Champaign-Urbana.

[9] E. G. COFVMAN, JR., M. R. GAREY, D. S. JOHNSOr AND R. E. TmoAN, Performance bounds for
level-oriented two-dimensional packing algorithms, this Journal, this issue, pp. 808-826.

[10] DANIEL D. K. D. B. SLEATOR, A 2.5 times optimal algorithm for packing in two dimensions, Inform.
Process. Lett. 10 (1980), pp. 37-40.

[11] D. BROWN, private communication.

	SMJCAT_V09_i1_p0001
	SMJCAT_V09_i1_p0025
	SMJCAT_V09_i1_p0046
	SMJCAT_V09_i1_p0054
	SMJCAT_V09_i1_p0067
	SMJCAT_V09_i1_p0085
	SMJCAT_V09_i1_p0091
	SMJCAT_V09_i1_p0104
	SMJCAT_V09_i1_p0111
	SMJCAT_V09_i1_p0114
	SMJCAT_V09_i1_p0121
	SMJCAT_V09_i1_p0126
	SMJCAT_V09_i1_p0130
	SMJCAT_V09_i1_p0142
	SMJCAT_V09_i1_p0159
	SMJCAT_V09_i1_p0197
	SMJCAT_V09_i1_p0200
	SMJCAT_V09_i1_p0212
	SMJCAT_V09_i1_p0217
	SMJCAT_V09_i2_p0219
	SMJCAT_V09_i2_p0225
	SMJCAT_V09_i2_p0230
	SMJCAT_V09_i2_p0251
	SMJCAT_V09_i2_p0273
	SMJCAT_V09_i2_p0281
	SMJCAT_V09_i2_p0298
	SMJCAT_V09_i2_p0321
	SMJCAT_V09_i2_p0343
	SMJCAT_V09_i2_p0348
	SMJCAT_V09_i2_p0375
	SMJCAT_V09_i2_p0396
	SMJCAT_V09_i2_p0417
	SMJCAT_V09_i2_p0439
	SMJCAT_V09_i3_p0441
	SMJCAT_V09_i3_p0470
	SMJCAT_V09_i3_p0490
	SMJCAT_V09_i3_p0509
	SMJCAT_V09_i3_p0513
	SMJCAT_V09_i3_p0525
	SMJCAT_V09_i3_p0541
	SMJCAT_V09_i3_p0552
	SMJCAT_V09_i3_p0558
	SMJCAT_V09_i3_p0566
	SMJCAT_V09_i3_p0583
	SMJCAT_V09_i3_p0594
	SMJCAT_V09_i3_p0615
	SMJCAT_V09_i3_p0628
	SMJCAT_V09_i3_p0636
	SMJCAT_V09_i3_p0653
	SMJCAT_V09_i4_p0665
	SMJCAT_V09_i4_p0672
	SMJCAT_V09_i4_p0683
	SMJCAT_V09_i4_p0692
	SMJCAT_V09_i4_p0698
	SMJCAT_V09_i4_p0706
	SMJCAT_V09_i4_p0713
	SMJCAT_V09_i4_p0729
	SMJCAT_V09_i4_p0744
	SMJCAT_V09_i4_p0758
	SMJCAT_V09_i4_p0768
	SMJCAT_V09_i4_p0785
	SMJCAT_V09_i4_p0808
	SMJCAT_V09_i4_p0827
	SMJCAT_V09_i4_p0846

